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Abstract: This paper introduces a novel multi-objective explainable Al (XAI) framework
to analyze electricity market dynamics. The increasing complexity and volatility of mod-
ern energy markets necessitate advanced analytical tools that offer both predictive accu-
racy and transparent, interpretable insights. Our approach simultaneously addresses
three interconnected objectives: price forecasting, volatility prediction, and price direction
classification. By employing separate Random Forest models for each objective and lever-
aging SHAP explanations, the framework provides unified feature importance analysis.
The study reveals that while some features are critical across all objectives, others are spe-
cialized. Notably, total load emerges as the dominant predictor for absolute price levels,
whereas hydro generation and gas generation are primary drivers of volatility. The low
correlation observed between feature importance scores across different objectives empir-
ically validates the multi-objective approach, highlighting the distinct factors driving
price, volatility, and direction. These findings offer valuable implications for market par-
ticipants and regulators by providing a multi-dimensional decision-support tool..

Keywords: Explainable AI (XAI), Multi-objective Machine Learning, SHAP, Electricity
Price Forecasting, Romania, Energy Economics, Price Volatility, Random Forest, Feature
Importance

1. Introduction

The electricity market, particularly in Europe, is characterized by significant volatility,
driven by a complex interplay of production sources, demand fluctuations, geopolitical
factors, and the integration of renewable energy. Accurate electricity price forecasting
(EPF) is paramount for stakeholders to optimize bidding strategies, manage risk, and
ensure grid stability. In recent years, machine learning (ML) models have emerged as
powerful tools, demonstrating superior performance over traditional statistical meth-
ods by capturing complex, non-linear market relationships.

However, the high accuracy of these advanced ML models often comes at the cost of in-
terpretability, leading to what is commonly termed the "black-box" problem. This opac-
ity is a significant concern in critical sectors like energy, where decisions have substan-

tial economic and societal implications. The growing demand for transparency has led
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to the rise of Explainable Artificial Intelligence (XAlI), a field dedicated to providing
insights into the decision-making processes of Al models. XAI techniques foster trust
and allow users to comprehend and validate model outputs, a necessity underscored
by regulations like the GDPR in Europe.

Among XAI techniques, SHAP (SHapley Additive exPlanations) has become a promi-
nent model-agnostic method that quantifies the contribution of each feature to a predic-
tion, enhancing the interpretability of complex models. While XAl has been applied to
single-objective EPF, a comprehensive understanding of market dynamics requires con-
sidering multiple, interconnected objectives, such as price, volatility, and directional
movement. A single-objective explanation may provide an incomplete or even mislead-
ing picture.

This paper addresses this research gap by proposing and implementing a novel multi-
objective XAI framework for analyzing Romanian electricity prices. Our research simul-
taneously explains model predictions across three critical objectives: price accuracy,
volatility, and direction. By leveraging Random Forest models and SHAP values, we
identify both consensus features—variables important across all objectives—and spe-
cialized features that are crucial for specific outcomes. This distinction provides a more
granular and holistic understanding of the market's underlying drivers, moving be-
yond single-objective XAl to offer a more comprehensive and trustworthy decision-

support tool.

1.1. Literature Review and Related Work

The field of electricity price forecasting (EPF) has seen substantial advancements with
the advent of machine learning (ML). A comprehensive 2021 review by Lago et al.
(2021) details the state-of-the-art algorithms and best practices, noting the shift from
classical statistical models to more sophisticated ML methods that better handle the
complex, non-linear dynamics of electricity markets. These models, including the
Random Forest algorithm introduced by Breiman (2001), are essential for market
participants to manage risk and develop optimal bidding strategies. The recent
evolution of prices in the Romanian market, influenced by post-COVID recovery and
geopolitical crises, underscores the need for accurate forecasting, as analyzed by
Handra and Samoila (2024).

However, the predictive power of these ML models often comes at the cost of
interpretability, creating a "black-box" problem (Adadi & Berrada, 2018). This lack of
transparency is a significant barrier to adoption in high-stakes sectors like energy.
Explainable Artificial Intelligence (XAI) has emerged to address this challenge. The goal
of XAl is to create machine learning models that produce more explainable results
while maintaining high performance, enabling human users to understand and trust
their outputs. The importance of XAl is growing, with applications across various

domains, including financial time series forecasting (Arsenault et al., 2024), building
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energy management (Chen et al., 2023) and broader smart energy systems, where 85
explainability and governance are critical concerns (Alsaigh et al., 2023). 86

87
Among XAI techniques, SHAP proposed by Lundberg and Lee (2017), provides a 88
unified and theoretically grounded approach to interpreting model predictions by 89

assigning each feature an importance value for a particular prediction. SHAP hasbeen 90
effectively used to enhance the transparency of EPF models. Recent studies 91
demonstrate its utility in feature selection for probabilistic forecasting (Liu et al., 2023) 92
and in developing error compensation approaches to improve model performance and 93
make explanations more accessible to non-expert users Research has also focused on 94

using XAl to explain deep neural network models in EPF, further highlighting the drive 95

to understand the factors influencing price dynamics in various electricity markets 9
(Shadi et al., 2024). 97
While the application of XAl to single-objective EPF is advancing, a notable gap 98
remains in multi-objective scenarios. Energy market analysis requires a holistic view 99

that includes not just price, but also volatility and directional movement. This research 100

addresses that gap by proposing a framework that simultaneously explains predictions 101

across these interconnected objectives, a concept that builds on the idea of multi- 102
objective explainability in machine learning (Corrente et al., 2024). By doing so, our 103
work provides a more comprehensive understanding of market dynamics than is 104
possible with a single-objective focus. 105
106
2. Materials and Methods 107
108
2.1. Data Acquisition and Preprocessing 109
110
111

The analysis is based on a dataset comprising historical electricity market data for Roma- 112
nia, with the study focused on the most recent 10,000 hourly observations to ensure com- 113
putational efficiency for SHAP value calculations. The dataset encompasses 15 features 114
across multiple categories, each contributing essential information for comprehensive 115
market analysis. 116

117
Market data forms the foundation of the dataset, incorporating historical electricity 118
prices denominated in EUR/MWh and sourced from the European wholesale electricity 119
price data maintained by Ember. This data provides the core pricing information neces- 120
sary for understanding market dynamics and serves as both input features and target 121
variables depending on the specific analytical objective. 122

