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Abstract

This study introduces a fuzzy-based volatility forecasting model. The proposed approach, RV-FTS, applies a

fuzzy c-means clustering algorithm to estimate (time-varying) c latent volatility states and their corresponding

membership degrees. These memberships are used to construct a fuzzified volatility estimate as a weighted average

of cluster centroids. The final volatility forecast is generated through an exponential weighted moving average

mechanism that combines the most recent fuzzified volatility estimate and the previous forecast, governed by the

given smoothing parameter ρ. The two hyperparameters are estimated using a rolling-window cross-validation

approach. Our empirical study is based on volatility forecasts of 14 major stock market indices with more than 20

years of data. We predict one- to twenty-two-day-ahead volatility forecasts and compare the RV-FTS model with

standard volatility model benchmarks, the GARCH, ARFIMA, AR and HAR models, and conditional combination

forecasts. We find that in the short-term, day-ahead setting, the RV-FTS tends to outperform the GARCH,

ARFIMA and AR model across most markets. When used for combination forecasts, the RV-FTS model contributes

to greater forecast accuracy. Multiple-day ahead forecasts show that with increasing forecasting horizons, the

utility of the RV-FTS model increases, as the conditional combinations that includes RV-FTS tends to outperform

conditional combinations that do not include RV-FTS. Moreover, we find that for all markets, there are periods

where the weight of the RV-FTS model in the conditional combination of eight models reaches 50% or more. These

results show that the RV-FTS model offers competitive volatility forecasting advantages, particularly for longer

forecast horizons.

Keywords: Volatility Forecasting, Realized Variance, Fuzzy Time Series, Fuzzy Clustering, Forecast Combination,

HAR

1. Introduction

Traded assets in financial markets are subject to price changes, reflecting the inherent uncertainty in the value

of future cash inflows for asset holders (e.g., capital gains, interest payments, and dividends). Understanding

and predicting such price variation, i.e., volatility, can help investors in asset allocation tasks, thereby improving

portfolio risk management or derivative pricing accuracy (Engle, 1982; Wu and Chiu, 2017; Saggi and Jain, 2018).

Over the past two decades, several events led to extreme price variation in financial markets: the global financial
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crisis in 2008 (Kock and Teräsvirta, 2014); the European debt crisis, Brexit, oil–price wars (Khan et al., 2023); the

pandemic in early 2020 (Baek et al., 2020); (geo) political uncertainties since Russia’s invasion of Ukraine (Lyócsa

and Pĺıhal, 2022); and the sell-off of stocks in early 2025 associated with the announcement of U.S. tariffs. During

such periods, accurate volatility models are in demand.

In this study, we present a new approach for volatility forecasting: a model based on fuzzy time series (FTS) and

realized variance (RV), the RV-FTS model. Our empirical results are promising and suggest that the model not only

provides competitive forecasts with common volatility model benchmarks but also that produces lower correlations

with competing forecasts; this useful property, which we further utilize in combination forecasts, outperforms most

models for most of the equity indices in our sample and for most forecasting horizons.

2. Literature review

2.1. Standard volatility models

Traditional parametric models are based on the Generalized AutoRegressive Conditional Heteroscedasticity

(GARCH) approach introduced by Bollerslev (1986) and were based on the ARCH model of Engle (1982). The

standard GARCH model captures the time-varying nature of volatility and clustering effects and depends on the

assumed error distribution of heavy tails and, to some extent, long-memory properties. The popularity of the

GARCH model was maintained as many extensions exist that account for other stylized facts. These models

include asymmetric (E-GARCH Nelson (1991), GJR-GARCH Glosten et al. (1993), T-GARCH Zakoian (1994)),

leverage (E-GARCH Nelson (1991)), or long-memory effects (e.g., component models Engle et al. (1999); Conrad

and Kleen (2020)). Notable advancements within this class of models include the work of Engle et al. (2013), who

included a mixed-frequency (MIDAS) component that allows the use of different covariates (realized volatility or

macroeconomic variables) to drive volatility of the return process. A different approach was used by Hansen et al.

(2012); Hansen and Huang (2016), who used a measurement equation that links latent and realized volatility.

The availability of high-frequency data has led to improved estimates of volatility (e.g., Andersen et al., 2001;

Molnár, 2012) and, eventually, to improved volatility forecasts (e.g., Andersen et al., 2011; Horpestad et al., 2019;

Lyócsa et al., 2021). These improvements were achieved mainly using the heterogeneous autoregressive (HAR)

family of models, which map the persistent volatility process into a linear combination of past daily, weekly and

monthly volatility levels (Corsi, 2009). The HAR models, which were estimated with high-frequency volatility

estimates using a least-squares estimator, have become new benchmark models, with many extensions that usually

improve upon the already competitive HAR model. For example, Andersen et al. (2012) argued that sudden

price jumps distort the persistence of integrated volatility and that a jump-robust estimate1 may be more suitable

in auto-regressive volatility models (e.g., Corsi et al., 2010; Andersen et al., 2012; Patton and Sheppard, 2015).

Building on the idea of the asymmetric volatility effect, (Patton and Sheppard, 2015) suggested decomposing the

integrated variance into two components: variations due to price decreases and those owing to price increases. The

two components may have different persistence levels, and within an HAR model framework, may yield different

1For an overview of multiple jump tests, see Maneesoonthorn et al. (2020).
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predictive powers. Bollerslev et al. (2016) assumed that the unobserved integrated variance, such as the RV, is

more persistent, as the latter may be influenced by measurement error, i.e., attenuation bias. It follows that a

volatility model might be adjusted to reduce the weight of recently observed RV if the observation is found to

have a high measurement error. Several other extensions of these models exist. The model introduced by Buccheri

and Corsi (2021), known as the SHARK model, builds upon the ideas of Bollerslev et al. (2016) but also allows

for time-variation of coefficients and conditional heteroscedasticity of volatility model residuals. Similarly, Cipollini

et al. (2021) addressed the attenuation bias and heteroscedasticity of errors directly in an HAR model with GARCH

errors.

A simple alternative to both GARCH and HAR models is the use of an exponential weighted moving average

model (EWMA), introduced in a technical note by J.P. Morgan’s (RiskMetrics, 1996), specifically in the context of

risk management (Wong et al., 2016). Originally, an EWMA filter was applied for daily data. However, it can also

be applied for realized volatilities (as well as for realized covariances, as in Bollerslev et al. (2018b)). The simplicity

of the model comes at the cost of a fixed smoothing parameter; thus, the model might not react to changing market

conditions (Ayele et al., 2017). Alternatively, one might cross-validate the smoothing parameter to improve the

forecasting accuracy of the model Araneda (2021).

Standard EWMA, GARCH and HAR models might not be able to follow abrupt and nonlinear volatility regime

transitions that can be caused by unpredictable exogenous shocks (e.g., geopolitical events, natural disasters) or

other unexpected information, such as macroeconomic announcements, geopolitical events and/or investor sentiment

(e.g., Audrino et al., 2020; Halousková and Lyócsa, 2025). A new area of volatility forecasting literature is focused

on statistical learning methods that can adapt well to data-rich environments, where additional data are drawn

from macroeconomic variables, other markets, text analyses of relevant sources or technical indicators.

In any early study, Baruńık and Křehĺık (2016) predicted the price variation of energy markets (crude and

heating oil and natural gas) using the GARCH, HAR, and AutoRegressive Fractionally Integrated Moving Average

(ARFIMA) models and a simple feedforward neural network. The HAR and ANN models performed well for most

predicted measures of price variation in their study (e.g., realized variance, median realized variance), whereas

the combined forecast from HAR and Artificial Neural Network (ANN) yielded only marginal improvements. (Lu

et al., 2016) employed a hybrid approach to forecast volatility on the Chinese energy index (equity index), feeding

GARCH model forecasts into an ANN model in one case and ANN forecasts into a GARCH model in another case.

The former led to more accurate volatility forecasts. Christensen et al. (2023) applied a wide array of volatility

forecasting models, including tree-based methods, linear regularization methods and standard feedforward NNs

to data for individual U.S. stocks. In a setup with only realized price variation measures and/or returns of the

given stock price (the vanilla models henceforth), the HAR model was difficult to outperform. After including

other exogenous drivers, most machine learning models performed well, whereas the HAR models of Buccheri and

Corsi (2021) (SHARK) and Bollerslev et al. (2016) (HAR-Q) underperformed, even lagging behind the vanilla

HAR model. The volatility of the S&P market index was predicted by Chun et al. (2024) using 43 predictors (in

addition to the usual realized measures), with the least absolute shrinkage and selection operator (LASSO) model

outperforming ridge regression, the boosted regression tree, Bayesian model averaging and selection models and

the signed jump HAR model of Patton and Sheppard (2015) as the benchmark. Unlike feedforward NN models,
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long short-term memory (LSTM) models can address long-term dependencies in data, which are typically observed

in long-memory volatility series. Recent works have adopted these techniques. For example, Jiao et al. (2022)

used GARCH, support vector regression (SVR) and LSTM models to forecast crude oil volatility. Interestingly, the

GARCH model did not perform worst, particularly in the vanilla setup (without additional variables like textual

features or other risk factors). The volatility of the Huaxia 50 ETF index (Shanghai Stock Exchange 50 Index)

was predicted using a wide battery of tests by Liu et al. (2024) with an LSTM model enhanced by high-frequency

volatility series, technical indicators and time series parameters from ARFIMA, HAR, and HAR-Q models. This

model outperformed competing models across multiple loss functions, including GARCH, HAR, ARFIMA, tree-

based, regularized linear and support vector regression models.

While the proposed RV-FTS model is a separate class of models, given that we use high-frequency volatility

estimates and a moving-average update, it is more closely related to a realized volatility AR and HAR model, than to

a GARCH or ARFIMA class of models. In our study, we compare the forecasts of the RV-FTS model with forecasts

from competing vanilla models that rely on returns and price variation measures only. Our setup thus follows those

of Christensen et al. (2023) and Jiao et al. (2022), as we compare models that use the simplest possible information

sets, i.e., only price data of the given market index of interest. The competing benchmark models that we use have

been employed widely in the literature (e.g., Jiao et al., 2022; Christensen et al., 2023; Liu et al., 2024; Chun et al.,

2024). Specifically, we use the GARCH Bollerslev (1986) model with flexible error distributions, the HAR model

introduced by Corsi (2009) and its popular variations, the HAR-CJ model introduced by Andersen et al. (2012),

the HAR-SV and HAR-SJ models proposed by Patton and Sheppard (2015), and long-memory ARFIMA models

on realized variances with GARCH errors and flexible error distributions. To assess the forecasting utility of our

approach against common benchmarks, we do not allow other variables to enter the feature space. We therefore

also exclude machine learning models.

2.2. Fuzzy-based models in volatility forecasting

Fuzzy theory has been applied within the context of predicting market returns, as reported in a review by

Cavalcante et al. (2016). More recently, Wang et al. (2023a) used a combination of a fuzzy-based model with a deep

NN to predict returns of A shares in the Chinese stock market. Yolcu and Yolcu (2023) used several fuzzy-based

models to predict returns of four market indices. These models outperformed their machine learning and standard

econometric counterparts. The use of fuzzy clustering techniques is particularly appealing for volatility forecasting,

as volatility is typically characterized by volatility clustering and long-memory. Specifically, volatility clustering

is observed through regimes of high- and low-volatility periods, where fuzzy theory can be used to estimate such

regimes and to estimate the overlapping membership degrees of a given trading day and its time series dynamics.

The long-memory nature of volatility suggests that such regimes tend to remain stable over time. For example,

a trading day may be categorized with a 0.75 degree of membership in the ”high volatility” regime and a 0.25

degree of membership in the ”moderate volatility” regime. Moreover, the membership degrees might change over

time according to a given process with the goal of minimizing the sensitivity to short-term noninformative noise

and allowing trading days to be assigned to numerous clusters with different membership degrees, which might

lead to greater stability and likely greater accuracy (D’Urso et al., 2016; Maciel et al., 2016). Existing studies
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have mostly followed the trends in volatility forecasting literature and used hybrid fuzzy GARCH models (e.g.,

Hung, 2011; Maciel et al., 2016; Dash and Dash, 2016; Garćıa and Kristjanpoller, 2019), incorporating fuzzy regime

memberships to weight forecasts across different volatility models.

