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Abstract

We show that, while corporate bond ETFs systematically exhibit lower liquidity risk
than the bonds they hold, they also face heightened intermediary risk. This effect
is more pronounced for high-yield ETFs, for those with less liquid portfolios, and for
funds reliant on weaker Authorized Participants. A stylized model reveals how partial
segmentation between ETF and bond markets drives these diverging exposures. Overall,
investors of corporate bond ETFs effectively trade reduced liquidity risk for increased
intermediary risk, highlighting a fundamental trade-off embedded in the ETF structure.
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1 Introduction

Exchange-Traded Funds (ETFs) have transformed the investment landscape over the past
decade, with assets under management surging from $0.99 trillion in 2010 to $8.09 trillion
in 2023. At the end of 2023, 12% of U.S. households held ETFs.1 A key benefit of ETFs is
their ability to adjust the number of shares based on investor demand, while simultaneously
providing liquidity through continuous trading on transparent secondary markets. This
structure provides investors with a convenient way to access relatively illiquid underlying
portfolios through a single, highly liquid exchange-traded product. In principle, the ETF’s
secondary market price — the price at which shares trade on an exchange — is closely aligned
with the net asset value (NAV) of its underlying securities. This alignment is achieved
via an arbitrage mechanism: a selected group of Authorized Participants (APs), typically
large financial institutions, can create or redeem ETF shares in exchange for a basket of
underlying securities, thereby linking the ETF price to the value of its underlying portfolio.
In a frictionless environment, the law of one price dictates that the ETF’s secondary market
price equals its NAV.

In practice, however, this equality often holds only imperfectly, especially when examin-
ing it on a higher frequency, and the extent of any price deviations can vary substantially
across different asset classes. For example, over the period from January 2010 to June 2023,
the average daily relative price deviation (absolute premium) of secondary market price ver-
sus NAV for passively managed U.S. Equity ETFs is 11.0 basis points, whereas for passively
managed U.S. corporate bond ETFs it stands at 32.4 basis points. These deviations arise
because APs encounter various frictions when arbitraging the ETF against its underlying
basket, such as transaction cost or balance sheet limitations. Thus, the AP’s ability to arbi-
trage may be influenced by the intensity of these frictions and their interplay with broader
economic conditions. This, in turn, can affect the ETF’s exposure to systematic risk, poten-
tially resulting in risk characteristics that differ from those of its constituent securities.

To shed light on whether and how these frictions translate into meaningful differences in
systematic risk, we focus on passively managed U.S. corporate bond ETFs between January
2010 and June 2023. This market provides a canonical laboratory for our analysis because
corporate bond ETFs attract a broad investor base through exchange trading, while their
underlying assets trade in a fundamentally different over-the-counter market structure char-
acterized by severe frictions. As a consequence, aligning the prices on both markets is costly

1See Investment Company Institute (2023).
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for the AP, and hence, the systematic risks of a corporate bond ETF may differ from the
ones of the underlying bond portfolio. Moreover, the key role of adjusting ETF shares to
reflect supply and demand is carried out by only a few APs.

We focus on two frictions that are particularly relevant in the corporate bond universe.
First, market liquidity has a well-documented influence on corporate bond pricing.2 Yet,
because ETFs trade on exchanges, their shares typically command narrower bid-ask spreads
compared to the underlying bonds. Indeed, according to Todorov (2021) the average bid-ask
spread for a corporate bond ETF is less than 10% of the average bid-ask spread of the bond
portfolio it tracks. Consequently, ETFs may bear substantially lower exposure to illiquidity
risk relative to the underlying bond portfolios.

The second friction arises from constraints in financial intermediation, which make in-
termediaries systematically relevant for asset pricing.3 An investment in a corporate bond
ETF involves an additional layer of intermediation compared to a direct bond investment, as
aligning ETF and bond prices requires intermediary activity in both markets. Pan and Zeng
(2019) show that AP’s balance sheet constraints can distort their arbitrage activities due to
their dual role as both ETF arbitrageurs and primary bond dealers. As a result, corporate
bond ETFs may exhibit greater sensitivity to intermediary risk than their underlying bonds.

Accordingly, ETFs not only introduce an additional layer of liquidity to financial markets
but also create a greater dependence on intermediaries, highlighting the intricate interplay
between market liquidity and intermediary risk. While market liquidity and intermediary risk
are interrelated, they are conceptually distinct. Market liquidity reflects a price of liquidity,
which tends to rise with positive liquidity demand shocks and fall with liquidity supply
shocks. In contrast, intermediary risk predominantly influences the supply side of liquidity.
Goldberg and Nozawa (2020) demonstrate that the intermediary risk factor proposed by He,
Kelly, and Manela (2017) (HKM) captures fluctuations tied to liquidity supply, a finding we
confirm for our sample using their identified liquidity supply and demand shocks based on a
VAR model. Furthermore, we observe that our market liquidity factor is positively correlated
with their liquidity demand shocks, while its connection to liquidity supply shocks remains
weak.

Figure 1 summarizes our key finding: The ETF’s secondary market returns differ system-
2See, e.g., Acharya and Pedersen (2005), Bao, Pan, and Wang (2011), and Reichenbacher and Schuster

(2022).
3Adrian, Etula, and Muir (2014), He, Kelly, and Manela (2017), and Haddad and Muir (2021) provide

evidence on the systematic relevance of intermediary leverage constraints for asset prices, He, Khorrami, and
Song (2022) especially show the importance of intermediary risk on the corporate bond market.
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atically from the underlying portfolio NAV’s returns along the dimensions of intermediary
risk and liquidity risk. Specifically, we estimate a three-factor model for both the ETF’s sec-
ondary market excess returns and the portfolio’s NAV excess returns. The model includes
an intermediary risk factor following HKM, a value-weighted corporate bond market factor,
and a liquidity risk factor as used in Reichenbacher and Schuster (2022). We then compare
each fund’s secondary market betas (on the y-axis) with its corresponding NAV betas (on
the x-axis) across these three factors. Panel A shows that the ETF and its underlying port-
folio NAV generally exhibit comparable exposures to market risk. However, Panels B and C
illustrate that intermediary risk and liquidity risk exposures can diverge substantially, with
corporate bond ETFs generally loading more heavily on intermediary risk yet having lower
exposure to liquidity risk compared to the portfolios they track.

Figure 1: Systematic Risk Exposure of ETF vs. NAV

This figure illustrates the systematic risk exposures (betas) of ETF secondary market excess
returns and the underlying portfolio’s NAV excess returns, both estimated via rolling-window
regressions with a three-factor model. The model includes: (i) a value-weighted corporate
bond market factor — Panel A, (ii) He, Kelly, and Manela’s (2017) intermediary risk factor —
Panel B, and (iii) a liquidity risk factor — Panel C. Each panel plots the ETF’s secondary
market beta (y-axis) against the corresponding NAV beta (x-axis). The diagonal dashed
red line indicates a hypothetical scenario where the ETF’s systematic risk exposure aligns
perfectly with that of its underlying portfolio NAV.