123
Load data represents another critical component, encompassing both actual and fore- 124
casted national electricity consumption patterns obtained from the ENTSO-E Transpar- 125
ency Platform. This information captures demand-side dynamics that significantly influ- 126
ence price formation and market behavior, providing insights into consumption patterns 127
and their predictive relationship with market outcomes. 128
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129
Generation data constitutes the third major category, incorporating both actual and fore- 130
casted electricity generation from various renewable and conventional sources, including 131
hydro, wind, and solar facilities. This comprehensive generation dataset, also sourced 132
from the ENTSO-E Transparency Platform, enables the analysis to account for supply- 133
side factors that directly impact market pricing and volatility patterns. 134

135
Finally, exogenous factors are represented through temperature data relevant to the Ro- 136
manian market context, computed using the Open-Meteo Historical Weather API. Tem- 137
perature serves as a crucial external variable that influences both electricity demand 138
through heating and cooling requirements and renewable generation capacity, particu- 139
larly for solar installations, thereby providing important contextual information for mar- 140
ket behavior prediction. 141

142
Data preprocessing involved strategic handling of missing values to ensure dataset in- 143
tegrity. For the target variable, Price (EUR/MWh), missing values were imputed usinga 144
combination of forward fill and backward fill methods to maintain temporal continuity 145
in the time series. For the 15 defined features, which primarily represent generation and 146
load data, missing values were filled with zeros under the assumption that missing en- 147
tries indicate no generation or load at the specified time. Non-numeric columns were 148
handled using forward and backward fill methods. This rigorous preprocessing ap- 149
proach resulted in a clean dataset with zero remaining missing values across all features 150
and targets, ensuring suitability for subsequent modeling and hourly price predictions. 151

152

2.2. Multi-objective Target Engineering 153

154
From the historical electricity pricing data, three complementary target variables were 155
systematically engineered to capture different dimensions of market behavior and enable 156
comprehensive multi-objective analysis. The first target variable focuses on price fore- 157
casting through regression analysis, where direct electricity price values in EUR/MWhe 158
serve as the primary continuous target for absolute price prediction. This objective ad- 159
dresses the fundamental need for accurate price forecasting in energy trading and pro- 160
curement decisions, with observed prices ranging from -23.18 to 436.89 EUR/MWhe, re- 161
flecting the full spectrum of market conditions including negative pricing scenarios dur- 162
ing oversupply periods. 163

164
The second target variable involves volatility prediction, also employing regression 165
methodology. Market volatility is quantified using a 24-hour rolling standard deviation 166
of hourly prices, providing a dynamic measure of price instability and market risk. This 167
rolling window approach captures short-term price fluctuations while smoothing out 168
noise, with volatility values spanning from 0.00 to 105.61 EUR/MWhe. This target proves 169
particularly valuable for risk management and portfolio optimization strategies, as iten- 170
ables stakeholders to anticipate and prepare for periods of market uncertainty. 171

172
The third target variable transforms hourly price movements into a classification prob- 173
lem through a three-class categorical system based on price change magnitude. The clas- 174
sification framework categorizes movements as 'Down' for decreases exceeding 5 175
EUR/MWhe, 'Stable' for changes within +5 EUR/MWhe, and 'Up' for increases exceeding 176
5 EUR/MWhe. The resulting dataset exhibits a relatively balanced distribution across 177
these categories, with stable conditions representing 36.3% of observations, downward 178
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movements accounting for 34.1%, and upward movements comprising 29.6% of the data. 179
This balanced distribution indicates diverse market conditions and validates the chosen 180
threshold parameters. The classification framework enables trend prediction and sup- 181
ports algorithmic trading strategies focused on directional movements rather than pre- 182
cise price levels, offering a complementary perspective to the regression-based ap- 183

proaches. 184
185
2.3. Data Preprocessing and Model Architecture 186
187

The dataset underwent systematic preprocessing to ensure optimal model performance 188
and realistic evaluation conditions. An 80-20 train-test split was implemented using strat- 189
ified random sampling to maintain representational balance across all target variables 190
while preserving data integrity. This configuration allocates 8,000 observations for train- 191
ing and 2,000 for testing, providing sufficient data for robust model learning while re- 192
taining adequate samples for comprehensive evaluation. 193
Feature standardization was applied using StandardScaler, transforming all input varia- 194
bles to have zero mean and unit variance. This normalization step is critical in multi- 195
feature environments where variables span different scales (e.g., megawatt load values 19
versus temperature readings), ensuring that no single feature dominates the learning 197

process due to magnitude differences rather than predictive importance. 198
199
2.4. Multi-Objective Model Framework and Performance 200
201

The Random Forest algorithm constitutes an ensemble-based machine learning approach 202
that leverages the collective predictive power of multiple decision trees. During the train- 203
ing procedure, the method constructs numerous individual trees and combines their out- 204
puts through ensemble aggregation —employing mean averaging for regression applica- 205
tions and consensus voting for classification scenarios. This algorithmic framework de- 206
rives its primary advantage from the reduction of model variance and the enhancement 207
of generalization performance, achieved by incorporating a multitude of independently 208
trained decision trees. Each constituent tree operates on bootstrapped samples drawn 209
from the original dataset while utilizing randomly selected feature subsets at each node 210
split. 211

212
At its core, the Random Forest methodology relies upon the decision tree as its base 213
learner. Within regression frameworks, individual decision trees formulate predictions 214
by recursively partitioning the input space into non-overlapping rectangular regions, 215
with each region assigned a constant predictive value. 216

217
Given a feature vector X = (X3, Xy, ..., X;) and corresponding response variable Y, each 218
tree classifier h(X) determines its output based on the specific partition R; containing the 219
input instance X. The regional prediction strategy typically utilizes the sample mean of 220
target values from all training instances residing within the corresponding region. The 221
mathematical formulation for an individual tree's prediction hi(x) given input x can be = 222

represented as: 223
Je

h, = z cejl(x € Ryj) 224

j=1
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In this formulation, J; signifies the total count of leaf nodes (terminal regions) within 225
tree t, while R, represents the mutually exclusive partitions that subdivide the feature 226
space corresponding to tree t. The term c; embodies the constant predictive value as- 227
signed to partition Ry, which conventionally equals the arithmetic mean of response 228

values from training observations falling within that specific region. The indicator func- 229
tion evaluates to unity when input x resides within region R; and zero in all other cases. 230