Given the existing fuzzy-based models, it is unclear to what extent the reported volatility forecast improvements

can be attributed to the fuzzy-based models or the hybrid nature of the proposed models. Our first contribution

is therefore methodological, as we design a volatility forecasting model (RV-FTS) that uses only one variable, the

realized variance, and combines a FTS framework, fuzzy c-means algorithm and exponential weighted moving aver-

age (EWMA) to govern the transitions between volatility regimes. This approach extends Chen’s FTS framework

(Chen, 1996), which has been widely adopted as a standard in the time series forecasting literature because of

its simplicity and effectiveness, particularly for assessing the predictive accuracy of FTS, fuzzy-based, or hybrid

forecasting models (Chen and Tanuwijaya, 2011; Bas et al., 2021). The classic FTS model (Chen, 1996) has gained

widespread acceptance as a reference method, prompting researchers to introduce subsequent modifications and

improvements to enhance its forecasting performance. These advancements include the following: the integration of

neural networks and FTS to increase accuracy and computational capabilities (Yu and Huarng, 2010); the adoption

of various clustering techniques, such as hierarchical clustering, fuzzy c-means and k-means algorithms, to effec-

tively handle data complexity and determine intervals systematically (Bang and Lee, 2011; Lu et al., 2014; Gupta

and Kumar, 2023); the adoption of high-order FTS models to account for temporal dependencies (Chen, 2014); the

incorporation of optimization techniques, such as particle swarm optimization, genetic algorithms or metaheuristics,

into FTS models for parameter tuning (Chen and Chen, 2015; Chen et al., 2019); and hybrid FTS based on the

fuzzy quantum optimization approach (Singh, 2021). Our second contribution is empirical in nature, as we compare

the volatility forecasting accuracy of the RV-FTS model with that of the GARCH-SU , RV-ARFIMA-SU and HAR

volatility models across 14 major stock market indices, forecasting horizons from 1–22 days, and two loss functions.

Our results suggest that the RV-FTS model generates forecasts that are comparable with those of other benchmark

models. Our third contribution pertains to the forecast combination literature, as we identify that the RV-FTS

model is particularly useful when combined (using a simple average) with any other single benchmark volatility

model forecasts. The resulting combination forecast model outperforms most individual models across most market

indices, forecast horizons and loss functions.

3. Methodology

3.1. Data

We use daily high-frequency data for 14 stock market indices retrieved from the Oxford-Man Realized Library.

Our sample period starts in early 2000 (see Table 1 for specific starting dates), and owing to the data availability

constraints, ends for all indices on the 28th of July 2021. The selected 14 markets represent most of the market

capitalization from equity markets worldwide, and the dataset spans over 20 years, providing a sufficiently long

observation window for analysis.
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3.2. Realized volatility

In this study, we are interested in the forecasting accuracy of the h-day ahead variance. Let Pi,t denote the

intraday price, where i = 0, 1, ...,M denotes the intraday time period and t = 1, 2, ..., T corresponds to the trading

days. The first price of the day is given by P0,t, and the last price is PM,t. M is the number of intraday observations,

and, given the 5-minute calendar sampling scheme, M = 78. Let ri,t = ln(Pi,t) − ln(Pi−1,t) denote the intraday

return. The multiple-day ahead estimator of price variation is given by:

RVt,h = h−1
h∑

j=1

[
(ln(P0,t+j)− ln(PM,t+j−1))

2
+

M∑
i=1

r2i,t+j−1

]
(1)

The estimator consists of the standard intraday realized variance and an unbiased overnight price variation (e.g.,

Molnár, 2012), which must be accounted for in multiple-day ahead settings; (ln(P0,t+j)− ln(PM,t+j−1))
2
. In the

following text we will used terms variance and volatility interchangeably, referring to the equation above.

3.3. Benchmark models

3.3.1. Generalized autoregressive models: GARCH-SU

We follow the literature and use two popular GARCH models as benchmarks, albeit assuming a flexible return

distribution. Let Rt = ln(Pt,M )− ln(Pt−1,M ) denote the daily close-to-close return. The GARCH-SU specification

is as follows:

Rt = µ+ ϵt

ϵt = σtηt

σ2
t = ω + αϵ2t−1 + βσ2

t−1 (2)

ηt ∼ SU (0, 1, λ, δ)

The estimated parameters include µ, ω, which are constants in the mean and variance equation and α, β, which

describe the persistence of the volatility process. λ and δ are distribution parameters of the shocks ηt, which are

assumed to follow the flexible Johnson’s SU distribution (Johnson, 1949b,a) instead of a normal distribution. In

this framework, λ is the skewness, and δ is the kurtosis parameters. Both of these parameters are estimated from

the data. The density is given by:

f(η;λ, δ) =
δ√

2π(η2 + 1)
exp

(
−1

2

[
λ+ δ · sinh−1(η)

]2)
(3)

Choi and Nam (2008) provided evidence that, for FX and stock returns, in an GARCH framework, such a flexible

distribution might be more appropriate than normal and Student-t distributions are. More recent studies have

applied Johnson’s SU distribution to model oil price volatility, as in Patra (2024), or to estimate value-at-risk and

expected shortfalls, as in Lyócsa et al. (2024).

3.3.2. Long-memory realized variance mdoels: RV-ARFIMA-GARCH-SU

Given the long-memory properties of the realized volatility series, we can model RVt directly as an ARFIMA

process:

RVt,1 = µ+ νt

(1− L)dνt = ϵt (4)
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L is the lag operator, and (1− L)d is the fractional differencing operator equal to
∑∞

k=0
Γ(k−d)Lk

Γ(−d)Γ(k+1) , where Γ(.) is

the gamma function and d ∈ R is the parameter to be estimated. When d = 0, the process behaves as a white noise

process. For 0 < d < 0.5, the process is a long-memory process, likely for volatility time series, and 0.5 ≤ d < 1

leads to a nonstationary but mean-reverting process. Moreover, we allow the residuals ϵt to follow Eq. (2) and Eq.

(3), which results in the RV-ARFIMA-GARCH-SU model abbreviated into RF-ARFIMA-SU in Tables2.

3.3.3. Heterogeneous autoregressive models: AR, HAR, HAR-SV, HAR-SJ, HAR-CJ

Corsi (2009) showed that employing a linear combination of lagged daily, weekly and monthly realized volatility

averages leads to typical volatility dynamics, i.e., long-memory and heavy tails, being reproduced. The HAR model

is given as follows:

RVt,h = β0 + β1RVt + β2RVt,W + β3RVt,M + ut, (5)

where β represents the parameters to estimate, ut represents the error terms, and the weekly (five-day) and monthly

(22-day) volatility averages are RVt,W = 5−1
∑5

i=1 RVt−i+1 and RVt,M = 22−1
∑22

i=1 RVt−i+1, respectively. Given

that our RV-FTS model uses only realized volatilities RVt, we also compare the forecasting accuracy with that of a

model using a similar information set, i.e., a restricted version of the HAR model with β2 = 0 and β3 = 0 and thus

an AR model.

Among alternative variation of the HAR model, we also employ three that we can calculate using our data source,

specifically the full version of the positive and negative semivariance model introduced by Patton and Sheppard

(2015):

RVt,h = β0 + β1PVt + β2NVt + β3PVt,W + β4NVt,W + β5PVt,M ++β6NVt,M + ut, (6)

Here, PVt =
∑M

i=1 r
2
i,tI(ri,t ≥ 0) is the positive semivariance, and NVt =

∑M
i=1 r

2
i,tI(ri,t < 0) is the negative

semivariance. I(.) is the signaling function, which returns a value of 1 if the condition applies and 0 otherwise.

Weekly and monthly components are averages across the five- and 22-day periods.

Under the assumption of symmetric Brownian motion, the expected values of the positive and negative semi-

variances should be equal. Therefore, SJt = PVt −NVt, a signed jump, can be attributed to jump variation due to

discontinuous price movements. We use the following HAR-SJ model specification where signed jumps are included:

RVt,h = β0 + β1SJt + β2CCt + β3SJt,W + β4CCt,W + β5SJt,M + β6CCt,M + ut, (7)

The continuous component CCt is estimated using the median realized variance3 as given by Andersen et al. (2012):

CCt =
π

6− 4
√
3 + π

M

M − 2

M−1∑
j=2

(med (|rt,j−1|, |rt,j |, |rt,j+1|))2 (8)

A model with an alternative estimator of jump variation was given by Andersen et al. (2012), where the contribution

of variation due to discontinuous price changes is given by JCt = (RVt−CCt)×I((RVt−CCt) > 0) and the resulting

model:

RVt,h = β0 + β1JCt + β2CCt + β3JCt,W + β4CCt,W + β5JCt,M + β6CCt,M + ut, (9)

2To estimate the GARCH and ARFIMA models, we use the rugarch library described in Ghalanos (2020)
3Recently, Kolokolov and Renò (2024) showed that such a multipower estimator might be biased in the presence of stale prices.

However, given that we are working with broad market indices, such bias should not be an issue in our empirical application.
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All the models in this section are estimated via weighted least squares, following Patton and Sheppard (2015);

Clements and Preve (2021), with weights given by wt = R̃V
−1

t,h, where R̃V t,h is the predicted variance from the

OLS estimator, an approach that mitigates the impact of the heavy tails on the parameters β.

3.4. The RV-FTS Model

3.4.1. Fuzzy Time Series

The concept of FTS had been first presented in early works of (Song and Chissom, 1993, 1994). This approach

uses fuzzy set theory of (Zadeh, 1965) to forecast time series data, particularly when the input contains linguistic

or imprecise information. Subsequently, (Chen, 1996) modified the original (Song and Chissom, 1993) model, which

laid the foundation for many advancements in FTS modeling. The basic steps of Chen’s model can be summarized

as: i) Define and Partitioning the data set - The universe of discourse for a given time series data is defined, and

the data are divided into optimized, potentially overlapping intervals, ii) Fuzzification - The universe of discourse U

is transformed into a sequence of fuzzy sets utilizing the membership functions and intervals that were established

during the partitioning stage., iii) Fuzzy Logical Relationships and Rules Extraction - The fuzzy logical relationships

(FLRs) are constructed by analyzing the fuzzy state relationships among fuzzy sets. On the basis of these established

FLRs, fuzzy rules are derived, which describe the temporal dynamics among fuzzy sets, iv) Defuzzification During

the final stage of the FTS framework, following the establishment of FLRs, fuzzy rules are extracted and matched

with the current fuzzified input Ft,h, the fuzzified output is defuzzified into a crisp forecast R̂V t,h.

3.4.2. Proposed RV-FTS

The proposed RV-FTS model extends the classical FTS framework by integrating a rolling window mechanism,

FCM clustering, and an EWMA approach for volatility forecasting. In the following, we present a step-by-step

procedure and the algorithmic structure of the RV-FTS model.

Step 1: During this step, first, the realized volatility is computed(see Section 3.2), and the universe of discourse

U is defined for realized variance data {RV1,h, RV2,h, . . . , RVT−h,h}, as follows:

U = [min {RVt,h}T−h
t=1 ,max {RVt,h}T−h

t=1 ] (10)

or

U = {RV1,h, RV2,h, . . . , RVT−h,h}

Step 2: Next, the universe of discourse U is partitioned into C optimized, potentially overlapping intervals and

transformed into a sequence of fuzzy sets {B1,B2, . . . ,Bj} utilizing the FCM clustering approach. In contrast to

hard clustering techniques, FCM assigns partial membership degrees to each data point across multiple clusters

simultaneously, reflecting the proportional association of each data point to every cluster. The membership degrees

are derived by minimizing the objective function of FCM, which incorporates the weighted sum of the squared

Euclidean distance between the data values and cluster centers (Bezdek et al., 1984).

J(γB, V ) =

c∑
j=1

T∑
t=1

γm
Bjt ∥RVt,h − gj∥2 (11)
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where J(γ, V ) is the objective function to be minimized, c represents the number of clusters, T represents the

number of observations, γBjt represents the membership information of the tth observed value in the jth cluster,

RVt,h represents the tth observed value, gj represents the centroid of the jth cluster, and m represents the fuzziness

parameter, which is usually set at 2 and controls the degree of fuzziness.

Each value in the original realized volatility is mapped to the corresponding fuzzy set with varying membership

degrees as γBj
(vn) ∈ [0, 1]. Let U denote the universe of discourse defined in Eq(), and fuzzy sets Bj defined over

this domain can be written as:

Bj =

{
γBj

(RV1,h)

RV1,h
+

γBj
(RV2,h)

RV2,h
+ · · ·+

γBj
(RVT−h,h)

RVT−h,h

}
(12)

where γBj
(RVt,h) ∈ [0, 1] is the membership function capturing the degree of fuzziness associated with RVt,h. Each

term
γBj

(RVt,h)

RVt,h
is interpreted as ”RVt,h belongs to Bj with membership information γBj (RVt,h)”. The collection of

all fuzzy sets Bj defined in U forms the FTS, F(t, h), given as follows:

F (t, h) =

{
γB1(RVt,h)

RVt,h
,
γB2(RVt,h)

RVt,h
, . . . ,

γBc(RVt,h)

RVt,h

}
(13)

or

F (t, h) =

{
γBj (RVt,h)

RVt,h

}c

j=1

Within each window, FCM is applied to partition the realized volatility data into an optimal number of clus-

ters through cross-validation to identify the latent structures within the volatility dynamics. This soft clustering

technique is particularly suitable for modeling financial market volatility, where transitions are gradual and often

overlap rather than abrupt (Maciel et al., 2016; Vilela et al., 2019). Additionally, the fuzzy clustering process within

a rolling window allows the model to dynamically adjust to current market conditions, better reflecting the complex

and nonlinear nature of financial markets more efficiently than conventional statistical models do (Dash and Dash,

2016; D’Urso et al., 2016).