(a) Market Risk (b) Intermediary Risk (c) Liquidity Risk

This disparity between an ETF’s higher intermediary risk exposure and lower liquidity
risk exposure, relative to its underlying bond portfolio, is more pronounced in high-yield
funds than in investment-grade funds. It is further amplified in ETFs with less liquid under-
lying portfolios and in ETFs with less healthy APs, persisting across the full sample as well
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as within the sub-samples of high-yield and investment-grade funds.

We also document a significant impact of ETF-specific intermediary risk on top of the
impact of aggregated intermediary risk. Though a representative ETF in our sample has
30 registered APs, on average, only four are actively engaging in creation and redemption.
Focusing on the capital ratios of these actively involved APs, we find that a one-standard-
deviation increase in the excess individual intermediary risk factor is associated with 0.85 of
a standard deviation higher ETF–NAV return differential (an effect which comes on top of
the aggregated intermediary risk effect). While well-diversified investors may not require a
risk premium for this idiosyncratic component, an individual investor holding only a small
number of ETFs cannot diversify away this extra source of risk.

Finally, our analysis confirms that the aggregate differences in risk exposure between the
ETF and its underlying bond portfolio are also relevant from an expected return perspective.
In particular, based on our three-factor model, we estimate an annualized average expected
excess return of 3.52% per year for the ETF, compared to 1.97% for its underlying portfolio.
The 1.55% gap arises from a larger intermediary risk premium (1.82%) and a smaller liquidity
risk premium (0.73%), along with a larger but statistically insignificant market risk premium
(0.46%). Despite these distinctions in expected returns, the realized returns between the ETF
and the portfolio NAV are statistically indistinguishable, yielding an alpha of roughly -1.43%
per year for the ETF, which, however, is not significantly different from zero.

To rationalize our findings and guide our empirical analysis, we develop a stylized model
that mirrors the institutional setup of corporate bond ETFs. The model features two partially
integrated markets — the underlying bond market and the ETF market — connected by
a single type of intermediary: the AP. The AP is uniquely permitted to operate in both
markets, granting it an arbitrage-like opportunity when ETF prices deviate significantly
from their NAV. To exploit this opportunity, the AP can effectively create or redeem ETF
shares in exchange for the underlying bond portfolio, which captures in reduced-form the
core mechanism designed to align ETF prices with their NAV. Bond trading involves trading
costs that add an additional source of risk, and the limited risk capacity of the AP may
result in differences in the risk profiles between bonds and ETFs.

Our equilibrium model captures non-fundamental factors related to the supply and de-
mand for intermediary services, which shape risk premia. To formalize this idea, we incorpo-
rate not only APs but also hedgers and conventional intermediaries who trade either bonds
or ETFs. The model features segmentation of hedgers, with differences in risk aversion and
liquidity shocks across asset classes, reflecting the reality that corporate bond hedgers are
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primarily institutional investors, such as insurance companies and pension funds, while ETF
hedgers are more diverse, including mutual funds, hedge funds, and retail investors who
trade more actively. Conventional intermediaries absorb asset supply from hedgers and, due
to their risk aversion, require compensation in the form of a risk premium for providing this
service. By segmenting conventional intermediaries in the same way, we can focus on the
specific role of APs in arbitrage to maintain price alignment.

Equilibrium prices in the bond and ETF markets emerge from the interplay between
hedgers’ needs, intermediaries’ risk-bearing capacities, and the AP’s ability to offset price
differences. We establish the conditions for price alignment between the two markets and
derive five testable predictions. First, as long as the risk-bearing capacity of ETF inter-
mediaries remains above a critical threshold, ETFs will be more sensitive to intermediary
risks than bonds. Second, bonds generally exhibit higher illiquidity risk. Third, ETFs are
particularly vulnerable to risks related to the health of their APs. Fourth, the gap in in-
termediary risk exposure between ETFs and bonds widens as bond illiquidity increases and
the financial health of APs deteriorates. Fifth, a similar pattern holds for illiquidity risk
exposure, but only if the ratio of total risk plus liquidity risk to total risk is sufficiently large.
Overall, the model highlights how asymmetric frictions in two partially segmented markets
can lead to significant discrepancies in systematic risk exposure. These predictions provide
the foundation for our empirical analysis, which tests their validity using real-world market
data.

Related literature This paper contributes to the broader literature examining the re-
lationship between intermediary balance sheets and asset prices (Adrian, Etula, and Muir,
2014; Hu, Pan, and Wang, 2013; Haddad and Sraer, 2020; Haddad and Muir, 2021). Specif-
ically, we build on He, Kelly, and Manela (2017), who document that an intermediary risk
factor helps explain return variations across multiple asset classes. Our analysis shows that
financial intermediation affects not only the risk premium of a security being intermediated
but also adds an extra influence on any portfolio holding that security if the portfolio itself
is subject to intermediation. Similar to our study, Hempel, Kim, and Wermers (2022) ex-
amine intermediaries operating in segmented yet interconnected asset markets—specifically,
the corporate bond and corporate bond ETF markets. Their work focuses on the Federal
Reserve’s corporate bond ETF purchases through the Secondary Market Corporate Credit
Facility in 2020. They investigate how significant, positive balance sheet liquidity shocks to
APs spill over onto both the corporate bonds held by the purchased ETFs and other ETFs
not included in the program but with overlapping portfolios. In contrast to Hempel, Kim,
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and Wermers (2022), we focus on the first-order effects of APs’ operations within segmented
yet interconnected asset markets. Our findings show that variations in secondary market
ETF returns and NAV returns are likely to diverge with portfolio’s illiquidity and decline in
AP’s financial health.

Second, our paper adds to the growing literature on the vulnerabilities of non-leveraged,
non-bank financial intermediaries. The structure of ETFs protects them from the risk of
strategic complementarities in investor redemption decisions, as seen in the mutual fund
sector (Chen, Goldstein, and Jiang, 2010; Goldstein, Jiang, and Ng, 2017; Zeng, 2017). In
ETFs, such complementarities are less likely to occur because rising redemption costs due to
portfolio illiquidity do not impact non-redeeming investors; instead, these costs are absorbed
by APs (Pagano, Serrano, and Zechner, 2020). As a result, ETFs face low run risk as long
as APs have a strong risk-bearing capacity. To our knowledge, our paper is the first to show
that ETF investors balance liquidity against intermediary risk. Since high liquidity is one of
the most attractive features of ETFs (Khomyn, Putnin, š, and Zoican, 2024), investors accept
lower liquidity risk in exchange for higher exposure to intermediary risk.