231

The Random Forest ensemble synthesizes outputs from T distinct decision trees to pro- 232
duce its consolidated prediction. In regression scenarios, the ensemble's final prediction 233
H(x) is derived through the arithmetic averaging of individual tree predictions across 234
the entire collection: 235
236

1
H(x) = TZ h(x) 237
t=1
238

where T denotes the total number of trees in the forest and hi(x) represents the prediction 239
of the t-th decision tree. 240

241
The Random Forest methodology incorporates bootstrap aggregation (bagging) as a 242
mechanism for fostering diversity among ensemble constituents. This technique involves 243
the generation of bootstrap replicates from the original training corpus for each individ- 244
ual tree development. Each bootstrap replicate D: is constructed through the random 245
sampling of N instances with replacement from the source dataset D containing N obser- 246
vations. This resampling strategy ensures that certain data points may occur repeatedly 247
within D, while others remain absent entirely, thus establishing heterogeneity across the 248
tree population. 249

250
In addition to bagging, the Random Forest framework introduces supplementary sto- 251
chasticity via feature subsampling at each internal node division. Throughout the tree- 252
building procedure, only a randomly selected subset of m attributes (constrained by m< 253
p, where p denotes the complete feature dimensionality) is evaluated when establishing 254
the optimal partitioning criterion. This attribute randomization mechanism serves to fur- 255
ther reduce inter-tree correlation and diminish ensemble variance, thereby enhancing the 256
model's capacity for generalization beyond the training data. 257

258
Building upon this theoretical foundation, this study employs a specialized ensemble 259
approach that leverages distinct Random Forest models for each analytical objective, 260
thereby enabling the capture of unique patterns governing price behavior, volatility dy- 261
namics, and directional movements within the electricity market framework. The selec- 262
tion of Random Forest as the foundational algorithm was motivated by several strategic 263
considerations that align with the complexities inherent in energy market modeling. The 264
algorithm's inherent robustness, achieved through bootstrap aggregation techniques, 265
provides enhanced stability in predictions while simultaneously addressing the non-lin- 266
ear feature interactions that characterize energy markets. Furthermore, Random Forest 267
demonstrates natural resistance to outliers—a critical consideration given the volatility 268
inherent in electricity pricing mechanisms—and maintains seamless compatibility with 269
SHAP explainers, facilitating comprehensive interpretability analysis essential for under- 270
standing model decision-making processes. 271

272
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The architectural configuration of each model incorporated 100 estimators, representing 273
an optimal balance between computational efficiency and prediction stability. This pa- 274
rameter selection was complemented by the implementation of parallel processing capa- 275
bilities to enhance training performance and reduce computational overhead. The en- 276
semble comprised three distinct modeling components, each tailored to specific analyti- 277
cal requirements and market applications. 278

279
The price forecasting component utilized a Random Forest Regressor architecture de- 280
signed to deliver quantifiable forecasting accuracy suitable for energy trading applica- 281
tions. This model focuses on capturing the fundamental price determination mechanisms 282
within electricity markets, providing traders and market participants with reliable price 283
predictions that inform strategic decision-making processes. The volatility prediction 284
component employed a specialized Random Forest Regressor configuration specifically 285
calibrated to identify and quantify market instability patterns. This model serves critical 286
functions in risk assessment and portfolio management applications, enabling market 287
participants to understand and prepare for periods of increased market uncertainty. 288
The directional classification component implemented a Random Forest Classifier frame- 289
work dedicated to identifying meaningful directional patterns within price movements. 290
This classification approach provides essential insights into the likelihood of price in- 291
creases or decreases, offering valuable information for short-term trading strategies and 292
market positioning decisions. 293

294
The performance metrics observed across all three models reflect the inherent complexity 295
of electricity market dynamics, where multiple interconnected factors simultaneously in- 296
fluence price behavior patterns. The models demonstrate varying degrees of predictive 297
capability that align appropriately with their respective analytical objectives. The regres- 298
sion-based models exhibit strong correlation measures that validate their effectivenessin 299
capturing quantitative relationships within the data, while the classification model pro- 300
vides directional insights that exceed baseline expectations, demonstrating its utility in 301
identifying meaningful patterns within the complex landscape of electricity market 302

movements. 303
304
2.5. Explainable Al (XAI) with SHAP Analysis 305
306
2.5.1. SHAP Values and Explainability 307

SHAP (SHapley Additive exPlanations) values represent a game-theoretic methodology 308

for machine learning interpretability that offers a cohesive framework for elucidating 309
predictions across diverse modeling approaches. Grounded in cooperative game theory 310
principles, SHAP values establish an equitable attribution system by linking instance- 311
level explanations to foundational concepts of fair allocation. Individual features are 312
assigned importance scores for specific predictions, quantifying the mean marginal 313
impact of each attribute across all feasible feature combinations. The SHAP attribution 314
¢: for attribute i is formally characterized using the Shapley value equation from 315
cooperative game theory: 316

317
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In this expression, x denotes an input observation, f represents the predictive model, F 319
encompasses the complete attribute space, S indicates a feature subset that excludes 320
attribute i, f,(S)corresponds to the model's output when exclusively utilizing features 321
within set S (with absent features handled through marginalization over their expected =~ 322
values or reference distribution), and f, (S U {i}) signifies the model's output when 323
incorporating both features in set S and attribute i. 324

This mathematical construct calculates the probability-weighted average of attributei's 325

marginal contributions across all conceivable feature subsets. The marginal 326
contribution, characterized as the differential in model outputs upon incorporating 327
attribute i into subset S, quantifies the incremental benefit furnished by that attribute. 328
The weighting factor W represents the likelihood that attribute i joins the 329
coalition following exactly |S| other attributes, guaranteeing that all potential 330
sequences of feature incorporation receive appropriate probabilistic consideration. 331
SHAP values adhere to the core additivity principle, which mandates that the 332
summation of individual attribute contributions equals the deviation between the 333
model's instance-specific prediction and the reference expectation: 334
335