Step 3: During this step, defuzzification is performed through an adaptive EWMA technique, which combines

cluster centroids, membership degrees, and previous forecasts to anticipate the variance estimate within the rolling

window. The adaptation and reframing of EWMA in this setting serves as a conceptual bridge between fuzzy logic

and traditional time series by replacing fixed inputs and rule-based systems with fuzzified abstraction and recursive

updating (Dash et al., 2015).

The RV-FTS model operates on the basis of a fuzzified variance estimate γBjt, which obtained through the FCM

clustering algorithm. This procedure assigns varying membership degrees to each realized variance observation

across multiple volatility states. The adaptive EWMA mechanism then transforms the fuzzified realized variance,

cluster centroids and previous forecasts into crisp forecasts. This setup allows the model to adjust to recent market

conditions while still incorporating past effects with decreasing weights. The fuzzified variance estimate ṽt and

adaptive EWMA mechanism are expressed as follows:

ṽt =

c∑
j=1

γBjt(RV t−h+1,h) · gj (14)

R̂V t+1,h = ρṽt + (1− ρ)R̂V t−h+1,h (15)
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where R̂V t+1,h represents the forecasted conditional variance at time t + 1, γBj
(RV t−h+1,h) represents the

membership information for the most recent value for cluster j, which represents the degree of association between

the most recent realized variance and each cluster (e.g., the volatility regime), ρ ∈ (0, 1) represents the smoothing

factor, gj represents the cluster centroid for the j-th cluster, and R̂V t−h+1,h represents the previous known forecast.

Algorithm 1: Proposed RV-FTS Model

Input: Opening and closing prices,
Realized daily variance over 5-minute intervals,
Parameters: number of clusters c, rolling window size W , smoothing factor ρ

Output: h-day ahead volatility forecasts R̂V t,h and performance metrics (e.g., MSE, QLIKE)
/* Phase 1: Preprocessing */

1 Compute realized variance using input price data (intraday returns and current day opening, and last day
closing prices), as given by:

RVt,h = h−1
H∑
j=1

[
(ln(P0,t+j)− ln(PM,t+j−1))

2
+

M∑
i=1

r2i,t+j−1

]

/* Phase 2: Initialization */
2 Set model parameters: c (number of clusters), W (window size), ρ (smoothing factor); Split the RVt−h+1,h

into rolling windows of size W ;
/* Phase 3: Fuzzification via FCM */

3 foreach rolling window do
4 Initialize membership matrix γjt for t = 1, . . . , n, j = 1, . . . , c;
5 Optimize the FCM objective function:

J(γB, V ) =

c∑
j=1

n∑
t=1

γm
Bjt ∥RVt−h+1 − gj∥2

6 Update centroids gj and membership matrix γBjt
iteratively until convergence;

/* Phase 4: Defuzzification and Forecasting */
7 foreach forecasting step do
8 Compute the fuzzified estimate of variance:

ṽt =

c∑
j=1

γBjt(RV t−h+1,h) · gj

Compute the next forecast using EWMA-based defuzzification:

R̂V t−h+1,h = ρṽt + (1− ρ)R̂V t−h+1,h

or equivalently,

R̂V t+1,h = ρ

c∑
j=1

γBjt(RV t−h+1,h) · gj + (1− ρ)R̂V t−h+1,h

Shift the rolling window forward and repeat;

/* Phase 5: Model Evaluation */

9 Compare the forecasted values R̂V t,h with the actual realized variance RV t,h;
10 Calculate error metrics MSE and QLIKE;

11 return Forecasts R̂V t,h and evaluation metrics;
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3.5. Forecast Combinations

The true data generating process (DGP) is unknown and is unlikely to be approximated by a single volatility

model. In addition, major economic events might lead to changes in the DGP. A common strategy to mitigate such

uncertainties in the forecasting literature is to rely on combination forecasts (Timmermann, 2006). Strategy is also

commonly employed in the volatility forecasting literature (e.g., Kourentzes et al., 2019; Wang et al., 2023b). The

core idea is similar4 to that of variance reduction in a well-diversified portfolio. A suitable combination of unbiased

but not perfectly correlated forecasts can lead to lower (squared) forecast errors.

In the empirical part of our research, we find that the RV-FTS model’s performance is often competitive with

that of most other benchmark models and that its forecasts are less correlated with forecasts from benchmark

models. It follows that forecasts from the RV-FTS model are likely to improve existing forecasts in a combination

forecasting framework. We therefore use a simple unconditional combination, an average between two models. Let

Ft,B and Ft,C denote the benchmark and competing (RV-FTS) models forecasts, respectively. The combination we

use is 2−1(Ft,B+Ft,C). These pairwise combinations are denoted as C-GARCH-SU , ...., C-HAR-CJ, and C-HAR-SJ.

The resulting forecast improvements can be used to assess the extent to which the RV-FTS model helps specific

volatility models achieve more accurate forecasts. However, the forecast improvements might, to some extent,

be attributed to the averaging itself. We therefore also calculate three additional combination forecasts using a

weighted average. First, a conditional average across all models except RV-FTS, with weights determined using a

constrained regression similar to (Granger and Ramanathan, 1984):

R̂V t,h =

M∑
m=1

βmFt,m + ϵt+1 (16)

with m = 1, 2, ...,M denoting all models except the RV-FTS model and
∑M

m=1 βm = 1 and ∀βm ≥ 0. The

constrained OLS is being estimated using a rolling sample of 252 observations (approx. 1 year). The resulting

forecast is denoted as CC-Bench. Second, we use the same approach now with M∗ models, that also includes

forecasts from the RV-FTS model and is denoted as CC-FTS. The third, denoted as CC-FTS-Top follows from the

previous conditional combination, but now we find a simple average of five forecasts that had the highest estimated

weight implied by βm.

3.6. Forecasting framework

The forecasts are generated using a rolling window framework with 756 observations (approx. 3 years) to estimate

all benchmark models. For the RV-FTS model, we need to estimate the number of clusters ϕ ∈ {2, 3, 4, 6, 8, 10, 12, 14}

and the smoothing parameter ρ ∈ {0.10, 0.20, ..., 0.80, 0.90, 0.95, 0.975, 0.99}. Higher values of ρ are considered due

to the greater persistence of the volatility process. The optimum parameters are cross-validated using additional

252 observations and the square loss function to select the preferred combination of ϕ and ρ values. It follows that

the first forecast from the RV-FTS model is for the 1009th trading day in the sample period of a given stock market

index. The optimum parameters are re-estimated after each trading day.

4If the mean square error is the chosen loss function.
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Figure 1: Forecasting and cross-validation framework for RV-FTS model

3.7. Forecast Evaluation

Given that we need 256 observations to estimate conditional combinations, ensuring comparisons across the

same information sets between the models leads to the first evaluated forecast being the 1261th observation. The

following Figure 1 visualizes the forecasting framework showing the first and the second forecast.

More specifically, the RV-FTS model is benchmarked against 9 individual competing volatility models, with the

HAR model representing the model against which we report relative losses. This comparison allows us to assess

the relative merit of the RV-FTS model against different classes of standard volatility models. We then benchmark

the 8 individual volatility models with their pairwise combination forecasts, where each competing model’s forecast

is averaged with the RV-FTS model’s forecasts. This comparison allows us to assess the relative contribution of

the RV-FTS model to the toolbox of an analyst using one of the standard volatility models. The three conditional

combinations, CC-Bench, CC-FTS and CC-FTS-Top, allow us to assess the merit of RV-FTS in a broader set of

volatility models. To facilitate comparisons across these models, we report the results for all 21 models in single

tables.

We report the results for two loss functions, the mean square error (MSE) and one loss from the QLIKE family

of functions, which have been shown to lead to consistent model rankings, even in the presence of a noisy variance

proxy (Patton, 2011). Let Ft,h be the h-head forecast from a given model; the MSE is given by:

LMSE
t,h =

1

T

T∑
t=1

(RVt,h − Ft,h)
2
, (17)

and the QLIKE as:

LQLIKE
t,h =

1

T

T∑
t=1

(
RVt,h

Ft,h
− ln

(
RVt,h

Ft,h

)
− 1

)
, (18)

Bollerslev et al. (2018a) noted that forecasting models can occasionally lead to implausibly large variance forecasts.

To mitigate such issues, we follow the approach described by Bollerslev et al. (2018a). For each trading day,

we substitute variance forecasts that are larger than the historical maximum before that trading day with that

historical maximum 5 Moreover, unexpected market-relevant news often leads to extreme levels of price variation.

Such unexpected events are unlikely to be predicted by any volatility model, resulting in higher squared errors for

5Note that Bollerslev et al. (2018b) replaced such forecasts with an expanding long-run sample mean of realized variances. However,

we argue that relying on long-run variance might systematically underestimate a model’s forecasts during times of high volatility when

the model might correctly predict new maxima, i.e., during times when accurate volatility forecasts are most important.
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such days. These errors are often several orders of magnitude greater than the median squared error is. It follows

that even small changes in forecasting accuracy for such days can impact the ranking of models. We therefore report

the average rank of each model by determining its rank for each trading day on the basis of the given loss value

(one ranking for MSE and one for QLIKE). The model with the lowest loss is assigned a rank of 1. The average

rank is not only the loss itself but can also be interpreted as an average preference for a specific model within a

given loss function.

Apart from the descriptive comparison of the MSE and QLIKE losses and corresponding ranks, we employ the

model confidence set (MCS) (Hansen et al., 2011) to compare ranks (based on either MSE or QLIKE) across all

21 forecasts in an iterative (’elimination’) algorithm. Beginning with all the models, we test the null hypothesis of

equal predictive ability (EPA) at the (1 − α) confidence level. For this, we employ the TMAX test and the 85%

confidence level, which are standard for this test. If the null of the EPA test is rejected, the worst performing model

is removed, and the test statistics are recalculated with the remaining models. The algorithm stops when the EPA

hypothesis is not rejected, leading to the identification of the set of superior models6.

4. Results and Discussions

4.1. Data characteristics

Volatility characteristics from annualized values of realized variances of the fourteen selected market indices can

be found in Table 1. Aggregated descriptions of the variance series reveal the presence of standard stylized variance

features, such as right-skewness, heavy-tails and long-memory properties. Even at ρ(22), the autocorrelations range

from 0.08 to 0.27. These values are much higher than expected, with an exponential decline in persistence. The

results suggest that models that are able to capture such persistence (e.g., HAR) should achieve better forecasting

performance.

Figure 2 shows the individual time series and highlights several major events that increased the uncertainty

of almost all equity markets worldwide. Most notably, the global financial crisis before 2010 and the COVID-19

pandemic in 2020 appear to be greater in magnitude but much shorter in duration. Market-specific events are also

visible. For example, the spike in volatility during the 2011 Fukushima disaster in Japan, the somewhat unexpected

outcome of the ’Brexit’ elections in the summer 2016 for the GBR and EU markets, or the sharp declines in 2015

and 2016 observed in the market in China7.

These results confirm that realized volatilities in equity markets share common dynamics, an observation made

by Bollerslev et al. (2018a) across other asset classes. However, markets are also exposed to local shocks. Given

these volatility characteristics, we did not expect the RV-FTS model to perform equally across all markets. In fact,

we expected this model would potentially perform worse in markets with higher volatility persistence. In these

markets, models exploiting the long-memory features are expected to generate more accurate forecasts.

6We adopt the implementation introduced by Bernardi and Catania (2018).
7More detail on other components of the price variation, i.e., signed jumps, semivariances, and continuous and jump components of

the overall variation in intraday prices, can be found in Table A1 in Appendix A.
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4.2. Day-ahead market volatility forecasts

In this section, we demonstrate the forecasting performance of the RV-FTS model in day-ahead forecasts and

compare the model to common volatility model benchmarks. Next, we evaluate the role of the RV-FTS model in a

set of volatility models by exploring its usefulness in combination forecasts.