Third, we contribute to the literature showing that the capacity of market makers to pro-
vide liquidity varies over time and across different providers. For example, Choi, Shachar,
and Shin (2019) show that dealers typically trade against widening price gaps between cor-
porate bonds and credit default swaps (CDS). However, their ability to provide liquidity
decreases when they incur inventory losses, mispricing widens, or funding conditions worsen.
Similarly, Aragon and Strahan (2012) document that hedge funds were net liquidity de-
manders in the equity market during the financial crisis. Market shocks and other frictions
can make liquidity provision less profitable, prompting these participants to seek liquidity
instead. In addition, conflicting interests can reduce liquidity provision by APs. Since APs
act both as bond dealers and ETF arbitrageurs and have no legal obligation to perform
ETF arbitrage, they may prioritize one role over the other. Pan and Zeng (2019) show that
the extent of this conflict is evident in the composition of creation and redemption baskets,
which can lead to significant mispricing. Our work builds on Pan and Zeng’s (2019) findings
by specifically examining the role of intermediary risk within the ETF structure.

2 Institutional Background

The key feature of passive corporate bond ETFs is that they allow investors to gain exposure
to a relatively illiquid over-the-counter bond market through a single exchange-traded in-
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strument. The primary link between these two worlds is provided by APs, who are the only
entities permitted to create and redeem ETF shares directly at NAV. APs in this market
are typically primary-broker-dealers (PBDs) in the bond market that maintain contractual
agreements with the ETF sponsor (i.e., the fund manager), enabling them to exchange a
basket of bonds for newly issued or redeemed ETF shares.

Figure 2 illustrates the role an AP plays in ensuring price alignment between ETF shares
and the underlying bond portfolio. Suppose ETF shares in the secondary market trade
at a premium to NAV. In that scenario, the AP can sell the ETF shares to investors in
the secondary market. Then, the AP delivers a creation basket, which is a specific set of
underlying securities, to the fund sponsor. In exchange for the creation basket, the AP
receives newly created ETF shares from the fund sponsor, thereby closing out their positions
profitably. Conversely, if ETF shares trade at a discount, APs may buy them cheaply in the
secondary market, redeem those shares with the sponsor, and receive the redemption basket
of bonds. In either case, AP transactions tend to realign the secondary market price with
the NAV.

While other market participants might also wish to exploit ETF price deviations, APs
benefit from an exclusive right to trade directly with the fund sponsor at NAV (effectively
meaning unlimited liquidity from the sponsor at NAV). Consequently, APs are the most
likely candidates to represent the marginal investors for ETF creation and redemption, and
their balance sheet constraints are likely to significantly shape ETF price formation.

The importance of ETF secondary market price determination by APs becomes even
more apparent when considering the growth and composition of APs in the corporate bond
ETF market. Figure 3 depicts the degree of concentration of APs in the corporate bond
ETF market. There are essentially three main APs: Bank of America, Goldman Sachs,
and J.P. Morgan. The value of created and redeemed baskets has risen in line with the
growth of assets under management (AUM) by corporate bond ETFs. The total creation
and redemption volume of the three main APs has increased from $57bn in 2018 to $370bn
in 2023.

Panel B of Figure 3 shows the shift in APs’ composition. The creation and redemption
volume intermediated by Bank of America constituted almost 50% of the market share in
2018. It has steadily decreased over the years to the advantage of Goldman Sachs and
J.P. Morgan, whose combined market share was 66% in 2023. Though the relative market
penetration of the main APs has changed, the market for intermediation of corporate bond
ETFs has remained highly concentrated.
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Figure 2: ETF Arbitrage

This figure illustrates the interconnectedness of the primary and secondary ETF markets
through AP’s intermediation activities. ETF shares trade in the secondary market (right-
hand-side blue box). When ETF shares are relatively cheap in the secondary market, APs
can buy them from investors and redeem them in-kind for a basket of securities, known as
the redemption basket, in the primary market (left-hand-side orange box). Conversely, when
ETF shares are expensive in the secondary market, APs can deliver securities in the creation
basket to the ETF issuer in the primary market and sell the newly created ETF shares to
investors in the secondary market. The exchange of ETF shares and security baskets between
the sponsor and APs occurs at the NAV price of the fund’s underlying assets, denoted pNAV .
In the secondary market, APs trade ETF shares at secondary market prices, pSec.
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The presence of the three main APs does not mean that only a few financial institutions
are allowed to act as APs. Table 1 shows that an average corporate bond ETF has roughly
30 registered APs, but only four are active. This is, on average, only four APs appear in
an ETF’s N-CEN filing as institutions that created and redeemed ETF shares within a 12-
month period. We find that PBDs predominantly serve as active APs, with three out of
four active APs on average being PBDs. Consistent with the high concentration of APs in
the corporate bond ETF market, the bottom row of Table 1 shows that the top three APs
account for the majority – 95% – of the total creation and redemption volume for an average
ETF.

Given the crucial role APs play in linking the secondary and primary ETF markets, we
examine the potential effects of their intermediation. In particular, we focus on the significant
liquidity mismatch between the underlying bond portfolio and ETF shares, especially in light
of the APs’ limited balance sheet capacities.

Table 1: Authorized Participants Summary Statistics

This table provides summary statistics of the APs for U.S. corporate bond ETFs, using data
from N-CEN filings for the reporting period between 2018 and 2023. We measure the number
of registered APs for each ETF and reporting period. We define an AP as active if the AP
created or redeemed ETF shares within a given reporting period. We also look at a subset
of active APs consisting of PBDs of the New York Fed. The bottom three rows report the
summary statistics for the share of the total creation and redemption volume of the top one,
two, and three APs. We report it in percentage points.

Mean Std. Dev. Min Median Max

No. of registered AP 29.85 11.15 2 30.00 44
No. of active AP 3.92 2.45 1 3.00 13
No. of active AP (Primary Broker-Dealer) 3.27 2.07 1 3.00 11
Share of CR & RD Volume of top 1 AP [%] 64.19 20.44 20 60.35 100
Share of CR & RD Volume of top 2 AP [%] 87.13 13.54 40 91.84 100
Share of CR & RD Volume of top 3 AP [%] 95.44 7.04 60 100.00 100

3 Data and Variable Construction

In this section, we introduce our data sources and describe the processing procedures. We
also explain the construction of the variables used in our empirical analysis and discuss the
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Figure 3: Total Creation and Redemption Volume of APs

This figure, based on N-CEN filings from the reporting period between 2018 and 2023,
illustrates the growth and composition of APs in the corporate bond ETF market. Panel A
displays the total yearly creation and redemption volumes, along with the volumes for the
top three APs: Bank of America, Goldman Sachs, and J.P. Morgan. Panel B shows the time
series of market shares for creation and redemption volumes held by the top three APs.
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descriptive statistics.

3.1 ETF Data

Our sample includes passively managed U.S. corporate bond ETFs domiciled in the U.S.
from January 2010 to June 2023. The initial dataset consists of 225 ETFs. Since we focus
on the risk profile of passive corporate bond ETFs, we exclude those with less than 50%
corporate bonds in their portfolios, as well as “fund of funds” ETFs that primarily hold other
ETFs. This reduces the sample to 175 ETFs. Next, we retain ETFs for which daily data
on secondary market prices, NAVs, dividends, and holdings are available in the Morningstar
database. The daily frequency of these data allows for a more granular estimation of ETFs’
risk exposures in our empirical analysis. Additionally, we require that an ETF has at least
two years of trading history. After applying these filtering criteria, the final sample comprises
136 ETFs. The number of passive corporate bond ETFs in our sample has grown over time,
rising from 22 in 2010 to 94 in 2023, peaking at 106 in 2020. We obtain data on assets under
management from Bloomberg and merge it with our Morningstar-based sample using the
CUSIP identifier.