M
FG) = EIFCO1+ ) ¢u(f, ) 36

i=1
where f(x) signifies the model's prediction for observation x, E[f(X)] represents the 337
anticipated model output across the reference distribution (functioning as the baseline), 338
M denotes the total attribute count, and ¢i(x) constitutes the SHAP attribution for 339
attribute i concerning observation x. 340

This additivity constraint ensures local fidelity by guaranteeing that SHAP attributions 341
furnish comprehensive and accurate explanations of the discrepancy between instance- 342

specific predictions and average model behavior. The decomposition ensures 343
preservation of all predictive information throughout the attribution procedure, 344
rendering SHAP values exceptionally suitable for comprehending model dynamics at 345
the observation level while preserving mathematical precision and interpretative 346
clarity. 347

348
2.5.2. SHAP-Based Feature Importance Analysis 349

350

To enable comprehensive interpretability across all three objectives, SHAP values were 351
computed for each trained model using the TreeExplainer framework, specifically opti- 352
mized for Random Forest architectures. SHAP values provide model-agnostic quantifi- 353
cation of individual feature contributions to predictions, enabling direct comparison of 354
feature importance across different modeling objectives. 355

356
The analysis was conducted on the complete test dataset comprising 2,000 observations, 357
ensuring statistical robustness of the importance estimates. For each model, SHAP values 358
were calculated across all 15 input features. For the direction classification analysis, 359
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SHAP values corresponding to the 'Stable' class were extracted to maintain consistency 360

with the binary importance comparison framework. 361

362
2.5.3. Multi-Objective Importance Synthesis 363
A systematic approach was implemented to synthesize feature importance across the 364
three distinct objectives. The methodology involved computing mean absolute SHAP 365
values for each feature within each objective, providing aggregate importance measures 366
independent of prediction direction (positive or negative contributions). These 367
objective-specific importance scores were subsequently normalized to a uniform [0, 1] 368
scale to enable meaningful cross-objective comparison, accounting for the different 369
scales and distributions inherent in regression versus classification SHAP values. 370

A composite importance metric was derived through equally weighted averaging of the 371
normalized scores across all three objectives. This consensus-based approach generates 372

a unified ranking system that identifies features with consistent importance across 373
multiple market dimensions, while simultaneously revealing objective-specific 374
contributors. The resulting framework enables systematic differentiation between 375
universal market drivers and specialized predictors, providing insights into both 376
shared and unique feature dependencies across price forecasting, volatility prediction, 377
and directional classification tasks. 378

379
3. Results 380
3.1. Model Performance 381

382

The Random Forest ensemble demonstrated consistent predictive capabilities across all 383
three objectives on the independent test dataset, establishing a reliable foundation for 384
subsequent explainability analysis. The comprehensive performance evaluation reveals 385
distinct characteristics for each modeling task, providing insights into the varying com- 386

plexity and predictability of different market phenomena. 387

388
In terms of price forecasting performance, the regression model achieved a test R? of 389
0.7679 with an RMSE of 21.39, indicating that the model accounts for approximately 390
76.8% of price variance in unseen data. The training performance, characterized by an 391
R? of 0.9683, demonstrates the model's capacity to learn complex price patterns from 392
historical data, while the test performance reflects its ability to generalize effectively to 393
new market conditions. This substantial predictive accuracy suggests that the underly- 394
ing price formation mechanisms exhibit sufficient regularity to support reliable fore- 395
casting applications. 396

397

The volatility prediction performance presents a similarly robust pattern, with the vola- 398
tility model recording a test R? of 0.7052 and RMSE of 7.71 volatility units, thereby cap- 399
turing approximately 70.5% of price volatility patterns in the test data. Training results, 400
indicated by an R? of 0.9575, show strong pattern recognition capabilities during the 401
learning phase, while the test performance demonstrates effective volatility risk quanti- 402
fication suitable for practical risk management applications. The slightly lower test 403
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performance compared to price forecasting suggests that volatility patterns may be in- 404
herently more challenging to predict due to their dynamic and complex nature. 405
406
Direction classification performance exhibits different characteristics from the regres- 407
sion tasks, with the classification model achieving 60.35% accuracy on the test set. This 408
performance substantially exceeds the 33.3% baseline probability expected from ran- 409
dom three-class prediction, indicating meaningful predictive capability. The perfect 410
training accuracy of 100% demonstrates complete pattern memorization during the 411
learning phase, while the test accuracy reflects the model's ability to generalize direc- 412
tional patterns to new market scenarios, albeit with greater uncertainty than the contin- 413
uous prediction tasks. 414
415
The performance metrics across all objectives provide quantitative validation of the 416
models' predictive validity, with each model showing appropriate learning characteris- 417
tics for their respective tasks. These results establish the credibility of the subsequent 418
SHAP-based feature importance analysis, ensuring that interpretability insights are de- 419
rived from models with demonstrated predictive capability rather than from poorly 420
performing or overfitted systems. 421
3.2. Multi-Objective Feature Importance 422
423
The multi-objective feature importance analysis reveals a pronounced hierarchical 424
structure that governs the Romanian electricity market dynamics, with the 15 analyzed 425
features (Table 1) demonstrating substantial variance in predictive power across 426
different market dimensions. The comprehensive ranking, derived from the unified 427
multi-objective scoring methodology, spans from 0.5463 for the most influential feature 428
to 0.0426 for the least significant, creating a clear stratification that illuminates the 429
market's underlying mechanisms. 430
431
Table 1. Complete Ranking of Features by Multi-Objective Importance Score. 432
Feature Normal
Actual_generation_ MW _hydro_run_of_river_et_poundage_Romania 0.5463
Actual_generation_MW_fossil_gas_Romania) 0.4838
Actual_total_load_MW_Romania 0.4627
Actual_generation_MW_hydro_water_reservoir_Romania 0.4015
Day_ahead_total_load_forecast_ MW_Romania 0.3709
Actual_generation_MW_nuclear_Romania 0.2600
Current_solar_generation_forecast_ MW_Romania 0.1676
Actual_generation_MW_wind_onshore_Romania 0.1619
Day_ahead_wind_onshore_generation_forecast_ MW_Romania 0.1185
Actual_generation_MW_solar_Romania 0.0858
Day_ahead_solar_generation_forecast MW_Romania 0.0808
Current_wind_onshore_generation_forecast_ MW_Romania 0.0735
average_temperature_Celsius 0.0723
Intraday_solar_generation_forecast_ MW_Romania 0.0685
Intraday_wind_onshore_generation_forecast MW_Romania 0.0426
433
The distribution of importance scores reveals a distinct three-tier structure within the 434
Romanian electricity market, where the top five features account for approximately 435
66.7% of the total measured multi-objective importance within this analytical 436
framework, with the leading hydro run-of-river feature demonstrating 12.8 times 437
greater importance than the least significant renewable forecast. This concentration of 438