4.2.1. Day-ahead forecasts: Individual volatility models

In Figure 2, we display day-ahead forecasts from the RV-FTS model (red line), which captures the dynamics of

the underlying volatility process (black line). High-volatility periods, such as the global financial crisis or pandemic,

were captured by the model. For illustration purposes, Figure 3 presents the dynamics of the ’optimum’ parameters

of the RV-FTS model, as selected via cross-validation for the STOXX 50 market index, the number of clusters c

and the persistence parameter ρ. The first row represents values for the day-ahead model. Both hyperparameters

tend to vary greatly over time. At the onset of the pandemic in 2020, few volatility regimes (cluster) are selected. A

similar trend was observed during the global financial crisis and in 2016 (Brexit elections). Such periods also tend

to be accompanied by greater volatility persistence. During these periods, the ρ parameter in the RV-FTS model is

higher. To some extent, similar trends were observed in early 2020 and 2016. Given the observed variation in these

parameters over time, estimating (c, ρ), the only two parameters of the RV-FTS model, is important for forecasting

purposes. Moreover, for multiple-day forecast horizons, as the middle and lower panels of Figure 3 show that for

five- and twenty-two-day-ahead forecasts, different dynamics are observed for the optimum parameters.

The numerical results from the day-ahead forecasts can be found in Tables 2 and 3 under the MSE and QLIKE

loss functions. In Panel A of Table 2, the first row shows the average value of the benchmark HAR model, with

columns representing different markets. For example, the value of 10.3 corresponds to the MSE, which is annualized

and scaled by 10−4. The rows in Panels A and B represent improvements (−) or deterioration (+) in forecasts

relative to the HAR model reported in the first row. The value of 34.5% in the second row implies that using the

GARCH-SU model led to a 34.5% higher average mean square error, i.e., for Australia, the standard GARCH-SU

model underperformed the HAR model considerably, which is often the case in our sample and in line with previous

studies for US financial markets, as in Vortelinos (2017) or Horpestad et al. (2019); Lyócsa et al. (2021), where

HAR models outperformed the GARCH class of models in day-ahead forecast settings.

Panel A of Table 2 presents the performance of individual models across all markets. In eight out of 14

markets, HAR-CJ yielded the lowest MSEs, followed by HAR-SV and FR-GARCH-SU , with two and three cases,

respectively. However, all three competing HAR models, HAR-SV, HAR-CJ and HAR-SJ, performed two times

worse, i.e., leading to considerable model choice uncertainty. Since the RV-FTS model relies only on the most

recent realized variance, similar to an AR model, it is surprising that it achieved the second lowest forecast error for

three markets (French, UK and Japan) and never performed worst. In addition, it consistently outperformed the

AR model (in 11/14 markets) and the GARCH-SU model (in 10/14 markets), while remaining competitive with

the FR-GARCH-SU model (in 7/7 markets). With respect to the benchmark HAR and HAR-SV, HAR-CJ and

HAR-SJ models, the RV-FTS model performed slightly worse in a day-ahead setting, outperforming these models in

5, 6, 4 and 6 of the 14 markets, respectively. In Panel A of Table 3, the results under the QLIKE loss also show that

among the individual models, the HAR-CJ model is preferable. Under QLIKE, the RV-FTS always outperforms
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the GARCH-SU , RF-GARCH-SU and AR models but rarely the HAR class models.

In Panels C and D of Tables 2 and 3, we report the average ranks of the individual models calculated across

all 18 models (including forecast combinations). Specifically, for each day, we rank models from 1 (most accurate)

to 18 (least accurate) according to the given loss. The reported values correspond to the average across time. For

example, in Panel C of Table 2, we show the results for individual forecasting models. The value of 9.1 for the

RV-FTS model means that out of all 18 models, on average, the individual RV-FTS model had a rank of 9.1 for

the market in Austria (first column). Ranks are resistant to outliers, which are common for square error losses, and

they also represent preferences for a specific model that can be compared across markets. For the RV-FTS model,

ranks range from 8.8 (IND) to 9.8 (DEU), while those for the benchmark HAR are similar, ranging from 9.0 (AUS)

to 10.2 (IND) For comparison, the least competitive volatility models, GARCH-SU and AR, have average ranks

ranging from 10.2 (KOR) to 13.9 (AUS) for GARCH-SU and 10.8 (EUR) to 11.8 (HKG and IND) for AR. The

top performing HAR-CJ model ranges in rank from 8.6 (AUS) to 9.3 (IND and HKG). Results under QLIKE (in

Table 3) are very similar to those under MSE. The analysis shows that the day-ahead performance of the individual

RV-FTS model is closer to that of the HAR model than to that of the previous generation (GARCH) of volatility

models, especially under the rank losses when outlier effects are mitigated. We consider these findings encouraging

for two reasons: i) RV-FTS relies only on one variable, and ii) it is not designed for rapid adaptation in the short

term, giving HAR models a certain advantage in day-ahead settings.

4.2.2. Day-ahead forecasts: Combination forecasts

If the forecasts of the benchmark and RV-FTS models are unbiased but forecast losses are not perfectly corre-

lated (e.g., Timmermann (2006)), the utility of the RV-FTS volatility model might increase when combined with

benchmark forecasts, even if the forecast accuracy of the individual RV-FTS model is lower than that of the bench-

mark model. As the RV-FTS algorithm differs from the usual parametric benchmark HAR models, we expect that

combining forecasts from the RV-FTS model with the usual benchmarks might lead to improved forecasts. We com-

pare forecasts from individual models with those of their bivariate combination forecast counterparts, GARCH-SU

with C-GARCH-SU (averages from GARCH-SU and RV-FTS), RF-GARCH-SU with C-RF-GARCH-SU (averages

from FR-GARCH-SU and RV-FTS), etc. This comparison allows us to observe which individual models benefit

from including the RV-FTS the most.

Under the MSE (Panel B of Table 2) loss, across all markets and individual models, bivariate combinations

tended to improve forecasts in 80.6% of the cases. The utility of RV-FTS is model specific, and as expected, for

the best performing individual models, HAR and HAR-CJ, adding the RV-FTS model improved the forecast in

60.7% of the cases in the day-ahead setting. On the other hand, the less competitive GARCH-SU , RF-GARCH-SU ,

AR, HAR-SV and HAR-SJ models benefited from the RV-FTS model the most, with improvements in 88.6% of

the cases. The average rankings led to even stronger results, with RV-FTS improving individual model forecasts in

98.0% of the cases. Thus, when mitigating the effect of outliers that are typical for square error volatility losses,

even the HAR and HAR-CJ models benefit from including the RV-FTS model. The results using the asymmetric

QLIKE, which penalizes underestimation of the volatility more, are similar. However, the best-performing models,

HAR and HAR-CJ, benefited from the inclusion of the RV-FTS model in approximately 35% of the cases. On the
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Figure 2: The realized variance series of stock market indices
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Figure 3: Optimum model parameters for RV-FTS: Case of STOXX 50
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other hand, in terms of average ranks calculated from the QLIKE, the results are almost the same as those under

the MSE, as inclusion of the RF-FTS model is favored in 96.9% of all cases.

While bivariate combinations help to identify which individual volatility forecasting models benefit the most

from the RV-FTS model, some forecast improvements might be driven by combinations alone, i.e., combining two

individual models (except RV-FTS) could lead to similar or greater forecast improvements. Moreover, it is unclear

which models should be selected for a specific time and market. We therefore complement our analysis using three

conditional combination forecasting models. The CC-Bench model combines forecasts from all eight individual

models except RV-FTS, and weights are estimated following the

Both conditional forecast combinations generally outperform the benchmark HAR model, regardless of the loss

(Table 2 and 3). As expected, forecast improvements are lower than those of the best individual or pairwise

combination forecasts but are more stable and realistic given that prior knowledge about the best performing model

is rarely available. A comparison of the CC-Bench and CC-FTS models results reveals that in a day-ahead setting,

they perform similarly. However, CC-FTS-Top tends to outperform CC-Bench or CC-FTS in most (11/14 markets)

cases. The utility of the RV-FTS model in conditional combinations is visualized in Figure 4, where we report

its time-varying optimum weights. The weights across the 8 individual models sum to 1. Figure 4 reveals several

interesting observations about the RV-FTS model. The blue line in this figure represents the day-ahead forecasts

and shows considerable dynamics with periods of low and high weights, suggesting that the utility of the model

changes over time and can occasionally reach values above 0.5.

To summarize the day-ahead results, we show that despite its simplicity, the RV-FTS volatility model can

improve volatility forecasts, outperforming traditional benchmarks and complementing more advanced HAR models

under both MSE and QLIKE losses. Moreover, occasionally, the RV-FTS model represents a preferred choice among

all individual models, as indicated by the estimated weights in the CC-FTS conditional combination model.
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Table 1: Characteristics of realized variance

Country Mean SD SK KU ρ(1) ρ(5) ρ(22) obs. start

Australia 148.6 393.2 392.1 16.2 0.64 0.36 0.16 5446 2000-01-04

India 542.4 1928.4 1562.8 32.6 0.24 0.14 0.08 5351 2000-01-03

France 480.6 944.7 130.7 9.2 0.58 0.39 0.22 5499 2000-01-03

UK 313.5 747.2 390.7 15.3 0.49 0.36 0.18 5438 2000-01-04

Germany 527.1 1087.6 179.6 10.5 0.58 0.38 0.21 5463 2000-01-03

Canada 242.8 1319.5 2144.0 40.3 0.37 0.21 0.12 4809 2002-05-02

Hong Kong 489.8 1028.3 101.5 8.6 0.46 0.38 0.27 5281 2000-01-03

US (Nasdaq) 494.2 1100.6 135.4 9.4 0.58 0.37 0.21 5407 2000-01-03

South Korea 547.0 1235.3 295.3 13.1 0.47 0.28 0.20 5307 2000-01-04

Japan 400.3 545.8 75.9 6.8 0.57 0.38 0.19 5241 2000-02-02

US (SP 500) 304.0 791.8 306.7 13.7 0.66 0.43 0.24 5406 2000-01-03

China 538.2 1199.3 111.4 8.9 0.49 0.23 0.22 5208 2000-01-04

Swiss 318.4 763.7 177.5 10.8 0.60 0.37 0.19 5401 2000-01-04

Europe 430.3 858.4 233.7 11.4 0.61 0.41 0.22 5496 2000-01-03

Notes: Volatility characteristics are reported from annualized values. SD denotes standard deviation, SK skewness,

KU kurtosis, and ρ(·) denotes auto-correlation of the given order. The market indices are All Ordinaries (Australia),

BSE Sensex (India), CAC 40 (France), FTSE 225 (UK), DAX 30 (Germany), TSX Composite (Canada), Hang Seng

(Hong Kong), KOSPI (South Korea), Nikkei 225 (Japan), S&P 500 (US), Shanghai Stock Exchange Composite Index

(China), Swiss Market Index (Swiss), Stoxx 50 (Europe). Data for all markets end on 28th July 2021.
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Table 2: Day-ahead forecasts under MSE

Model AUS IND FRA GBR DEU CAN HKG USA-1 KOR JPN USA-2 CHN CHE EUR

Panel A: Loss comparison with individual volatility models relative to the HAR model

HAR [MSE] 10.3 450.0 63.4 45.9 77.4 209.6 80.7 63.0 55.7 19.5 52.3 96.6 36.8 48.7

GARCH-SU 34.5% -16.6% -7.8% -1.3% 4.2% -5.4% 15.5% 19.5% -0.7% 153.4% 6.6% 17.7% 19.5% 2.6%

FR-GARCH-SU 39.2% -8.3% -1.1% -3.7% 5.5% 0.9% 1.1% -0.5% -2.1% 9.7% -25.4% 12.5% 13.5% 1.9%

AR 17.5% 15.5% -2.4% 11.9% 7.5% 32.1% 19.9% 12.8% 8.0% 6.9% -9.1% 9.3% 13.1% 10.2%

HAR-SV 58.8% -20.1% -17.6% 8.4% 1.6% 6.4% 4.8% 0.2% 4.4% 7.7% -29.9% -4.9% 60.4% 7.6%

HAR-CJ -10.6% -22.2% -3.6% -6.5% -19.0% -13.8% 1.8% 34.5% -6.2% 11.7% 10.3% -3.0% 9.8% -10.6%

HAR-SJ 10.4% -15.6% 8.8% 1.9% -14.7% 554.2% 12.1% 8.6% 5.8% 19.2% -27.1% 3.1% 27.3% -9.0%

RV-FTS 11.7% -11.9% -15.9% -3.7% 0.7% 60.3% 7.5% 17.1% 7.8% 6.2% -21.5% 7.7% 21.1% -1.2%

Panel B: Loss comparison with combination forecast models relative to the HAR model