3.2 Corporate Bond Data

We construct a daily bond market factor, a daily liquidity risk factor, and liquidity measures
for ETF portfolio holdings using the Enhanced TRACE database. This dataset provides in-
traday bond prices, trading volumes, and buy/sell indicators for over-the-counter bond trades
in the U.S. Following Dickerson, Mueller, and Robotti (2023) and Dick-Nielsen (2014), we
merge TRACE data with bond characteristics from FISD. We then apply the data cleaning
procedure of Dickerson, Mueller, and Robotti (2023), which builds on the methodologies
of Dick-Nielsen (2014). Further details on the cleaning process and factor construction are
provided in Appendix B.2 and Appendix C.2.

3.3 Variable Construction

To analyze the systematic risk exposure of corporate bond ETFs, we compare two sets of
daily returns: the secondary market return and the NAV return. Both return measures
account for potential dividends and are computed using closing prices. To obtain the daily
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excess returns RSec
i,t resp. RNAV

i,t for ETF i on day t, we subtract the daily risk-free rate.4 We
further define the return differential as RDiff

i,t = RSec
i,t −RNAV

i,t .

We follow Hong and Warga (2000) to construct the relative bid-ask spread of the bonds
based on the TRACE trade dataset:

Rel. Bid-Ask Spreadj,t =
Buyj,t − Sellj,t

0.5 ·
(
Buyj,t + Sellj,t

) , (1)

where Buyj,t and Sellj,t are the average customer buy and sell prices of bond j on day
t, respectively. We calculate a daily value-weighted illiquidity measure at the ETF level
using the daily relative bid-ask spread of each bond, weighted by the percentage of fund i’s
portfolio invested in bond j, based on its market value.5

We are also interested in how the financial health of intermediaries contributes to the
variation in an ETF’s exposure to systematic risk. Specifically, we focus on active APs, those
facilitating creation and redemption baskets for an ETF during a given reporting period, as
indicated in N-CEN filings. Following He, Kelly, and Manela (2017), an AP’s capital ratio
is defined as the ratio of market equity to the sum of market equity and book debt. Data on
the market equity and book debt of APs’ parent companies are obtained from Bloomberg.
The ETF’s capital ratio is then calculated as the equal-weighted average of the capital ratios
of its individual APs:

Fund Capital Ratioi,t =
1

APi,t

APi,t∑
a=1

Market Equitya,t
Market Equitya,t +Book Debta,t

, (2)

where a is an active AP and APi,t is the number of active APs for a given ETF.

Based on the ETF’s fund capital ratio, we further compute the AP-specific intermediary
risk for each ETF. We take innovations of each individual fund’s capital ratio from an AR(1)
model and divide it by the lagged fund capital ratio for each ETF i on each day t. Next,
we subtract the value of He, Kelly, and Manela (2017)’s aggregated intermediary risk factor,
HKMt, to obtain HKM Ind.

i,t . Except for the last step, where we subtract HKMt, this
approach mirrors the methodology of He, Kelly, and Manela (2017) for constructing the
aggregated HKM intermediary risk factor, but applied on a fund-by-fund basis. We use this
measure as our proxy for AP-specific intermediary risk.6

4The daily risk-free rate is sourced from Kenneth French’s website.
5We take a rolling mean of the daily relative bid-ask spreads of the bonds over the last month since some

ETFs hold bonds that are very sparsely traded.
6Note that we cannot account for proprietary trading firms that serve as active APs, nor for market
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3.4 Summary Statistics

Table 2: Summary Statistics

This table shows daily descriptive statistics of ETF characteristics in Panel A and rolling-window beta
estimates in Panel B. For Panels A and B, we report time-series averages of the cross-sectional mean,
standard deviation, and different quantiles. The underlying observations of the panel dataset are reported
in column one and the corresponding number of ETFs is reported in column two. Panel A contains data
from January 2010 to June 2023 and Panel B reports rolling-window beta estimates from January 2012 to
June 2023.

N No. ETFs Mean Std. Dev. Q1% Q25% Q50% Q75% Q99%

Panel A: ETF Characteristics

RSec [bp] 230,592 136 1.208 25.748 -55.084 -13.375 1.123 15.724 58.272
RNAV [bp] 230,592 136 1.146 17.593 -33.771 -10.438 1.046 12.580 36.448
RDiff [bp] 230,592 136 0.062 20.626 -47.055 -10.457 0.026 10.538 47.646
Absolute Premium [bp] 230,592 136 32.417 25.948 1.928 14.685 27.300 42.738 113.348
AUM [$bn] 230,481 136 2.331 5.274 0.008 0.055 0.251 1.376 23.477
Fund Age 230,592 136 4.106 2.888 0.374 1.851 3.491 5.905 10.516
Net Expense Ratio [%] 224,383 136 0.228 0.135 0.067 0.119 0.189 0.332 0.521
Rel. Bid-Ask Spread Holdings [%] 183,108 136 0.205 0.074 0.067 0.156 0.210 0.250 0.362
Fund Capital Ratio [%] 125,739 113 10.033 1.086 7.578 9.416 10.205 10.733 12.117

Panel B: Rolling-Window Beta Estimates

βSec,HKM 163,896 136 0.031 0.072 -0.063 -0.013 0.005 0.077 0.189
βSec,MKT 163,896 136 0.964 0.786 -0.014 0.317 0.799 1.461 2.977
βSec,LRF 163,896 136 -0.042 0.289 -0.510 -0.248 -0.131 0.203 0.525

βNAV,HKM 163,896 136 -0.006 0.057 -0.118 -0.042 -0.013 0.039 0.093
βNAV,MKT 163,896 136 0.837 0.788 -0.126 0.152 0.669 1.373 2.765
βNAV,LRF 163,896 136 0.071 0.337 -0.311 -0.177 -0.079 0.335 0.785

βDiff,HKM 163,896 136 0.037 0.030 -0.006 0.015 0.029 0.054 0.108
βDiff,MKT 163,896 136 0.127 0.207 -0.295 -0.001 0.105 0.246 0.607
βDiff,LRF 163,896 136 -0.113 0.146 -0.488 -0.188 -0.079 -0.016 0.118

Table 2, Panel A, presents daily summary statistics for the ETF data. The average ETF
exhibits a daily secondary market excess return of 1.208 bp and a NAV excess return of
1.146 bp, resulting in a return differential of 0.062 bp. The average return differential is
economically small and indistinguishable from zero (t-statistic = 0.27) when tested for sta-
tistical significance using Newey and West (1987) standard errors. This result is expected,
as a persistent return differential would imply (1) that arbitrage opportunities are not exe-
cuted and (2) that the secondary market price deviates significantly from its NAV over time.
Furthermore, the average ETF has $2.331bn in AUM and is approximately four years old,
highlighting that corporate bond ETFs are a relatively young asset class.