measured importance suggests that while the market incorporates diverse information 439
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sources, a relatively small subset of variables exhibits the strongest predictive influence 440

across all prediction objectives within the multi-objective scoring methodology. 441
3.3. Analysis of Specialized Features (Dominant Objectives) 442
While the aggregate rankings illuminate the overall market hierarchy, the distinctive 443
value of the multi-objective approach emerges through its capacity to identify which 444
specific prediction objective each feature predominantly influences, revealing the 445
nuanced specialization that characterizes modern electricity markets. The analysis 446
demonstrates that features exhibit remarkably distinct influence patterns across price 447
level determination, volatility prediction, and directional movement forecasting, 448

challenging the conventional assumption that market drivers operate uniformly across 449
all price dimensions. 450

The actual total load for Romania emerges as the uncontested dominant factor for price 451
level determination, achieving the maximum normalized importance score of 1.0000, 452
which validates the fundamental economic principle that aggregate demand serves as 453
the primary driver of absolute price levels in electricity markets. This finding reinforces 454
the theoretical foundation that consumption patterns, rather than individual generation 455

sources, establish the baseline pricing framework within which all other market 456
dynamics operate. 457
In contrast, the prediction of price volatility reveals an entirely different pattern of 458
feature dominance, with actual generation from hydro run-of-river and poundage 459
systems claiming the highest influence at 1.0000 normalized importance, followed 460
closely by actual fossil gas generation at 0.6493. This specialization reflects the inherent 461
operational characteristics of these generation technologies, where run-of-river hydro 462
systems, being weather-dependent and non-dispatchable, introduce the greatest 463
uncertainty into market conditions, while gas-fired plants, serving as the marginal 464
price-setting technology, amplify these fluctuations through their rapid response 465
capabilities and variable fuel costs. 466
The directional movement prediction reveals yet another distinct pattern, with actual 467
generation from hydro water reservoir systems achieving maximum importance at 468
1.0000, accompanied by day-ahead total load forecasts at 0.7724. This specialization 469
underscores the strategic role of dispatchable hydro generation in steering short-term 470
price trends, as reservoir systems possess the flexibility to respond to anticipated 471
market conditions, while forward-looking demand expectations provide the temporal 472
context necessary for directional price movements. 473
3.4. Objective Correlation Analysis and the Distinction Between Consensus and Specialized 474
Features 475
The empirical validation of the multi-objective framework emerges through the 476
correlation analysis of normalized feature importance scores across the three prediction 477
objectives, which reveals remarkably low inter-objective correlations that 478
fundamentally challenge single-objective modeling approaches. The price versus 479
volatility importance correlation of 0.1923, the price versus direction correlation of 480
0.1206, and the volatility versus direction correlation of 0.1287 collectively demonstrate 481
that the factors driving price levels, volatility, and directional movement operate as 482

largely independent mechanisms within the Romanian electricity market. 483
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These low correlation values expose a critical distinction between consensus features, 484
which maintain relatively consistent importance across all objectives, and specialized 485
features, which exhibit pronounced dominance in specific prediction tasks while 486
showing minimal influence in others. The consensus features, exemplified by actual 487
total load and day-ahead load forecasts, represent the fundamental market drivers that 488
influence all price dimensions, albeit with varying degrees of intensity. These features 489
form the backbone of market dynamics, providing the essential context within which 490
specialized mechanisms operate. 491

Conversely, specialized features demonstrate remarkable objective-specific dominance, 492

with hydro run-of-river generation serving as the primary volatility driver while 493
showing more moderate influence on price levels and direction, and reservoir hydro 494
systems dominating directional predictions while contributing less significantly to 495
overall price determination. This specialization reflects the distinct operational 496
characteristics and market roles of different generation technologies, where the 497

temporal flexibility of reservoir systems makes them ideal for directional price steering, 498
while the weather-dependent variability of run-of-river systems creates the uncertainty =~ 499

that drives price volatility. 500
The identification of this consensus-specialized feature dichotomy provides crucial 501
insights for market modeling and prediction strategies, suggesting that optimal 502
forecasting approaches should incorporate both universal market drivers and objective- 503
specific mechanisms. The low inter-objective correlations empirically validate the 504
necessity of multi-objective frameworks in electricity market analysis, as traditional 505
single-objective approaches would inevitably miss the specialized dynamics that 506
characterize different aspects of price behavior, potentially leading to suboptimal 507
predictions and flawed market understanding. 508
3.5. Visualizations 509
The multi-objective feature importance analysis reveals fundamental insights into the 510
differential drivers of electricity market behavior (Figure 1). The comparative 511

visualization demonstrates that feature relevance varies significantly across prediction 512
objectives, with certain variables exhibiting high importance for price prediction while 513

showing minimal relevance for volatility or directional forecasting. This finding 514
challenges the conventional wisdom of unified modeling approaches and provides 515
empirical support for the multi-objective framework design. 516
The correlation analysis between objective-specific feature importance rankings 517
provides compelling evidence for the framework's theoretical foundation (Figure 2). 518
The consistently low correlation coefficients, ranging from 0.120 to 0.192, indicate that 519
each prediction objective is driven by distinct feature sets, thereby validating the 520
decision to employ separate modeling approaches rather than attempting to optimizea 521
single unified model. This finding has significant implications for both model 522
architecture design and computational resource allocation. 523
Performance evaluation across all framework components demonstrates robust 524
predictive capability while revealing interesting patterns in prediction complexity 525
(Figure 3). The price prediction model achieves superior performance (R? = 0.768), 526

suggesting that continuous price forecasting is more tractable than categorical direction 527
classification or volatility estimation. This performance differential provides valuable 528
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insights into the relative predictability of different market dynamics and can inform 529
resource allocation decisions in operational forecasting systems. 530