C-GARCH-SU -0.9% -18.5% -20.3% -10.0% -7.3% 6.7% -0.6% 1.8% -4.9% 49.7% -20.5% 4.8% 9.2% -9.8%

C-FR-GARCH-SU 0.2% -16.3% -17.9% -11.3% -5.0% 12.8% -2.3% -3.4% -5.2% 3.2% -30.5% 4.1% 8.2% -9.2%

C-AR 10.7% -2.3% -13.4% -4.3% -0.8% 42.1% 7.6% 9.2% 2.3% 1.3% -20.4% 2.5% 10.0% 0.9%

C-HAR -5.4% -8.3% -12.5% -8.3% -4.6% 23.4% 0.8% 3.7% -4.2% 0.7% -15.8% 0.4% 5.3% -3.2%

C-HAR-SV 32.1% -18.2% -21.2% -8.0% -7.3% 10.9% -3.0% -1.9% -4.6% -2.9% -29.2% -4.3% 20.2% -1.5%

C-HAR-CJ -10.9% -19.4% -13.3% -10.2% -15.5% 5.8% -4.5% 15.3% -7.9% -0.2% -7.1% -2.9% 7.1% -10.6%

C-HAR-SJ -6.7% -18.7% -14.1% -7.7% -14.7% 153.8% -1.4% -2.0% -5.9% 2.7% -31.6% -2.1% 13.2% -10.4%

CC-Bench -10.4% -18.0% -18.7% -4.3% -17.2% 37.8% -3.2% -4.9% -11.2% 2.3% -29.1% -0.7% 20.3% -14.5%

CC-FTS -8.9% -17.9% -21.2% -5.5% -17.1% 39.2% -2.6% -5.2% -11.5% 2.3% -29.5% -0.5% 20.3% -14.6%

CC-FTS-Top -10.0% -19.6% -20.6% -9.6% -13.4% -9.9% -5.8% -4.5% -11.8% -4.1% -22.6% -4.8% 1.6% -11.3%

Panel C: Average ranking of the individual forecast models

HAR 9.0 10.2 9.7 9.4 9.8 9.4 9.4 9.5 9.5 9.4 9.4 9.3 9.6 9.3

GARCH-SU 13.9 10.8 11.3 11.1 11.1 11.3 10.7 12.1 10.2 12.3 12.5 12.9 11.1 12.1

FR-GARCH-SU 9.3 8.8 9.4 9.5 9.4 9.6 8.8 9.7 9.9 9.1 9.9 8.9 9.7 9.6

AR 10.9 11.8 11.1 11.3 11.2 11.4 11.8 11.1 11.7 11.1 11.0 11.6 11.1 10.8

HAR-SV 9.0 10.0 9.0 9.4 8.8 9.6 9.3 8.7 9.3 9.0 8.9 8.9 9.3 8.8

HAR-CJ 8.6 9.3 9.1 9.0 9.0 9.1 9.3 8.7 9.0 8.9 8.9 8.7 9.1 9.1

HAR-SJ 9.2 10.1 9.9 9.3 9.5 9.6 10.1 9.3 9.8 9.4 9.5 10.1 9.4 9.3

RV-FTS 9.1 8.8 9.4 9.5 9.8 9.3 9.0 9.7 9.2 9.5 9.2 9.0 9.4 9.4

Panel D: Average ranking of the combination forecast models

C-GARCH-SU 12.1 9.6 10.1 10.2 10.2 10.1 9.8 10.8 9.6 11.0 11.0 11.3 10.1 10.9

C-FR-GARCH-SU 8.9 8.4 9.1 9.1 9.2 9.1 8.6 9.3 9.4 8.8 9.2 8.6 9.3 9.1

C-AR 9.9 10.5 10.2 10.4 10.5 10.5 10.7 10.4 10.5 10.2 10.0 10.3 10.1 10.1

C-HAR 8.9 9.3 9.3 9.3 9.6 9.2 9.1 9.4 9.2 9.2 9.1 8.9 9.4 9.2

C-HAR-SV 8.7 8.8 8.5 9.2 8.7 8.9 8.7 8.7 8.7 8.6 8.7 8.4 8.8 8.8

C-HAR-CJ 8.5 8.5 8.6 8.7 8.8 8.7 8.8 8.6 8.5 8.7 8.6 8.4 8.6 8.8

C-HAR-SJ 8.5 8.8 9.1 8.7 9.0 9.1 9.4 9.1 9.0 9.0 8.8 9.3 8.9 8.8

CC-Bench 8.9 9.1 9.2 8.9 8.9 8.7 9.1 8.7 9.4 9.0 9.0 8.9 9.0 9.0

CC-FTS 8.9 9.1 9.1 9.1 8.9 8.7 9.0 8.6 9.2 9.0 8.9 8.8 9.0 9.1

CC-FTS-Top 8.7 8.9 9.1 8.9 8.8 8.7 9.2 8.6 9.0 8.9 8.7 8.7 9.0 9.0

Notes: The values for row HAR in Panel A correspond to the MSE (Panel A). Values from remaining row of Panel A and B are %

changes in MSE against the HAR model. Negative percentage changes are improvements. In Panel C and D we report the average

rank. USA-1 corresponds to the S&P 500 market index and USA-2 to the NASDAQ 100 index.

20



Table 3: Day-ahead forecasts under QLIKE

Model AUS IND FRA GBR DEU CAN HKG USA-1 KOR JPN USA-2 CHN CHE EUR

Panel A: Loss comparison with individual volatility models relative to the HAR model

HAR [QLIKE] 0.28 0.28 0.24 0.23 0.24 0.26 0.31 0.28 0.27 0.29 0.24 0.26 0.22 0.21

GARCH-SU 24.0% 6.0% 20.6% 18.5% 16.3% 20.9% 9.0% 27.6% 8.8% 911.4% 39.7% 44.7% 23.0% 32.3%

FR-GARCH-SU 4.5% 6.4% 22.6% 16.3% 10.8% 16.2% 9.4% 24.6% 16.1% 12.7% 28.9% 20.4% 17.4% 18.9%

AR 8.3% 20.7% 18.9% 19.4% 18.3% 22.8% 30.9% 13.3% 24.4% 15.9% 14.0% 20.7% 14.6% 16.2%

HAR-SV -17.2% -0.3% 5.9% 2.7% -3.4% 87.8% 3.1% 5.2% -2.6% -3.1% 0.6% -3.0% 0.9% 1.5%

HAR-CJ -19.9% -3.9% -8.9% -4.6% -9.4% 28.0% 1.2% 7.7% -7.3% -4.3% -3.9% -2.7% -11.0% -4.7%

HAR-SJ -15.9% 8.1% -2.9% -1.7% 1.5% 118.5% 4.6% 13.4% 2.4% 1.8% 21.3% 32.9% 15.5% -2.6%

RV-FTS -11.4% -1.9% 9.7% 7.1% 8.2% 5.7% 5.2% 11.6% 4.3% 5.9% 8.0% 7.4% 7.6% 10.2%

Panel B: Loss comparison with combination forecast models relative to the HAR model

C-GARCH-SU -2.6% -7.8% 4.2% 3.9% 1.0% 3.9% -0.1% 8.1% 0.9% 7.8% 12.0% 13.9% 6.7% 10.8%

C-FR-GARCH-SU -13.7% -6.9% 5.9% 4.3% 0.7% 2.5% 1.6% 4.8% 5.2% 3.3% 5.3% 6.2% 6.4% 6.4%

C-AR -8.4% 2.8% 6.4% 6.6% 7.5% 6.3% 11.2% 5.7% 7.4% 5.3% 4.8% 6.6% 4.2% 7.1%

C-HAR -15.3% -5.3% -0.3% 0.6% -0.4% -0.8% 0.4% 1.5% 0.7% 0.8% 0.5% 1.3% 0.5% 1.8%

C-HAR-SV -17.4% -10.2% -6.1% 0.9% -5.0% 30.8% -1.6% -2.0% -5.8% -3.4% -2.5% -4.7% -4.9% 1.3%

C-HAR-CJ -19.1% -12.4% -7.5% -4.2% -7.3% -3.0% -2.8% -1.3% -7.0% -4.1% -3.2% -2.9% -7.0% -2.5%

C-HAR-SJ -20.9% -9.4% -5.8% -4.3% -6.8% 12.7% -1.2% -0.4% -5.5% -2.3% 0.1% 2.5% -5.0% -2.5%

CC-Bench -20.0% -11.7% -7.6% -5.1% -9.8% 2.4% -1.1% -6.0% -5.8% -4.4% -4.1% -3.8% -8.0% -4.5%

CC-FTS -19.0% -11.9% -7.6% -3.6% -9.4% 15.1% -1.6% -6.0% -5.9% -4.4% -4.4% -4.1% -8.7% -2.1%

CC-FTS-Top -20.2% -13.8% -8.3% -3.8% -9.5% -3.9% -3.2% -8.0% -8.0% -4.3% -5.4% -5.1% -8.9% -3.2%

Panel C: Average ranking of the individual forecast models

HAR 9.0 10.2 9.6 9.4 9.8 9.4 9.4 9.5 9.5 9.4 9.4 9.2 9.6 9.3

GARCH-SU 13.6 10.8 11.2 11.1 11.1 11.2 10.7 11.9 10.3 12.1 12.3 12.8 11.1 12.0

FR-GARCH-SU 9.4 8.9 9.5 9.6 9.5 9.6 8.9 9.7 10.0 9.2 10.0 9.1 9.7 9.7

AR 11.0 11.7 11.0 11.3 11.1 11.4 11.8 11.1 11.6 11.1 11.0 11.6 11.0 10.8

HAR-SV 9.0 10.0 9.0 9.3 8.8 9.9 9.3 8.7 9.3 9.0 8.9 8.9 9.4 8.8

HAR-CJ 8.7 9.3 9.1 9.0 9.0 9.1 9.3 8.7 9.0 8.9 8.9 8.7 9.1 9.1

HAR-SJ 9.2 10.1 9.8 9.3 9.5 9.6 10.1 9.4 9.8 9.4 9.5 10.2 9.5 9.3

RV-FTS 9.2 8.9 9.4 9.6 9.8 9.3 9.1 9.8 9.2 9.5 9.2 9.1 9.4 9.4

Panel D: Average ranking of the combination forecast models

C-GARCH-SU 12.0 9.6 10.1 10.2 10.2 10.1 9.8 10.8 9.6 11.0 10.9 11.2 10.1 10.8

C-FR-GARCH-SU 8.9 8.4 9.1 9.1 9.2 9.1 8.7 9.4 9.4 8.9 9.2 8.7 9.3 9.1

C-AR 9.9 10.4 10.2 10.4 10.5 10.5 10.7 10.4 10.4 10.2 10.0 10.3 10.1 10.1

C-HAR 9.0 9.3 9.3 9.3 9.6 9.2 9.1 9.4 9.2 9.3 9.1 8.9 9.4 9.2

C-HAR-SV 8.8 8.8 8.5 9.2 8.7 9.1 8.7 8.7 8.7 8.6 8.7 8.4 8.8 8.8

C-HAR-CJ 8.5 8.5 8.6 8.7 8.8 8.7 8.8 8.6 8.5 8.7 8.6 8.4 8.6 8.8

C-HAR-SJ 8.6 8.8 9.1 8.7 9.0 9.1 9.4 9.1 9.0 9.0 8.8 9.3 8.8 8.8

CC-Bench 8.9 9.1 9.2 8.9 8.9 8.7 9.1 8.7 9.4 9.0 9.0 8.8 9.0 8.9

CC-FTS 8.9 9.1 9.1 9.1 8.9 8.6 9.0 8.6 9.2 8.9 8.9 8.8 8.9 9.1

CC-FTS-Top 8.7 8.9 9.1 8.9 8.8 8.7 9.2 8.6 9.0 8.8 8.7 8.6 9.0 8.9

Notes: The values for row HAR in Panel A correspond to the QLIKE (Panel A). Values from remaining row of Panel A and B are %

changes in QLIKE against the HAR model. Negative percentage changes are improvements. In Panel C and D we report the average

rank. USA-1 corresponds to the S&P 500 market index and USA-2 to the NASDAQ 100 index.
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4.3. Multiple day-ahead forecasts

In this section, we present results for multiple-day ahead forecasts, where the average volatility over the next

two to twenty-two trading days is predicted either recursively (GARCH-SU and RF-GARCH-SU models) or directly

(HAR, RV-FTS). The numerical results for five- and twenty-two-day-ahead forecasts can be found in Appendix B

(see Tables B.1, B.2, B.3 and B.4) In Figures 5 (for MSE) and 6 (for QLIKE), we present the average ranks (y-axis)

over the forecasting horizons (x-axis) for multiple model types. Each dot on the line indicates that the model in

the given forecasting horizon belongs to the set of superior models. The first points on the plots correspond to the

day-ahead analysis we reported in the previous section.

The black line shows the average rank of the best individual volatility forecasting model, except for the RV-FTS

model. The blue line corresponds to the average rank of the best pairwise combination forecasts that include the

RV-FTS model. The pairwise combination (blue lines) is preferred in 12 out of 14 countries across most forecasting

horizons, with longer-forecasting horizons occasionally excluding the benchmark model from the set of superior

models. These results hold for both the MSE and QLIKE (see Figure 6).