participants who perform AP-like activities without being formally registered as APs but instead use an
AP’s infrastructure to create and redeem ETF shares. Consequently, Fund Capital Ratioi,t and HKM Ind.

i,t

are likely subject to measurement error, which would bias our estimates of AP-specific intermediary risk
exposure toward zero in the following analyses.
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Next, we analyze the ETF’s exposure to systematic risk using a two-step approach.
First, we estimate the risk factors for a three-factor model, which includes intermediary
risk, liquidity risk, and market risk. Second, we calculate the ETF’s exposure to these risk
factors. We choose a three-factor model based on recent empirical studies that emphasize
the importance of intermediary health in explaining asset prices, particularly for assets with
significant degree of intermediation (e.g., He, Kelly, and Manela, 2017; Adrian, Etula, and
Muir, 2014; Haddad and Muir, 2021). Prior research also highlights that market risk plays
a dominant role, followed by liquidity risk, in explaining the cross-sectional variation in
expected corporate bond returns (Dickerson, Mueller, and Robotti, 2023).

To measure intermediary risk, we use the intermediary risk factor of He, Kelly, and
Manela (2017) that measures shocks to the capital ratio of primary broker-dealers, which
we source from Zhiguo He’s website.7 The liquidity risk factor is calculated as the return
difference between portfolios in the highest and lowest deciles of relative bid-ask spread. For
the market factor, we use the return on a value-weighted corporate bond portfolio.

Next, we estimate ETF i’s exposure to systematic risk using the following rolling-window
regression model:

Ri,τ = ai,t + βHKM
i,t HKMτ + βMKT

i,t MKTτ + βLRF
i,t LRFτ + ϵi,τ , (3)

where Ri,τ is either the secondary market excess return, RSec
i,τ , or the NAV excess return,

RNAV
i,τ , or the difference between the secondary market excess return and the NAV excess

return, RDiff
i,τ = RSec

i,τ −RNAV
i,τ . HKMτ , MKTτ , and LRFτ denote the intermediary, market,

and liquidity risk factors, respectively. The rolling window spans two years, that is, we use
daily returns and risk factors from two years prior to t up to t−1 to estimate the systematic
factor risk exposure in t.

Although intermediary health and market liquidity are closely related, they are conceptu-
ally distinct. Goldberg and Nozawa (2020) demonstrate that innovations in the intermediary
capital ratio are significantly and positively correlated with liquidity supply shocks but find
no significant correlation with liquidity demand shocks. Similarly, we analyze how the liq-
uidity risk factor relates to liquidity supply and demand shocks. Our findings show that the
liquidity risk factor is closely tied to liquidity demand shocks, as evidenced by a positive
correlation of 0.24 (t-statistic = 3.17). In contrast, the correlation with liquidity supply

7Adrian, Etula, and Muir (2014) propose a quarterly measure of intermediary health. Since our analysis
operates at a daily frequency, we rely on He, Kelly, and Manela’s (2017) intermediary risk factor.
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shocks is statistically insignificant and near zero.8

Figure 1 visually compares the estimated systematic risk exposures (betas) derived from
secondary market excess returns and NAV excess returns. For each ETF i and each risk
factor, we calculate the mean beta. In the figure, the x-axis displays the betas estimated from
NAV excess returns, while the y-axis shows the betas estimated from secondary market excess
returns. The diagonal dashed red line represents a hypothetical scenario where the exposure
to systematic risk of ETF secondary market returns matches the exposure of portfolio returns.

Panel B of Figure 1 illustrates that the secondary market HKM beta, βSec, HKM
i is almost

always higher than the portfolio HKM beta, βNAV, HKM
i . This relationship holds even when

an ETF has a negative exposure to intermediary risk. Furthermore, the difference between
the two betas widens as the exposure to intermediary risk increases. Panel A of Figure
1 illustrates the relationship between the secondary market MKT beta and the portfolio
MKT beta. Similar to intermediary risk, secondary market returns appear more exposed
to market risk than NAV returns. However, the difference between the two betas is smaller
and more concentrated around the red dashed diagonal line. In contrast, Panel C highlights
a greater exposure of NAV returns to liquidity risk compared to secondary market returns.
This reflects the role of ETFs in liquidity transformation, where a highly illiquid portfolio
of underlying bonds is converted into highly liquid ETF shares. The gap between liquidity
betas widens for ETFs with greater exposure to liquidity risk.

Panel B of Table 2 provides summary statistics for the estimated risk factor exposures.
Consistent with Figure 1, the table shows that the secondary market HKM betas are higher
than the primary market ones, which is reflected in positive βDiff, HKM of 0.037. Also, the
exposure to the market of secondary market ETF returns is higher than the exposure of
NAV returns. Finally, we have a negative βDiff, LRF of 0.113, indicating lower sensitivity to
illiquidity risk of secondary market ETF returns than the NAV returns. These patterns of
higher exposure to HKM and lower exposure to LRF appear consistently across the ETF
secondary market return distribution.

4 Model

In this section, we develop a stylized model designed to capture the dynamics between two
partially integrated markets, the bond market and the ETF market. The model emphasizes

8We estimate the correlations using the sample from Goldberg and Nozawa (2020), which consists of
monthly liquidity supply and demand shocks from August 2002 to December 2016.
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the role of a single intermediary type, the AP, as the critical link between these two markets.
By focusing on this structure, we reveal the conditions and mechanisms that lead bond
ETFs and the underlying bond portfolios to exhibit distinct risk profiles. In Section 5, we
empirically test these model implications and examine the systematic risk profiles of both the
ETF and its underlying portfolio. Full proofs and model extensions are detailed in Appendix
A.

4.1 Setting

Assets: We consider a risk-free saving technology with a zero interest rate, a risky bond B,
and a bond ETF. Investment decisions are made at date 0, and payoffs are realized at date
1. The bond’s value B at date 1 follows a normal distribution with mean µ and variance σ.
The bond ETF is constructed from the bond, and at date 1, the realized payoff of the ETF
is B. Therefore, the ETF payoff also follows a normal distribution with mean µ and variance
σ. The prices of the bond and the ETF, denoted as p and q respectively, are endogenous.
Due to demand and supply effects, the ETF price q might deviate from its net asset value

NAV = p.

Frictions: Trading frictions such as illiquidity in the underlying bond may prevent market
participants from closing these arbitrage trades instantly and without risk. We capture
illiquidity risk in the underlying bond by assuming that the bond’s payoff at date 1 is

B + ϵ

with ϵ being a friction term with mean zero and standard deviation ν. Effectively, bond and
ETF payoffs are jointly normal with mean µ and variance-covariance matrix

Σ =

(
σ2 + ν2 σ2

σ2 σ2

)
.