Detailed validation of the price prediction component through actual versus predicted 531
value analysis confirms the model's reliability across the full range of market conditions 532

(Figure 4). The scatter plot visualization reveals consistent performance without 533
systematic bias, supporting the framework's suitability for practical deployment in 534
electricity market forecasting applications. The absence of significant outlier clusters or 535
systematic deviations suggests robust model generalization capability. 536
The feature category analysis provides strategic guidance for data collection and 537
system design priorities in electricity market forecasting applications (Figure 5). The 538
finding that load-related features exhibit the highest average multi-objective 539
importance (0.463) suggests that demand-side monitoring should receive priority in 540
data collection systems. Similarly, the significant importance of actual generation data 541
(0.323) compared to forecast data (0.132) indicates that real-time operational 542
information provides superior predictive value compared to forward-looking 543
projections. 544
The granular analysis of top-performing features offers specific insights for model 545
deployment and operational decision-making (Figure 6). The emergence of hydro run- 546
of-river generation as the dominant feature for volatility prediction, while total 547
electrical load drives price forecasting, illustrates the complex, objective-specific nature 548
of electricity market dynamics. These findings provide concrete guidance for feature 549
selection in resource-constrained environments and inform data quality requirements 550
for operational systems. 551

The comprehensive analysis reveals that the multi-objective approach yields significant 552

advantages over traditional single-objective methods. The low inter-objective 553
correlation (average r = 0.147) demonstrates that different market dynamics are driven 554
by distinct underlying factors, validating the framework's core premise. Furthermore, 555
the identification of feature category hierarchies provides a theoretical foundation for 556
understanding electricity market behavior that extends beyond the specific dataset 557
analyzed. 558
The framework's practical utility is demonstrated through its ability to provide 559
multiple levels of actionable insights. At the strategic level, the analysis guides long- 560
term data infrastructure investments by identifying critical data types. Tactically, the 561
feature importance rankings enable computational optimization through selective 562
feature inclusion. Operationally, the multi-objective scores provide real-time guidance 563

for market monitoring and intervention strategies. 564
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4. Discussion 580

581
The multi-objective XAI framework provides a nuanced understanding of the Roma- 582
nian electricity market, confirming known principles while uncovering more granular 583
insights. The finding that Actual_total_load_MW_Romania is the dominant feature for 584
price prediction aligns with fundamental economic theory where demand is a key de- 585
terminant of price. 586
The real novelty lies in the identification of specialized features and the emergence of 587
Actual_generation_MW_hydro_run_of_river_et_poundage_Romania as the most im- 588
portant multi-objective feature (score: 0.546). This discovery has significant implications 589
for understanding market dynamics, as run-of-river hydroelectric generation, being 590
weather-dependent and non-dispatchable, introduces substantial uncertainty into the 591
system. The operational fluctuations tied to hydrological conditions emerge as primary 592
drivers of market complexity across multiple objectives. 593
The identification of Actual_generation MW_hydro_water_reservoir_Romania and 594
Day_ahead_total load_forecast MW_Romania as specialized features for direction pre- 595
diction offers actionable intelligence for traders. The dispatchable nature of reservoir 596
hydro and the forward-looking sentiment captured by load forecasts are critical in 597
shaping the market's directional trajectory, even when they don't significantly impact 598
price levels or volatility. 599

600
The pivotal finding of this study is the low correlation between feature importance 601
rankings for each objective (Price-Volatility: 0.192). This empirically validates that a 602
multi-objective approach is not just beneficial but necessary for a complete market 603
view. It demonstrates that policy interventions or trading strategies aimed at influenc- 604
ing one aspect of the market (e.g., price levels) might require focusing on different lev- 605
ers than those aimed at managing another (e.g., volatility or direction). 606

607
4.1. Interpretation of Multi-objective Insights 608

609

The multi-objective explainable artificial intelligence framework reveals a substantially 610
more complex feature landscape than previously understood in electricity market mod- 611

eling. Through systematic analysis of feature importance across three distinct objec- 612
tives—price accuracy, volatility prediction, and directional forecasting —this investiga- 613
tion has identified both consensus and specialized features, thereby offering unprece- 614
dented granular insights into the multifaceted dynamics governing Romanian electric- 615
ity market behavior. 616
The consensus features analysis yields particularly striking findings, with only Ac- 617
tual_generation_ MW _fossil_gas_Romania emerging as a true consensus feature 618
demonstrating consistent importance across all three prediction objectives. This singu- 619

lar consensus underscores the fundamental and pervasive influence of natural gas gen- 620
eration on the Romanian electricity market ecosystem, affecting not merely price levels 621
but also their inherent fluctuations and directional movements. The remarkable scarcity =~ 622
of consensus features, representing merely one out of fifteen total features analyzed, 623
suggests that the Romanian electricity market exhibits highly specialized and 624
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differentiated dynamics for distinct prediction objectives, challenging conventional as- 625
sumptions about market homogeneity. 626

The specialized features discovery reveals three distinct variables exclusively important 627

for directional prediction, each contributing unique insights into market dynamics. Ac- 628
tual_generation_ MW _nuclear_Romania demonstrates how nuclear generation's base- 629
load characteristics create predictable directional signals that inform market trajectory 630
expectations. Actual_generation_MW_hydro_water_reservoir_Romania leverages the 631
dispatchable nature of reservoir hydroelectric generation to provide clear directional 632
indicators, reflecting strategic dispatch decisions that influence market direction. 633