The red and green lines correspond to average ranks of the conditional combination forecasts, reflecting more

realistic scenarios where the analyst is unaware of which model to use. The red line corresponds to CC-Bench,

a conditional weighted average across seven individual models (excluding RV-FTS), and CC-FTS, a conditional

weighted average across eight models that includes the RV-FTS model. With increasing forecast horizons, both

conditional combinations tend to yield more accurate forecasts. For Australia, the US (S&P 500), India, South

Korea, Japan, the US (NASDAQ), Germany, China and Canada, Switzerland, and Hong Kong, the CC-FTS tends

to outperform the CC-Bench for multiple forecast horizons, whereas for the remaining countries, forecasts are still

comparable between CC-FTS and CC-Bench. Overall, the findings suggests that RV-FTS can be a useful addition

to volatility forecasting models, especially with increasing forecast horizons. Figure 4 shows that the dynamics of

weights differ with forecasting horizon, with twenty-two-day-ahead forecasts occasionally estimated with weights

greater than 0.8 or greater for the RV-FTS model. Generally, the periods of non-zero weights show that RV-FTS

often considerably influences the CC-FTS model’s forecasts.
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Figure 4: Optimum weights for RV-FTS of conditional combination model
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Figure 5: Average ranks (y-axis) of top-performing models under MSE across forecast horizons (x-axis)
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Figure 6: Average ranks (y-axis) of top-performing models under QLIKE across forecast horizons (x-axis)
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5. Conclusions and Future Work

In our study, we propose an RV-FTS volatility model inspired by fuzzy logic and the persistence of the volatility

process. Our approach involves separating the observed realized volatility into time-varying c sets (clusters) and

employing a simple exponential moving average process that models the dynamics of the membership of the next

period volatility into the clusters. We compare the volatility forecasting accuracy of the RV-FTS model using data

from 14 stock market indices: AUS, USA (S&P 500), IND, KOR, FRA, JPN, GBR, USA (NASDAQ), DEU, CHN,

CAN, CHE, HKG, and EUR. Apart from the proposed RV-FTS model, we use seven benchmark models: GARCH-

SU , ARFIMA-GARCH-SU (RF-GARCH-SU ), AR, HAR, HAR-CJ (based on (Andersen et al., 2012)), HAR-SV

and HAR-SJ (based on (Patton and Sheppard, 2015)). We find that across all markets and longer-forecast horizons,

the RV-FTS model almost always outperforms the GARCH-SU and RF-GARCH-SU models and the AR model,

whereas it performs less competitively against the HAR and HAR-CJ models in the short day-ahead forecasting

setting.

However, we find that the proposed model can be used to complement even the best individual forecasting

model in a pairwise combination forecast. Moreover, conditional combinations across all the models show that for

all the markets and forecast horizons, there are periods where the RV-FTS model receives considerable weights in

forming the conditional forecast. Our key observations are that with increasing forecasting horizon, the utility of

the RV-FTS model tends to increase, which we attribute to the fact that volatility regimes are persistent, a feature

captured by clusters in the RV-FTS framework.

We contribute to the volatility forecasting literature by designing a RV-FTS volatility model, which, despite

its simplicity, leads to accurate volatility forecasts that often outperform several benchmark model forecasts. Our

study expands the class of fuzzy-based models in volatility forecasting (e.g., Hung, 2011; Maciel et al., 2016; Dash

and Dash, 2016; Garćıa and Kristjanpoller, 2019). We also contribute to the combination forecasting literature and

demonstrate that RV-FTS is useful, particularly in conjunction with other models, as it improves forecasts even

with the most accurate individual models. Finally, the clusters in the RV-FTS correspond to different volatility

periods, which improves the interpretability of the model.

The limitation of this model is the need to estimate two hyperparameters, the number of clusters, c, and the

smoothing parameter, ρ, which is carried out using rolling window cross-validation approach. Note that HAR

model also uses information about past five- and twenty-two-day volatility, and HAR-CJ also continuous and jump

components. The later model often performs the best in the short term and compared to RV-FTS utilizes additional

information that can be decomposed from the realized volatility. On the other hand, the proposed RV-FTS model

relies on only the realized volatility, similar to an AR model that almost always outperforms other models. The

natural extension of the RV-FTS will be to use an expanded information set to either create clusters (volatility

regimes) or govern the dynamics of the memberships, which will be explored in future research.
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Table A.1: Daily returns and realized volatility components

Panel A: Returns Panel D: Signed jump

Mean SD SK KU ρ(1) ρ(5) ρ(22) Mean SD SK KU ρ(1) ρ(5) ρ(22)

Australia 0.00 0.9 6.3 -0.8 0.00 0.00 -0.01 6.2 220.7 506.8 13 -0.03 0.08 0.00

India 0.00 1.5 9.2 -0.4 0.04 0.03 0.01 24 256.1 443.4 -7.7 -0.07 -0.04 -0.01

France 0.00 1.4 5.9 -0.2 -0.01 -0.02 0.01 7.7 167.9 120.8 3.7 -0.09 0.04 0.07

UK 0.00 1.2 7.2 -0.3 -0.02 -0.01 0.02 11.4 455.8 709.7 19.7 -0.11 0.09 0.00

Germany 0.00 1.5 6.4 -0.2 0.01 -0.02 0.02 12.4 280.4 168.2 1.3 0.03 -0.01 0.01

Canada 0.00 1.1 16.8 -1.2 -0.03 0.01 0.00 -4.2 1041.3 3650.9 -55.9 -0.11 0.06 0.00

Hong Kong 0.00 1.5 7.7 -0.1 -0.01 -0.03 -0.02 8.7 185.2 198.9 -2.9 -0.08 -0.03 -0.07

US (Nasdaq) 0.00 1.6 6.7 -0.2 -0.06 -0.01 -0.01 1.1 217.7 620.9 2.7 -0.13 -0.01 0.00

South Korea 0.00 1.5 7.6 -0.6 0.02 0 -0.02 10.3 155.3 114.4 4.5 0.03 0.06 0.01

Japan 0.00 1.5 6.3 -0.4 -0.03 0.02 -0.01 7.9 207.7 131.3 5.4 -0.05 0.03 0.01

US (SP 500) 0.00 1.2 10.7 -0.4 -0.11 0.01 0.01 2.9 238.1 92.3 1.4 -0.15 0.01 0.06

China 0.00 1.5 5.1 -0.4 0.03 0.00 0.01 -6.6 236.8 45.6 -1 -0.11 -0.02 -0.01

Swiss 0.00 1.2 8.3 -0.3 0.02 0.01 0.01 6.4 249.5 1022.9 22.9 -0.12 0.12 0.00

Europe 0.00 1.4 5.8 -0.2 -0.01 -0.03 0.02 17.7 421.6 540.9 15.4 -0.06 0.07 0.01

Panel B: Continuous component Panel E: Negative semi-variance

Australia 63.8 161.2 256.9 13.1 0.51 0.28 0.13 37 88.3 294.5 13.8 0.75 0.44 0.22

India 173.6 492 643.9 21.6 0.37 0.15 0.08 167.3 313.5 176.3 9.5 0.61 0.38 0.25

France 164.8 302.8 146.8 9.5 0.63 0.38 0.25 154 293.7 117.1 8.7 0.73 0.43 0.26

UK 147.4 313.9 127.2 9.3 0.55 0.32 0.22 98.6 195.9 114.6 8.8 0.75 0.47 0.32

Germany 196 369.1 156.4 9.2 0.69 0.43 0.29 170.4 315.5 100.4 7.5 0.76 0.49 0.33

Canada 109 1059.4 4104.7 61.9 0.11 0.13 0.06 60.3 178.7 126.9 9.9 0.8 0.5 0.39

Hong Kong 117.3 225.8 288.2 13.4 0.52 0.34 0.27 50.6 91.5 337.2 13.2 0.66 0.35 0.25

US (Nasdaq) 156.4 331.4 147.1 9.5 0.57 0.38 0.25 162.5 351.4 202.1 10.4 0.62 0.39 0.27

South Korea 145.2 270.5 155.3 9.4 0.69 0.43 0.32 134 251.7 106.6 8.1 0.73 0.54 0.35

Japan 124 209.5 96.1 8 0.64 0.42 0.19 71 134.6 167.5 10.5 0.66 0.42 0.18

US (SP 500) 136.9 341.6 230.1 11.7 0.62 0.43 0.28 122.2 316.2 156.1 10.4 0.72 0.46 0.32

China 202.3 354.4 76.3 6.8 0.56 0.34 0.29 106.9 199.3 129.9 8 0.61 0.35 0.32

Swiss 105.8 241.9 211.9 11.6 0.65 0.37 0.2 95 177.9 95.5 7.9 0.73 0.47 0.31

Europe 189.7 359.9 99.6 8.2 0.64 0.38 0.23 154 286.4 78.5 7.3 0.73 0.44 0.29

Panel C: Jump component Panel F: Positive semi-variance

Australia 96.8 288.5 550.1 19.4 0.5 0.26 0.11 70 248.4 779.8 23.4 0.41 0.27 0.1

India 203.9 778 1224.4 30.3 0.28 0.07 0.04 197.5 505.1 585.5 19.1 0.44 0.17 0.11

France 183.3 346.8 199.3 11.1 0.54 0.33 0.22 172.5 325.5 143.5 9.5 0.64 0.39 0.25

UK 207.7 597.4 585.1 19.6 0.35 0.27 0.11 158.8 527.7 793.7 23.3 0.25 0.27 0.1

Germany 233.8 461.3 143.9 9.3 0.57 0.39 0.26 208.3 410.9 126.9 8.7 0.57 0.41 0.28

Canada 153.5 1124.7 3221.7 52.4 0.25 0.16 0.07 104.8 409.3 396.5 16.9 0.38 0.26 0.18

Hong Kong 192.8 346.1 198.8 10.9 0.58 0.42 0.34 126 229.6 250.4 11.7 0.54 0.37 0.28

US (Nasdaq) 151.3 332 430.1 15.6 0.48 0.28 0.2 157.5 317 354.7 12.9 0.63 0.36 0.27

South Korea 166.8 334.6 225.7 11.4 0.59 0.32 0.24 155.6 295.9 145.7 9.2 0.66 0.45 0.29

Japan 184.8 330 142.2 9.6 0.56 0.34 0.17 131.9 271.5 194.4 11.5 0.43 0.3 0.15

US (SP 500) 154.5 395.7 268.6 12.9 0.54 0.38 0.22 139.8 359.7 162.3 10.4 0.57 0.41 0.27

China 291.1 496.8 58.5 6.2 0.63 0.34 0.31 195.7 353.7 54.2 6 0.61 0.32 0.31

Swiss 122.9 372.6 426.1 17.2 0.52 0.33 0.1 112.1 321.5 609.9 20.1 0.43 0.34 0.11

Europe 243 596.7 440 16.2 0.44 0.32 0.14 207.4 547.1 537.4 18.1 0.38 0.31 0.14

Notes: SD, SK, KU denote standard deviation, skewness and kurtosis and ρ(.) auto-correlation of the given order.
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Appendix A. Additional data characteristics

Appendix B. Multiple day-ahead forecasts

Table B.1: Five day-ahead forecasts under MSE

Model AUS IND FRA GBR DEU CAN HKG USA-1 KOR JPN USA-2 CHN CHE EUR

Panel A: Loss comparison with individual volatility models relative to the HAR model

HAR [MSE] 6.0 127.4 34.3 22.5 40.3 91.0 35.3 35.1 29.2 11.3 26.2 55.1 24.9 29.5

GARCH-SU 50.2% -10.7% -7.3% -2.0% -1.6% -16.2% 5.2% 48.0% -3.1% 143.2% 53.0% 5.7% -0.1% -4.8%

FR-GARCH-SU 56.8% -6.2% 6.4% -6.1% -0.6% -16.2% 3.1% 6.2% -2.7% 3.9% 1.0% 2.4% -8.2% -0.4%

AR 12.9% -0.7% 3.8% 2.2% 5.8% -13.6% 36.7% 12.8% 16.9% 15.7% -3.6% 12.7% -0.5% 2.0%

HAR-SV -2.3% -21.8% -2.9% 4.0% -15.0% -10.4% -0.3% 0.6% -1.0% 11.3% -15.0% -24.3% 18.3% -3.5%

HAR-CJ -2.4% -22.4% 61.3% 3.3% -19.1% -19.7% -5.8% 20.2% 12.0% 10.7% 0.1% -18.1% 19.3% -4.4%

HAR-SJ -17.1% -24.1% 20.1% -1.9% -16.9% -30.0% -0.1% 1.4% 10.1% 15.8% -10.4% -14.1% 13.3% -6.1%

RV-FTS -3.8% -10.7% -4.8% -4.1% -12.2% 2.7% -3.2% 19.9% -1.6% 4.7% 12.8% 3.9% -1.9% -2.9%

Panel B: Loss comparison with combination forecast models relative to the HAR model