Agents: We consider two types of agents:
Hedger: Following Kondor and Vayanos (2019), we consider hedgers who receive random
endowments and aim to reduce their risk by participating in the asset market. Hedgers (typ-
ically institutional investors) have exponential utility with constant absolute risk aversion.
Similar to He, Khorrami, and Song (2022), we assume that hedgers specialize in an asset
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class. The representative hedger in the bond market receives an endowment of u bonds and
is characterized by a risk aversion γB. The risk aversion parameter serves as a vehicle for
modeling bond supply shocks. Intermediaries take the other side of the trades that hedgers
initiate. In the ETF market, the representative hedger has an endowment of ū and a risk
aversion γE. We denote the corresponding risk-bearing capacities as πB for the bond market
and πE for the ETF market.

The representative hedger in the bond market seeks to maximize her expected utility.
Her objective function maxxB

E [− exp(−γBWB)] can be equivalently written as:

max
xB

E [WB]−
γB
2
Var [WB] .

Here, WB = u(B + ϵ) + xB(B + ϵ − p) represents the wealth at date 1. xB represents the
hedger’s position in bonds. The representative hedger in the ETF market faces an analogous
utility maximization problem.
Intermediaries: To address the institutional peculiarities of the bond ETF market, charac-
terized by a limited number of APs who exclusively have the ability to create and redeem
ETF shares, we introduce two types of intermediaries: conventional intermediaries and APs.
Conventional intermediaries operate in either the bond market or the ETF market, but not
both, whereas APs have unique access to both markets.

Generally, intermediaries are mean-variance optimizers with risk aversion γ(W ), which
decreases with their wealth W (He and Krishnamurthy, 2012, 2013). Changes in their wealth
W affect the risk aversion of intermediaries and, consequently, their willingness and capac-
ity to intermediate. We assume that intermediary trading is segmented along the same
dimensions as hedger trading. This simplification allows us to focus on the interaction be-
tween conventional intermediaries and APs, which varies depending on the wealth-dependent
risk aversion of the intermediaries. Additionally, we assume that the risk-bearing capacity
πI = 1

γ(W 0
IB)

of the representative intermediary in the bond market exceeds that of the rep-
resentative intermediary in the ETF market. The latter can be expressed as ξπI , where
0 ≤ ξ ≤ 1.

APs differ from conventional intermediaries in their unique ability to operate across both
the bond and ETF markets. In reality, APs are the only intermediaries with the ability to
create or redeem ETF shares directly with the ETF issuer. In the model, this is captured in
reduced form by granting APs the exclusive right to trade in both markets. This exclusive
access gives APs an arbitrage-like investment opportunity, allowing them to profit if ETF
prices deviate significantly from their NAV. Profits or losses from these transactions are given
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by (q − NAV) or −(q − NAV) for each share created or redeemed. As a result, APs ensure
that ETF prices remain closely aligned with their NAV. This assumption reflects the central
role of APs in maintaining price efficiency in the ETF market.

The representative intermediary in the bond market solves

max
yB

E[WIB]−
γ(W 0

IB)

2
Var[WIB],

where WIB := W 0
IB + yB(B + ϵ− p). Here, yB represents the intermediary’s bond position.

Similarly, the representative intermediary in the ETF market solves

max
yE

E[WIE]−
γ(W 0

IE)

2
Var[WIE]

where WIE := W 0
IE+yE(B−q), with yE representing the intermediary’s ETF position. The

AP solves
max
wB,wE

E[WAP ]−
γ(W 0

AP )

2
Var[WAP ]

where WAP := W 0
AP +wB(B+ϵ−p)+wE(B−q). wB represents the AP’s bond position, wE

represents the ETF position. The first-order condition with respect to the AP’s positions
implies that the AP’s optimal portfolio is given by:

wB =
πAP

ν2
(q − p)

wE =
πAP

σ2
(µ− q)− πAP

ν2
(q − p).

Alternatively, rather than thinking in terms of the AP’s positions in bonds and ETFs,
it is helpful to think in terms of (1) a pure ETF position, denoted as wpure = πAP

σ2 (µ − q),

and (2) an ETF creation trade — buying bonds and shorting the ETF — with a position of
wcreation = πAP

ν2
(q−p). While the payoffs of bonds and ETFs are highly correlated, those of the

alternative positions are assumed to be uncorrelated, reflecting distinct sources of risk and
return. This decomposition makes it clear that the AP’s positions align with the standard
portfolio theory intuition: Each position is determined as the product of the inverse of the
variance and the expected return premium, with the aggressiveness of the position scaled
by the AP’s risk-bearing capacity, πAP . From this decomposition, the total bond position is
wB = wcreation, and the total ETF position is wE = wpure −wcreation.

The term ‘creation’ above suggests q > p, but in fact, it is the sign of wcreation that
determines the nature of the trade: When q > p, the AP performs an ETF creation trade by
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buying bonds and shorting the ETF. Conversely, when q < p, the AP redeems ETF shares
by selling bonds and buying the ETF.

4.2 Risk Premia in Bond and ETF Markets

To express prices and risk premia compactly, let ΠB = πB+πI+πAP represent the aggregate
risk-bearing capacity of the bond market participants, and ΠE = πE + ξ · πI + πAP the
corresponding aggregate risk-bearing capacity of the ETF market. Further, define ΠB,adj =

σ2

σ2+ν2
(πB + πI) and ΠE,adj = πE + ξ · πI as the adjusted aggregate risk-bearing capacities of

the bond and ETF markets, respectively.

For simplicity, both risky bonds and ETFs are in zero net supply. Thus, for bond and
ETF markets to clear we have

xB + yB +wB = 0,

xE + yE +wE = 0.

From these market clearing conditions, it is immediately apparent that in the case of a
creation (wcreation = wB > 0 and thus wE < wpure), the AP effectively increases the sup-
ply of ETFs available to hedgers while simultaneously reducing the supply of bonds. In a
redemption, the reverse occurs.

Proposition 1: In equilibrium, the risk premia for the bond and ETF markets can be
expressed as follows:

Let Γ be defined as:

Γ =

(
ΠB ΠE,adj

ΠB,adj ΠE

)−1

.

Then, the risk premia are given by:

(
RPBond

RPETF

)
≡

(
µ− p

µ− q

)
= ΓΣ

(
u

ū

)
. (4)

Proposition 1 illustrates that, unlike a standard model with a single effective risk aversion
parameter for each asset class, the equilibrium in this model arises from the interaction
between the bond and ETF markets, mediated through the AP. This interaction is reflected
in the fully populated matrix Γ, which captures the intricate relationship between the two
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markets. The presence of off-diagonal elements in Γ highlights the influence of the bond
market on the ETF market and vice versa, demonstrating that the risk premia are not
determined in isolation but are interdependent due to the coupling mechanism provided by
the AP.

Before delving into the details of prices and risk premia in our model, we first examine
two benchmark setups to illustrate its key components.

Standalone Markets Benchmark. Suppose that instead of a single AP with access
to both the bond and ETF markets, there are two additional intermediaries: one operating
exclusively in the bond market and the other exclusively in the ETF market. Both interme-
diaries have a risk aversion parameter γAP . In this case, it is straightforward to show that
risk premia are given by(

RPS
Bond

RPS
ETF

)
= ΓSΣS

(
u

ū

)
=

(
1

ΠB
· (σ2 + ν2) · u
1

ΠE
· σ2 · ū

)

with diagonal matrices

ΓS =

(
ΠB 0

0 ΠE

)−1

, ΣS =

(
σ2 + ν2 0

0 σ2

)
.