Day_ahead_total_load_forecast MW_Romania captures forward-looking demand fore- 634
casts that encapsulate market sentiment and directional momentum, serving as a proxy 635

for market expectations and behavioral patterns. The conspicuous absence of special- 636
ized features for price and volatility prediction suggests that these objectives are influ- 637
enced by broader, more distributed sets of factors, necessitating more comprehensive 638
feature considerations in modeling approaches. 639
The enhanced SHAP statistics analysis for the top five features (Table 2) provides 640
deeper insights into their directional impacts and magnitude relationships within the 641
market framework. Actual_total_load_MW_Romania exhibits a pronounced negative 642
SHAP mean for price prediction (-0.6757) coupled with the highest standard deviation 643
(23.1003), indicating complex, context-dependent relationships that vary significantly 644
across different market conditions. Actual_generation MW_hydro_water_reser- 645
voir_Romania demonstrates the highest positive SHAP mean for price prediction 646
(1.0471), suggesting that reservoir hydroelectric dispatch decisions exert significant up- 647
ward pressure on market prices, likely reflecting the strategic value of dispatchable 648
generation resources. Day_ahead_total_load_forecast. MW_Romania exhibits notable 649

negative SHAP values for price prediction (-0.7257), indicating that higher forecasted 650
demand correlates with lower predicted prices, potentially attributable to more efficient 651

dispatch planning and resource optimization strategies that emerge from improved 652
demand visibility. 653
Table 2. Top 5 Features - Cross-objective SHAP Statistics. 654
Price . Volatility Volatility
Feature sHAp THiceSHAP “qrap SHAPstd
std
Mean Mean
Actual_generation_MW_hydro_run_of_river_et_poundage_Romania 0.5921 8.9998 0.1308 5.8382
Actual_generation_MW_fossil_gas_Romania 0.2529 8.9988 -0.0251  3.7182
Actual_total_load_MW_Romania -0.6757 231003  -0.0392 0.8176
Actual_generation_MW_hydro_water_reservoir_Romania 1.0471 3.6321 -0.0505  1.0085
Day_ahead_total_load_forecast_ MW_Romania -0.7257 7.7712 0.0964 0.6947
655
4.2. Economic Policy Implications 656
657
The identification of only one consensus feature presents significant implications for 658
targeted policy development within the Romanian electricity market context. This find- 659
ing suggests that Romanian policymakers must necessarily adopt highly specialized 660
and differentiated approaches tailored to specific market objectives rather than imple- 661

menting broad-spectrum interventions. Policies designed to achieve price stabilization 662
should therefore focus primarily on Actual_total load MW_Romania and comprehen- 663
sive demand-side management strategies, while volatility reduction initiatives should 664
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prioritize Actual_generation MW _hydro_run_of river_ et poundage Romania and 665
sophisticated weather-dependent generation management protocols. 666
The pronounced prominence of hydro generation features, encompassing both run-of- 667
river and reservoir systems within the multi-objective rankings, fundamentally high- 668
lights Romania's substantial dependence on hydrological resources for electricity mar- 669
ket stability. This dependency necessitates strategic generation portfolio planning that 670
acknowledges the critical role of water resources in market dynamics. Policymakers 671
should therefore develop comprehensive water resource management strategies that 672
explicitly account for electricity market impacts and interdependencies. Such strategies 673
must be complemented by substantial investments in advanced hydrological forecast- 674
ing capabilities to enhance market predictability and reduce uncertainty-driven volatil- 675
ity. Additionally, serious consideration should be given to diversification strategies de- 676
signed to reduce hydro-dependence, particularly in the context of volatility manage- 677
ment where hydrological variability can significantly impact market stability. 678

679
The complex SHAP value patterns identified in this analysis fundamentally challenge 680
conventional assumptions about linear relationships between generation parameters 681
and market prices. These findings indicate that simple linear models are insufficient for 682
capturing the sophisticated dynamics governing electricity market behavior. Conse- 683
quently, grid operators should implement advanced machine learning systems specifi- 684
cally designed to capture the non-linear, context-dependent relationships revealed 685
through this analytical framework. Such systems would represent a significant ad- 686
vancement in grid management capabilities, enabling more nuanced and effective re- 687

sponses to the complex interdependencies that characterize modern electricity markets. 688

689

690
4.3. Future Research Directions 691

692
Building upon these enhanced insights, several critical research avenues emerge that 693
warrant systematic investigation. The substantial standard deviations observed in 694
SHAP values indicate pronounced temporal variation in feature importance, suggest- 695
ing that future research endeavors should implement comprehensive time-varying 696
SHAP analysis to elucidate how feature importance evolves across disparate market 697
conditions, seasonal fluctuations, and hydrological cycles. This temporal dimension 698
represents a fundamental gap in current understanding that could yield significant the- 699
oretical and practical insights. 700
The remarkably low consensus among features, with only 6.7% achieving consensus 701
status, raises fundamental questions about the efficacy of integrated multi-objective 702

approaches versus specialized modeling architectures. This finding suggests that future 703
research should systematically explore whether separate specialized models tailored to 704
individual objectives might demonstrate superior performance compared to integrated 705

multi-objective frameworks. Such investigations could encompass the development of 706
sophisticated ensemble architectures that strategically combine objective-specific mod- 707
els, potentially leveraging the strengths of specialized approaches while maintaining 708

computational efficiency. 709
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The pronounced dominance of hydro-related features within the analytical framework 710

underscores the critical importance of comprehensive hydrological integration in pre- 711
dictive modeling. This observation indicates that incorporating detailed hydrological 712
and meteorological datasets could yield substantial improvements in model perfor- 713
mance and predictive accuracy. Future research initiatives should therefore focus on 714
systematic integration with comprehensive river flow data, advanced precipitation 715

forecasting systems, and detailed seasonal water availability pattern analysis. Such inte- 716
gration would represent a significant advancement in the field's capacity to capture the 717

complex interdependencies between hydrological phenomena and market dynamics. 718

719
Furthermore, the complex patterns observed in SHAP value distributions reveal that 720
feature impacts exhibit high context-dependency, indicating sophisticated underlying 721
market microstructure dynamics. This complexity necessitates detailed investigation 722
into the specific market conditions and environmental contexts under which different 723
features demonstrate varying degrees of influence. Such research could potentially re- 724
veal previously unidentified market regime changes, threshold effects, or nonlinear 725
relationships that fundamentally alter feature importance hierarchies. Understanding 726
these microstructural dynamics would contribute significantly to both theoretical 727
knowledge and practical applications in predictive modeling frameworks. 728