C-GARCH-SU 3.7% -14.3% -11.5% -10.5% -15.0% -15.1% -6.9% 24.9% -10.2% 58.5% 24.0% -2.8% -6.3% -11.6%

C-FR-GARCH-SU 1.0% -12.4% -9.4% -12.3% -15.8% -14.1% -6.3% 5.4% -12.2% -2.5% -3.4% -3.0% -12.4% -11.2%

C-AR -4.6% -8.3% -15.4% -14.2% -12.7% -12.2% -3.4% 4.4% -7.7% -5.4% -8.5% -5.7% -15.4% -13.4%

C-HAR -10.0% -5.8% -7.1% -6.0% -12.0% -9.6% -8.3% 2.0% -6.1% -1.9% 0.3% -3.1% -7.2% -6.7%

C-HAR-SV -8.1% -20.6% -11.6% -6.4% -19.4% -13.0% -10.7% 2.8% -7.7% -1.2% -11.2% -17.2% -1.1% -9.1%

C-HAR-CJ -10.9% -20.9% 6.0% -7.7% -23.2% -19.9% -10.6% 5.1% -4.6% 1.6% -4.2% -13.0% -8.4% -9.2%

C-HAR-SJ -16.9% -21.9% -0.5% -7.6% -20.9% -23.7% -9.6% 1.7% -4.5% 2.9% -8.9% -14.5% -3.7% -12.6%

CC-Bench -17.6% -21.7% -18.4% -13.5% -21.3% -26.5% -11.6% -11.7% -21.0% -9.8% -11.2% -22.4% -18.2% -20.7%

CC-FTS -15.0% -22.6% -18.6% -14.4% -23.0% -29.2% -12.3% -5.4% -21.1% -8.7% -11.2% -22.1% -17.4% -20.6%

CC-FTS-Top -12.1% -19.7% -15.2% -14.9% -22.6% -28.1% -13.1% -7.3% -19.8% -8.0% -18.8% -19.8% -16.8% -19.6%

Panel C: Average ranking of the individual forecast models

HAR 9.1 10.3 9.5 9.5 9.9 9.8 9.2 9.6 8.9 9.2 9.3 9.7 9.6 9.3

GARCH-SU 14.0 10.0 10.9 10.7 10.7 11.2 10.4 12.0 9.8 12.7 12.5 12.5 10.8 11.8

FR-GARCH-SU 8.8 8.2 9.3 9.2 9.3 9.7 8.9 9.4 9.9 8.9 9.6 8.6 9.4 9.1

AR 11.4 12.1 11.5 11.6 11.5 12.2 12.3 11.5 11.9 11.0 11.1 12.3 11.5 11.1

HAR-SV 9.1 9.7 9.1 9.5 9.0 9.3 9.8 9.0 9.6 9.5 9.2 9.3 9.4 8.9

HAR-CJ 8.9 9.2 9.3 9.2 9.2 8.8 9.8 8.9 9.4 9.5 8.9 8.8 9.2 9.3

HAR-SJ 9.1 9.6 9.7 9.4 9.3 9.5 10.5 9.1 9.9 9.7 9.4 10.0 9.4 9.4

RV-FTS 9.4 10.0 9.8 10.0 10.2 9.5 9.2 9.8 9.5 9.7 9.7 9.2 9.9 9.9

Panel D: Average ranking of the combination forecast models

C-GARCH-SU 12.0 9.7 9.9 9.9 9.9 10.0 9.5 10.7 9.3 11.1 11.0 10.9 9.9 10.6

C-FR-GARCH-SU 8.6 8.5 9.0 9.0 9.3 9.2 8.5 9.3 9.4 8.6 9.3 8.5 9.2 9.0

C-AR 10.0 10.9 10.2 10.4 10.3 11.0 10.7 10.3 10.5 9.9 9.8 10.7 10.3 10.0

C-HAR 8.9 10.0 9.3 9.5 9.7 9.2 8.9 9.5 9.0 9.1 9.1 9.1 9.5 9.2

C-HAR-SV 8.8 9.3 8.8 9.3 8.9 8.8 8.8 8.7 8.9 8.9 8.8 8.6 9.0 8.8

C-HAR-CJ 8.6 8.9 8.8 8.8 8.9 8.1 8.9 8.6 8.8 9.0 8.5 8.1 8.7 8.9

C-HAR-SJ 8.6 9.1 9.1 8.8 9.0 8.8 9.4 8.8 9.0 9.0 8.6 9.1 8.9 8.9

CC-Bench 8.7 8.5 8.9 8.7 8.6 8.7 8.7 8.7 9.2 8.3 8.8 8.6 8.8 9.0

CC-FTS 8.7 8.4 9.3 8.7 8.5 8.3 8.7 8.6 9.1 8.3 8.7 8.4 8.7 9.2

CC-FTS-Top 8.3 8.6 8.7 8.7 8.7 8.8 8.7 8.6 8.8 8.5 8.7 8.6 8.8 8.7

Notes: The values for row HAR in Panel A correspond to the MSE (Panel A). Values from remaining row of Panel A and B are %

changes in MSE against the HAR model. Negative percentage changes are improvements. In Panel C and D we report the average

rank. USA-1 corresponds to the S&P 500 market index and USA-2 to the NASDAQ 100 index.
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Table B.2: Five day-ahead forecasts under QLIKE

Model AUS IND FRA GBR DEU CAN HKG USA-1 KOR JPN USA-2 CHN CHE EUR

Panel A: Loss comparison with individual volatility models relative to the HAR model

HAR [MSE] 0.15 0.24 0.18 0.17 0.17 0.21 0.17 0.23 0.16 0.16 0.21 0.22 0.19 0.16

GARCH-SU 59.9% -1.2% 18.2% 12.0% 10.9% 19.1% 11.4% 21.6% 12.0% 770.6% 32.9% 34.1% 10.7% 25.9%

FR-GARCH-SU 35.4% 2.2% 33.5% 12.6% 10.6% 18.3% 17.7% 24.5% 30.7% 19.9% 27.8% 27.7% 10.0% 22.1%

AR 42.4% 22.1% 30.3% 30.8% 28.9% 36.7% 54.4% 19.6% 41.1% 22.1% 17.3% 37.4% 25.0% 26.1%

HARSV 1.9% -8.2% -1.3% 3.6% -1.5% 7.7% 9.0% -2.7% 1.6% 1.4% 6.0% -3.5% -4.2% 7.0%

HARCJ 8.5% 5.6% -4.8% -4.8% 3.4% 21.7% 11.5% 6.5% 0.1% -1.7% -0.3% -6.4% -9.1% -2.6%

HARSJ -1.4% -9.8% -0.4% 3.5% -4.5% 28.0% 11.9% 3.1% 1.9% -2.0% 1.2% 3.0% -1.6% 27.2%

RV-FTS 10.3% 7.7% 12.1% 11.0% 11.5% 17.6% 5.2% 17.9% 8.7% 12.5% 16.7% 8.6% 12.9% 15.1%

Panel B: Loss comparison with combination forecast models relative to the HAR model

C-GARCH-SU 18.9% -3.7% 5.8% 0.0% 0.7% 7.4% -1.0% 10.0% 2.5% 13.7% 14.4% 10.2% 2.6% 9.8%

C-FR-GARCH-SU 5.2% -1.2% 8.9% 2.7% 1.6% 7.1% 1.7% 11.5% 10.7% 7.6% 10.0% 7.3% 4.2% 8.1%

C-AR 4.7% 3.2% 4.0% 3.1% 4.3% 8.5% 10.5% 3.6% 8.3% 2.4% 1.4% 7.5% 3.5% 4.1%

C-HAR -0.7% -2.7% -0.6% -1.2% -1.4% 22.6% -2.2% 1.5% 0.0% 1.1% -0.1% -1.2% 0.0% 0.4%

C-HAR-SV -2.1% -9.9% -4.9% -0.8% -5.8% -1.6% -3.8% -4.4% 0.7% -1.3% -0.9% -5.2% -5.6% 0.3%

C-HAR-CJ -3.1% -10.7% -5.9% -7.8% -7.4% -5.5% -4.0% -5.0% -4.7% -2.5% -1.5% -7.0% 2.8% -3.0%

C-HAR-SJ -6.6% -12.8% -4.9% -8.8% -7.7% -3.1% -3.7% -4.6% -4.4% -3.4% -2.1% -3.9% -7.0% -2.4%

CC-Bench -5.8% -14.7% -7.1% -11.1% -11.8% -4.1% -4.9% -9.6% 25.6% -7.9% -4.5% -7.9% -11.3% -2.1%

CC-FTS -6.7% -16.8% -4.1% -10.4% -12.6% -1.8% -5.9% -9.6% 6.7% -8.0% -4.6% -8.4% -13.2% -2.6%

CC-FTS-Top -5.9% -15.3% -8.6% -9.7% -11.3% -9.0% -6.0% -10.2% -6.6% -6.7% -6.8% -7.2% -11.1% -5.7%

Panel C: Average ranking of the individual forecast models

HAR 9.1 10.3 9.4 9.5 9.8 9.7 9.1 9.5 8.9 9.2 9.3 9.6 9.6 9.2

GARCH-SU 13.7 10.0 10.8 10.7 10.7 11.1 10.4 11.8 9.8 12.4 12.3 12.4 10.8 11.6

FR-GARCH-SU 8.9 8.3 9.4 9.3 9.4 9.7 9.0 9.5 10.0 9.1 9.7 8.8 9.5 9.2

AR 11.5 12.0 11.5 11.6 11.5 12.2 12.3 11.4 11.9 11.0 11.1 12.3 11.5 11.2

HAR-SV 9.1 9.7 9.1 9.5 9.0 9.3 9.8 9.0 9.6 9.5 9.2 9.3 9.4 9.0

HAR-CJ 8.9 9.2 9.3 9.2 9.1 8.8 9.8 8.9 9.4 9.5 8.9 8.8 9.2 9.3

HAR-SJ 9.1 9.6 9.6 9.4 9.3 9.6 10.5 9.2 9.9 9.7 9.4 10.0 9.4 9.4

RV-FTS 9.5 10.0 9.9 10.0 10.3 9.6 9.3 9.9 9.6 9.8 9.8 9.2 10.0 9.9

Panel D: Average ranking of the combination forecast models

C-GARCH-SU 11.8 9.6 9.9 9.9 9.9 10.0 9.5 10.6 9.3 11.0 10.9 10.9 9.9 10.5

C-FR-GARCH-SU 8.6 8.6 9.0 9.0 9.3 9.2 8.6 9.3 9.5 8.7 9.3 8.5 9.2 9.0

C-AR 10.0 10.8 10.2 10.4 10.3 11.0 10.7 10.3 10.4 9.9 9.8 10.7 10.2 10.0

C-HAR 9.0 10.0 9.3 9.5 9.7 9.2 8.9 9.5 9.0 9.1 9.1 9.1 9.5 9.2

C-HAR-SV 8.9 9.2 8.8 9.3 8.9 8.8 8.8 8.7 8.9 9.0 8.8 8.6 9.0 8.8

C-HAR-CJ 8.6 8.9 8.9 8.8 8.9 8.1 8.9 8.6 8.8 9.0 8.5 8.1 8.7 8.9

C-HAR-SJ 8.6 9.1 9.1 8.8 9.0 8.8 9.4 8.8 9.0 9.1 8.6 9.1 8.9 8.9

CC-Bench 8.6 8.5 8.9 8.7 8.6 8.8 8.7 8.7 9.2 8.3 8.8 8.6 8.8 9.0

CC-FTS 8.7 8.4 9.2 8.7 8.5 8.3 8.7 8.6 9.0 8.3 8.7 8.4 8.7 9.2

CC-FTS-Top 8.4 8.6 8.7 8.7 8.7 8.8 8.7 8.6 8.8 8.5 8.7 8.6 8.7 8.6

Notes: HAR [QLIKE] row in Panel A reports the QLIKE values. Other rows in Panels A and B show percentage changes in MSE

compared to the HAR benchmark. Panels C and D report average ranks. USA-1 is the S&P 500 and USA-2 is the NASDAQ 100 index.
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Table B.3: Twenty-two day-ahead forecasts under MSE

Model AUS IND FRA GBR DEU CAN HKG USA-1 KOR JPN USA-2 CHN CHE EUR

Panel A: Loss comparison with individual volatility models relative to the HAR model