In this benchmark, the aggregate risk-bearing capacity ΠB affects bond prices, while ΠE

influences ETF market prices, leading to significant differences in risk premia between the two
markets. Bond market risk premia are shaped by the fundamental risk σ2, the aggregate risk-
bearing capacity ΠB, the initial endowment of bond hedgers u, and bond market illiquidity
ν2. In contrast, ETF market risk premia depend on ΠE and the initial endowment of
ETF hedgers ū. Without a mechanism to equalize risk premia between the two markets,
substantial differences can occur even if the fundamental risk is the same.

Integrated Markets Benchmark. In the integrated markets benchmark, a represen-
tative intermediary with aggregate risk-bearing capacity ΠI is active in both bond and ETF
markets. A representative hedger, with an initial endowment of u bonds and ū ETFs and
aggregate risk-bearing capacity ΠH , operates across both markets. The risk premia in these
integrated markets are given by:(

RPI
Bond

RPI
ETF

)
= ΓIΣ

(
u

ū

)
=

1

Πint

(
σ2 · (u+ ū) + ν2 · u

σ2 · (u+ ū)

)
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with diagonal matrix

ΓI =

(
Πint 0

0 Πint

)−1

and Πint = ΠI +ΠH .

Under this setup, the risk premia in the bond and ETF markets become closely intercon-
nected. Specifically, the risk premium in the bond market is higher than that in the ETF
market, with the disparity solely dependent on the product of bond market illiquidity ν2 and
the hedger’s initial bond endowment u. This difference increases with greater illiquidity and
higher initial bond positions. A key distinction from the standalone markets benchmark is
that, in this benchmark, the aggregate risk-bearing capacity Πint is equally relevant to both
markets. This aggregate risk-bearing capacity Πint inversely affects the risk premia in both
markets, with higher capacity naturally leading to lower premia. Notably, the sensitivity of
risk premia to changes in ΠI is identical for both markets, indicating that bonds and ETFs
are equally susceptible to intermediary risk.9

Now we proceed with our original setting and derive properties of the equilibrium.

Proposition 2: The risk premia in the bond and ETF markets can be expressed as follows:

RPBond =
ω

ΠB

× RPBond, Std +
1− ω

ΠB,adj
× RPETF, Std,

RPETF =
ω

ΠE

× RPETF, Std +
1− ω

ΠE,adj
× RPBond, Std,

where ω is given by:

ω =
ΠBΠE

det
,

with det = ΠBΠE − ΠB,adjΠE,adj being the determinant of the inverse of the matrix Γ. The
standardized risk premia RPBond, Std and RPETF, Std are computed as:

RPBond, Std = Σ

(
u

ū

)
Bond

,

9Even when there are representative hedgers active exclusively in the bond market and the ETF market,
respectively, the risk premium in the bond market remains higher than in the ETF market. Moreover, the
bond market is more exposed to intermediary risk compared to the ETF market, given reasonable parameter
values.
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and

RPETF, Std = Σ

(
u

ū

)
ETF

.

Following Proposition 2, the key insight is that the risk premia in both the bond and ETF
markets are not determined independently but are instead interlinked through the coupling
of their respective risk-bearing capacities. Each market’s risk premium is a weighted com-
bination of its own standardized premium and that of the other market. The standardized
risk premium is the one obtained in an integrated market with a risk-bearing capacity nor-
malized to one. The weights, ω and 1− ω, depend on the aggregate and aggregate adjusted
risk-bearing capacities of the two markets.

Proposition 3: Assume that ΠB,adj · ū = ΠE · u. Then:
(i) the ETF price q equals the bond price p; and
(ii) the ETF risk premium is equal to the bond risk premium.

The condition ΠB,adj · ū = ΠE · u indicates that the bond market’s adjusted capacity to
bear risk (ΠB,adj) relative to the ETF market’s risk-bearing capacity (ΠE) is equal to the
ratio of the bond endowment (u) to the ETF endowment (ū). In practical terms, if the bond
market’s ability to absorb risk, after adjustment, equals that of the ETF market, then the
ETF price will match the bond price.

4.3 Empirically Testable Predictions

With our model established, we can now derive empirically testable predictions about the risk
characteristics of ETFs and their underlying bond portfolios in our market setting, where APs
ensure price alignment. From Proposition 3, price alignment requires ΠB,adj ·ū = ΠE ·u. This
restriction is consistent with our empirical findings in Section 3, which show, on average, no
notable deviations between bond and ETF prices. Based on this, we can draw the following
implications:

Prediction 1: In a market where price alignment prevails between the bond and the ETF,
the ETF is more exposed to intermediary risk than the bond if ξ > πE+πAP

πB
.

This condition suggests that if the risk-bearing capacity of ETF intermediaries remains
above a critical threshold, the ETF will be more susceptible to intermediary risks than
the bond. This critical threshold is easier to meet the more risk-averse hedgers in the ETF
market are relative to those in the bond market. When this condition is met, it is noteworthy
that the ETF carries greater risks compared to the bond, particularly regarding exposure
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to changes in intermediary wealth or shifts in market conditions that impact intermediary
assets.

Prediction 2: In a market where price alignment prevails between the bond and the ETF,
the bond is more exposed to illiquidity risk than the ETF.

While Prediction 1 emphasizes the noteworthy sensitivity of the ETF to intermediary
risks, this prediction reflects the more expected outcome that illiquidity risk is typically
greater in bonds.

Prediction 3: In a market where price alignment prevails between the bond and the ETF,
the ETF is more exposed to AP-specific intermediary risk than the bond.

This indicates that, relative to the underlying bond, the ETF is particularly sensitive to
risks arising from the actions and financial health of APs, who specifically facilitate the price
alignment between the ETF and the bond, making this outcome quite intuitive.

Next, we consider the difference in risk exposure between the ETF and the bond.

Prediction 4: If the condition ξ > πE+πAP

πB
from Prediction 1 holds, which implies that the

ETF is more exposed to intermediary risk than the bond, then:

a) this difference in risk exposure increases as the underlying bond becomes more illiquid,
and

b) this difference in risk exposure increases as intermediary health of the AP deteriorates.

Given that the ETF is indeed more exposed to intermediary risk than the underlying
bond, Prediction 4 a) suggests, that trading the underlying bond for ETF shares is particu-
larly difficult for APs, if the underlying bond is illiquid. This can also be the case, according
to Prediction 4 b), if the financial health of APs is low, e.g. due to limited balance sheet
space. In such cases, the ETF is especially more exposed to intermediary risk compared to
the underlying bond.