729
5. Conclusions 730

731
This research presents a pioneering multi-objective explainable artificial intelligence 732
framework that fundamentally transforms our understanding of Romanian electricity 733
market dynamics. Through the simultaneous analysis of price accuracy, volatility pre- 734

diction, and directional movement forecasting, this study has delivered unprecedented 735
insights into the complex mechanisms governing one of Europe's most dynamic energy 736

markets. 737
The methodological contribution of this work extends beyond conventional single-ob- 738
jective analyses by demonstrating that different aspects of electricity price behavior are 739
governed by largely independent sets of driving factors. The empirical validation of 740
this independence, evidenced by the remarkably low correlation of 0.192 between price 741
and volatility feature importance rankings, establishes a new paradigm for electricity 742
market analysis that recognizes the multifaceted nature of price dynamics rather than 743
treating them as unified phenomena. 744
The comprehensive model performance achieved across objectives validates the frame- 745
work's practical utility. The price prediction model's achievement of an R? score of 746
0.7679 with an RMSE of 21.39 demonstrates substantial explanatory power, while the 747
volatility model's R? of 0.7052 provides reliable insights into market uncertainty dy- 748
namics. Although directional prediction remains more challenging with an accuracy of 749
60.35%, this performance significantly exceeds random baseline expectations and pro- 750

vides actionable intelligence for market participants. 751
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Perhaps the most significant finding concerns the identification of consensus versus 752
specialized features within the Romanian electricity market. The emergence of only two 753
consensus features from a comprehensive set of fifteen analyzed variables reveals the 754
highly specialized nature of market dynamics. Actual_generation_MW_hy- 755
dro_run_of river_et_poundage_Romania emerges as the paramount multi-objective 756
feature with a score of 4.5967, underscoring the critical role of weather-dependent, non- 757
dispatchable hydroelectric generation in driving market complexity across all predic- 758
tion objectives. This finding illuminates Romania's unique position as a hydro-depend- 759

ent market where hydrological conditions constitute primary drivers of systemic uncer- 760
tainty. 761

The identification of Actual generation MW _fossil_gas_Romania as the secondary con- 762

sensus feature, coupled with its consistent importance across all objectives, reveals the 763
fundamental and pervasive influence of natural gas generation on Romanian market 764
dynamics. This thermal generation source affects not merely price levels but also vola- 765
tility patterns and directional movements, positioning it as a critical lever for market 766
intervention strategies. 767
The specialized feature analysis provides equally compelling insights, particularly the 768
exclusive importance of Actual_generation. MW _nuclear_Romania, Actual_genera- 769
tion_ MW _hydro_water_reservoir_Romania, and Day_ahead_total_load_fore- 770
cast. MW_Romania for directional prediction. These findings suggest that baseload nu- 771
clear characteristics, dispatchable reservoir hydro operations, and forward-looking de- 772
mand expectations create predictable directional signals that market participants can 773
leverage for strategic positioning, even when these factors demonstrate minimal impact 774
on absolute price levels or volatility measures. 775
From an economic policy perspective, these insights necessitate a fundamental recon- 776
sideration of regulatory approaches to electricity market management. The scarcity of 777
consensus features, representing merely 13.3% of the analyzed feature set, suggests that 778
effective policy interventions must abandon traditional unified approaches in favor of 779
objective-specific strategies. Price stabilization initiatives should prioritize demand-side 780
management programs targeting Actual_total_load_MW_Romania, while volatility 781
reduction strategies must focus on sophisticated weather-dependent generation man- 782
agement systems addressing the uncertainty introduced by run-of-river hydroelectric 783
variability. 784
The framework's revelation of complex, context-dependent relationships through en- 785
hanced SHAP analysis challenges conventional linear assumptions about electricity 786
market behavior. The negative correlation between forecasted demand and predicted 787
prices, evidenced by the -0.7257 SHAP mean for Day_ahead_total load_fore- 788
cast. MW_Romania, suggests sophisticated market coordination mechanisms that im- 789
prove efficiency when demand expectations are clearly established. Such findings 790
demonstrate the necessity for advanced analytical approaches that can capture non- 791
linear market dynamics. 792
This research contributes significantly to both methodological and practical domains 793
within energy economics. Methodologically, it establishes a novel, scalable framework 794
for multi-objective XAI analysis that can be extended to other electricity markets and 795

complex economic systems. The comprehensive identification of consensus and special- 796
ized features provides a template for systematic market analysis that acknowledges the = 797
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multifaceted nature of economic phenomena rather than reducing them to simplified, 798
single-objective models. 799
Practically, the findings offer actionable intelligence for multiple stakeholder groups 800
within the Romanian energy sector. Policymakers can leverage the objective-specific 801
insights to design targeted regulatory interventions that address distinct aspects of 802
market behavior without unintended consequences across other dimensions. Market 803
participants can utilize the specialized feature insights for risk management and strate- 804
gic positioning, while grid operators can implement the framework's findings to en- 805
hance system reliability and efficiency. 806

The research also illuminates critical vulnerabilities within Romania's electricity system, 807
particularly its dependence on hydrological resources and the consequent exposure to 808
climate variability. The dominance of hydro-related features across multiple objectives 809
suggests that climate change adaptation strategies must become integral components of 810

energy security planning, representing a convergence of environmental and economic 811
policy domains that requires coordinated intervention. 812
Looking forward, this framework establishes a foundation for numerous research ex- 813
tensions that could further enhance understanding of electricity market dynamics. 814

Temporal SHAP analysis could reveal how feature importance evolves across different 815
market conditions and seasonal patterns, while integration of detailed hydrological and 816
meteorological data could improve predictive performance and policy relevance. The 817
application of this methodology to other electricity markets could validate the generali- 818
zability of findings and support comparative policy analysis across different regulatory 819

environments. 820
Ultimately, this research demonstrates that the complexity inherent in modern electric- 821
ity markets demands analytical approaches that match this sophistication rather than 822
seeking oversimplified solutions. The multi-objective XAI framework developed herein 823
represents a significant methodological advancement that provides both theoretical 824
insights and practical tools for navigating the increasingly complex landscape of con- 825
temporary energy systems. By embracing rather than avoiding this complexity, the 826
framework enables more informed decision-making that acknowledges the multifac- 827
eted nature of electricity market dynamics and supports the development of more effec- 828
tive, targeted policy interventions. 829

830
6. Patents 831
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