HAR [MSE] 10.4 58.7 31.2 28.6 36.4 56.9 31.4 34.3 35.4 11.3 35.6 36.1 20.9 26.0

GARCH-SU -23.4% -0.6% -2.4% -34.7% -1.6% -18.0% -14.0% 32.5% -23.2% 93.9% 6.2% 5.7% -5.5% 2.7%

FR-GARCH-SU -27.2% -11.0% -8.1% -39.4% -10.8% -25.5% 1.0% -8.4% -25.9% -8.8% -29.2% -2.3% -14.5% -9.3%

AR -21.3% 1.8% 3.5% -30.6% 1.7% -16.6% 15.5% -3.5% -9.3% 3.2% -26.8% 16.0% -0.2% 2.6%

HARSV 11.0% -11.8% -9.8% 20.7% 7.6% 11.9% 6.7% -3.9% 5.0% 14.3% -23.5% -23.4% 21.3% 12.0%

HARCJ -24.7% 3.9% -9.8% -19.5% 2.7% 20.5% -0.7% -2.2% 32.7% 15.8% -26.1% -17.5% 45.7% 4.8%

HARSJ -19.9% -13.8% -4.8% -20.2% 9.0% 21.5% 21.0% -6.4% 11.7% 14.4% -19.0% -20.0% 33.5% 9.7%

RV-FTS -3.2% 15.1% 13.9% -20.9% 20.0% 2.4% -4.5% 32.1% -0.8% 20.4% 4.9% -0.5% 21.8% 16.8%

Panel B: Loss comparison with combination forecast models relative to the HAR model

C-GARCH-SU -20.3% 1.7% -2.8% -33.7% 0.4% -14.3% -14.6% 26.8% -17.2% 39.6% 3.0% -5.2% 1.9% -0.4%

C-FR-GARCH-SU -24.6% -4.7% -6.9% -37.2% -8.5% -21.9% -7.7% 0.9% -22.2% -4.4% -22.7% -11.2% -5.8% -6.1%

C-AR -22.5% -4.7% -5.9% -34.5% -2.1% -16.3% -10.9% -0.4% -17.8% -3.6% -20.3% -10.4% -4.1% -3.3%

C-HAR -7.2% 1.9% 0.6% -23.1% 3.3% -2.6% -7.6% 8.9% -2.7% 1.2% -13.0% -3.3% 2.0% -0.3%

C-HAR-SV -21.4% -11.1% -11.2% -18.8% 0.4% 8.2% 0.6% -1.0% -2.9% 8.1% -17.6% -22.1% 12.1% -0.5%

C-HAR-CJ -25.8% 4.5% -10.3% -25.8% 2.1% 5.4% -4.7% 2.7% 10.7% 7.1% -20.5% -15.2% 17.0% -2.1%

C-HAR-SJ -26.5% -10.9% -6.3% -27.0% 1.9% 11.2% 5.5% -1.5% 0.3% 8.7% -13.7% -19.1% 18.7% 1.0%

CC-Bench -37.9% -17.3% -19.4% -45.3% -17.8% -29.0% -23.2% -12.9% -32.1% -20.8% -39.2% -29.0% -18.1% -20.4%

CC-FTS -38.3% -16.9% -19.4% -44.9% -18.2% -28.8% -22.0% -13.0% -32.4% -20.2% -38.9% -28.6% -18.0% -20.6%

CC-FTS-Top -31.4% -16.3% -16.2% -37.8% -11.6% -18.1% -18.3% -11.2% -25.5% -12.4% -33.7% -23.5% -15.1% -12.9%

Panel C: Average ranking of the individual forecast models

HAR 9.9 11.3 10.0 10.6 10.3 10.9 9.6 10.4 9.5 9.6 9.8 10.6 10.4 9.8

GARCH-SU 13.6 9.4 10.5 10.4 10.1 10.5 9.9 11.5 9.4 13.2 12.2 12.1 10.1 11.3

FR-GARCH-SU 8.1 7.8 8.6 8.1 8.8 8.5 8.6 8.9 9.7 8.9 8.5 8.9 8.4 8.4

AR 11.8 12.3 11.7 12.2 11.7 12.7 12.5 12.1 12.0 10.7 11.5 12.8 11.9 11.4

HAR-SV 10.0 10.2 10.0 10.5 9.5 10.1 10.2 9.5 10.5 9.6 9.8 9.6 10.1 10.0

HAR-CJ 9.8 10.3 9.7 10.6 9.8 10.0 10.5 9.5 10.2 10.1 10.4 9.5 10.1 9.6

HAR-SJ 9.8 10.4 10.4 10.1 9.9 10.0 11.1 9.7 10.5 9.9 10.3 9.7 9.9 9.8

RV-FTS 8.8 9.2 9.6 9.4 10.1 9.1 9.4 9.5 9.7 9.5 9.2 9.0 9.7 10.1

Panel D: Average ranking of the combination forecast models

C-GARCH-SU 11.6 8.9 9.7 9.1 9.6 9.1 9.1 10.3 8.8 11.5 10.9 10.4 9.5 10.5

C-FR-GARCH-SU 7.6 7.9 8.4 8.1 8.7 7.9 8.4 8.5 9.0 8.4 8.0 8.4 8.4 8.4

C-AR 9.9 10.9 10.2 10.3 10.3 11.0 10.6 10.5 10.1 9.3 9.9 10.7 10.3 10.2

C-HAR 8.8 10.0 9.2 9.3 9.6 9.3 8.9 9.5 8.9 8.8 8.9 9.3 9.4 9.4

C-HAR-SV 8.9 9.0 9.2 9.3 9.1 8.7 9.0 8.8 8.9 8.8 8.7 8.5 9.1 9.4

C-HAR-CJ 8.6 9.1 8.9 9.0 9.3 8.8 9.3 8.7 9.0 9.2 9.1 8.3 9.2 9.1

C-HAR-SJ 8.6 9.2 9.4 8.9 9.1 8.7 9.6 8.8 9.0 8.9 8.9 8.6 9.1 9.2

CC-Bench 8.4 8.2 8.1 8.3 8.2 8.6 8.1 8.1 8.8 8.1 8.2 8.2 8.3 8.0

CC-FTS 8.2 8.1 8.3 8.1 8.3 8.0 8.0 8.2 8.3 8.0 8.2 8.0 8.3 8.0

CC-FTS-Top 8.6 8.6 9.0 8.7 8.6 9.1 8.5 8.5 8.7 8.5 8.6 8.4 8.9 8.6

Notes: The values for row HAR in Panel A correspond to the MSE (Panel A). Values from remaining row of Panel A and B are %

changes in MSE against the HAR model. Negative percentage changes are improvements. In Panel C and D we report the average

rank. USA-1 corresponds to the S&P 500 market index and USA-2 to the NASDAQ 100 index.
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Table B.4: Twenty-two day-ahead forecasts under QLIKE

Model AUS IND FRA GBR DEU CAN HKG USA-1 KOR JPN USA-2 CHN CHE EUR

Panel A: Loss comparison with individual volatility models relative to the HAR model

HAR [QLIKE] 0.28 0.33 0.28 0.27 0.28 0.46 0.18 0.30 0.20 0.16 0.48 0.24 0.32 0.27

GARCH-SU 3.2 -9.8 -6.4 -2.1 -12.9 2.1 -7.9 1.8 -3.1 658.7 -27.9 15.2 -11.0 -10.3

FR-GARCH-SU 20.7 2.5 37.4 -0.1 2.7 10.2 23.0 25.5 26.5 27.4 -17.5 35.3 -4.4 8.3

AR 31.6 15.5 20.9 24.5 18.3 23.4 53.5 15.3 34.4 16.2 -21.0 41.1 12.5 15.1

HARSV 25.2 -4.2 2.3 4.3 6.0 11.1 4.5 6.6 436.2 19.2 -20.1 -6.5 -11.3 1.2

HARCJ 16.8 -2.6 -6.8 14.3 -4.0 7.8 7.1 21.1 5.2 4.7 -18.9 -4.8 -10.1 -2.8

HARSJ 5.8 -7.0 3.1 -0.5 2.8 7.3 9.5 18.5 6.6 28.3 -19.9 -6.8 -8.1 21.0

RV-FTS 7.6 -3.6 2.3 -2.1 8.3 13.8 3.2 10.6 4.6 11.5 -16.6 3.3 5.8 9.1

Panel B: Loss comparison with combination forecast models relative to the HAR model

C-GARCH-SU -9.4 -11.6 -11.5 -11.1 -9.8 0.5 -9.4 -1.7 -6.3 8.5 -30.6 0.0 -9.9 -10.6

C-FR-GARCH-SU 6.0 -6.5 6.8 -8.8 -2.0 4.7 0.8 8.4 5.2 6.3 -22.7 5.3 -4.6 1.3

C-AR 5.3 -2.9 -1.6 -4.1 1.9 5.6 4.7 -0.7 2.8 -2.5 -28.7 2.8 -1.5 -0.6

C-HAR -3.1 -7.3 -6.3 -9.3 -2.9 -1.3 -5.6 -2.5 -5.6 -3.4 -29.0 -6.2 -5.7 -4.3

C-HAR-SV -2.5 -13.3 -8.4 -7.3 -2.0 4.3 -5.5 -2.7 -5.4 -2.1 -25.5 -10.8 -12.8 -4.4

C-HAR-CJ 0.3 -9.4 -12.1 -11.1 -5.7 1.6 -4.3 -1.9 -5.8 -3.4 -26.4 -10.5 -9.6 -6.4

C-HAR-SJ -3.2 -13.0 -8.0 -11.5 -4.1 1.7 -4.8 -2.3 -5.5 -3.7 -25.1 -11.8 -11.8 -5.9

CC-Bench -24.1 -19.7 -16.6 -14.6 -13.3 -7.4 -15.7 -10.0 -12.3 -13.9 -36.6 -14.7 -20.2 -23.7

CC-FTS -25.0 -20.1 -16.5 -18.2 -14.7 -9.0 -16.6 -8.9 -15.0 -15.5 -35.5 -15.4 -10.6 -22.6

CC-FTS-Top -10.7 -15.6 -12.7 -13.0 -12.2 -4.7 -10.6 -3.2 -9.4 -8.6 -33.6 -13.1 -17.8 -13.2

Panel C: Average ranking of the individual forecast models

HAR 9.9 11.3 10.0 10.6 10.2 10.8 9.5 10.4 9.5 9.6 9.8 10.6 10.4 9.8

GARCH-SU 13.4 9.4 10.5 10.3 10.0 10.4 9.8 11.3 9.4 13.0 12.1 12.0 10.1 11.2

FR-GARCH-SU 8.1 8.0 8.7 8.3 8.9 8.6 8.8 9.1 9.9 9.2 8.6 9.2 8.5 8.5

AR 11.9 12.3 11.7 12.3 11.8 12.7 12.5 12.1 12.0 10.7 11.5 12.7 11.9 11.4

HAR-SV 10.1 10.3 10.0 10.5 9.5 10.1 10.1 9.5 10.5 9.6 9.8 9.6 10.0 10.0

HAR-CJ 9.9 10.3 9.7 10.5 9.8 10.0 10.4 9.5 10.1 10.1 10.3 9.5 10.0 9.6

HAR-SJ 9.9 10.4 10.4 10.1 9.9 9.9 11.1 9.7 10.4 9.8 10.3 9.7 9.9 9.7

RV-FTS 8.8 9.3 9.7 9.5 10.2 9.2 9.5 9.6 9.8 9.6 9.3 9.0 9.8 10.1

Panel D: Average ranking of the combination forecast models

C-GARCH-SU 11.4 8.9 9.7 9.1 9.6 9.1 9.1 10.2 8.9 11.4 10.8 10.3 9.4 10.5

C-FR-GARCH-SU 7.7 7.9 8.5 8.2 8.8 8.0 8.5 8.5 9.1 8.5 8.0 8.5 8.5 8.5

C-AR 9.9 10.8 10.1 10.3 10.2 11.0 10.5 10.4 10.1 9.3 9.9 10.7 10.2 10.1

C-HAR 8.8 9.9 9.2 9.3 9.6 9.3 8.8 9.5 8.9 8.8 8.9 9.2 9.3 9.3

C-HAR-SV 8.9 9.0 9.1 9.2 9.0 8.7 8.9 8.8 8.9 8.8 8.7 8.5 9.1 9.4

C-HAR-CJ 8.6 9.1 8.9 9.0 9.3 8.8 9.2 8.7 9.0 9.2 9.0 8.3 9.1 9.1

C-HAR-SJ 8.6 9.1 9.4 8.8 9.1 8.6 9.5 8.8 8.9 8.8 8.9 8.6 9.1 9.1

CC-Bench 8.4 8.3 8.1 8.3 8.3 8.6 8.2 8.2 8.8 8.1 8.3 8.3 8.4 8.1

CC-FTS 8.2 8.2 8.3 8.1 8.3 8.0 8.1 8.2 8.4 8.1 8.2 8.0 8.4 8.1

CC-FTS-Top 8.6 8.6 9.0 8.7 8.6 9.1 8.4 8.5 8.7 8.5 8.5 8.4 8.9 8.6

Notes: The values for row HAR in Panel A correspond to the QLIKE (Panel A). Values from remaining row of Panel A and B are %

changes in QLIKE against the HAR model. Negative percentage changes are improvements. In Panel C and D we report the average

rank. USA-1 corresponds to the S&P 500 market index and USA-2 to the NASDAQ 100 index.
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