Prediction 5: If the bond is more exposed to illiquidity risk than the ETF (Prediction 2),
then:

a) this difference in risk exposure increases as the underlying bond becomes more illiquid,
and

b) if σ2+ν2

σ2 > ΠE

ΠE,adj
, this difference in risk exposure increases as intermediary health of

the AP deteriorates.
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Given that the underlying bond has indeed a higher liquidity risk than the ETF, Pre-
diction 5 a) states intuitively that for more illiquid bonds the gap between the liquidity risk
of the underlying bond and the ETF gets larger. Prediction 5 b) states that this gap also
gets larger if the financial health of APs deteriorates, but only if the ratio of total risk and
liquidity risk to total risk is sufficiently large.

5 Empirical Results

5.1 Systematic Risk Loadings of Corporate Bond ETFs

In this section, we provide supporting evidence for Predictions 1 and 2, which corroborates
the key economic mechanisms of our framework, especially concerning intermediary and
illiquidity risk. Prediction 1 posits that secondary market ETF returns should load more
heavily on intermediary risk than the underlying portfolio (NAV) returns, while Prediction 2
suggests that illiquidity risk should be greater for the underlying bond portfolio than for the
ETF. Figure 1 has already hinted at these differences, showing that, across funds, the ETF’s
secondary market betas can deviate notably from the NAV betas in both intermediary and
liquidity risk dimensions. We now examine these relationships more formally.

To test whether secondary market ETF returns indeed carry higher intermediary risk
and lower liquidity risk than their NAV counterparts, we run regressions of daily secondary
market excess returns (RSec), NAV excess returns (RNAV ), and their difference (RDiff =

RSec−RNAV ), on the three risk factors: MKT, HKM (intermediary risk), and LRF (liquidity
risk) using a rolling window approach as explained in Section 3.4. Table 3 reports the time
series averages of the cross-sectional means of the estimated factor exposures, along with
their corresponding t-statistics based on Newey and West (1987) standard errors.

Analyzing the betas reveals two key findings. First, secondary market returns exhibit a
positive, statistically significant loading on the intermediary risk factor, while the loading
for NAV returns is near zero and statistically insignificant. Correspondingly, RDiff shows a
significantly positive βHKM , indicating that ETF prices in the secondary market are more
sensitive to intermediary risk than the bonds they hold. This supports Prediction 1 of
the model, which suggests that ETFs have a higher exposure to intermediary risk than the
underlying bond portfolio.

Second, for liquidity risk (βLRF ), the pattern reverses: secondary market ETF returns
exhibit a significantly weaker exposure compared to NAV returns, causing RDiff to show
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a negative and statistically significant loading on βLRF (-0.113, t-statistic = 4.94). Hence,
consistent with Prediction 2, market liquidity frictions appear to have a greater impact on
the underlying bond portfolio, while the ETF’s secondary market trading environment seems
to mitigate the ETF’s exposure to liquidity risk. Notably, these results hold both in the full
sample (Panel A) and in subsamples of investment-grade (Panel B) and high-yield (Panel C)
ETFs.

Table 3: Systematic Risk of ETFs

This table shows the time-series average of cross-sectional means of the exposures to intermediary,
market, and liquidity risk factors for RSec, RNAV , and RDiff . Panel A reports the means for the
full sample, consisting of 136 ETFs. Panel B and C contain 87 investment-grade and 49 high-yield
ETFs, respectively. t-statistics, shown in parentheses, are calculated using Newey and West (1987)
standard errors, with the lag selected based on the first occurrence of an insignificant residual
autocorrelation. *, ** report statistical significance at the 5%, and 1% level.

βHKM βMKT βLRF

Panel A: Full Sample

RSec 0.031** 0.964** -0.042**
(3.32) (23.73) (-5.59)

RNAV -0.006 0.837** 0.071**
(-1.01) (14.62) (3.07)

RDiff 0.037** 0.127* -0.113**
(6.70) (2.53) (-4.94)

Panel B: Investment Grade

RSec -0.010 1.233** -0.209**
(-1.72) (31.30) (-9.69)

RNAV -0.036** 1.137** -0.133**
(-9.99) (15.31) (-3.84)

RDiff 0.026** 0.095 -0.076*
(6.65) (1.42) (-2.31)

Panel C: High Yield

RSec 0.128** 0.332** 0.317**
(12.87) (3.75) (5.52)

RNAV 0.064** 0.116 0.540**
(18.75) (1.35) (9.37)

RDiff 0.064** 0.215** -0.222**
(7.40) (10.32) (-7.29)

A closer look at Panels B and C of Table 3 further suggests that these differences in
exposures between ETFs and their underlying bond portfolios are particularly pronounced
for funds holding lower-quality (i.e. high-yield) bonds, where the gap in liquidity risk is
likely the largest. We examine these differences in greater detail in Section 5.4. Overall,
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the evidence strongly supports the model’s predictions, showing that secondary market ETF
returns exhibit greater sensitivity to intermediary risk while being less exposed to illiquidity
risk than NAV-based returns.

Third, we also examine the exposure to market risk (βMKT ), even though it is not part
of our model predictions. Panel A of Table 3 shows that secondary market ETF returns
exhibit a slightly higher market risk exposure than the NAV (0.127, t-statistic = 2.53).
The difference in market risk exposure between ETFs and NAVs is significant only in the
high-yield subsample (Panel C) and not for investment-grade bonds (Panel B).

Our findings so far indicate that ETF investors face a trade-off when choosing to invest
in passive corporate bond ETFs. On one hand, they benefit from highly liquid ETF shares,
which carry lower illiquidity risk compared to the underlying bond portfolio. On the other
hand, they take on a relatively higher level of intermediary risk. In the next section, we put
these risks into perspective by incorporating their respective market prices of risk.

5.2 Expected and Realized Returns of Corporate Bond ETFs

Building on the question of whether the risk transformation faced by ETF investors repre-
sents a mere quid pro quo or imposes an additional cost, we now examine how these diverging
risk exposures translate into expected and abnormal returns. We define abnormal return as
the difference between realized and expected return, following the definition provided by
Berk and Van Binsbergen (2015) and Barber, Huang, and Odean (2022):

Abn. Reti,t = Ri,t − Exp. Reti,t

= Ri,t −
[
βHKM
i,t−1 λHKM

t + βMKT
i,t−1 λMKT

t + βLRF
i,t−1 λ

LRF
t

] (5)

where Ri,t is fund i’s secondary, NAV, or differential realized excess return over the risk-free
rate on day t. The term βk

i,t−1 denotes the rolling-window factor loading estimated through
day t−1, and λk

t is the factor k’s price of risk at time t (see Appendix C.3 for further details).

Table 4 presents a decomposition of expected excess returns, realized returns, and abnor-
mal returns. All reported numbers are annualized and reflect the time-series average of the
cross-sectional means, with t-statistics calculated using Newey and West (1987) standard
errors.

Expected Return Decomposition. Columns 1–3 of Table 4 break down each return
measure into contributions from three factors: the corporate bond market factor (MKT),
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Table 4: Expected, Realized, and Abnormal Returns

This table shows the time-series average of the cross-sectional mean of the individual factor-related
expected returns, the total expected excess return, the realized excess return, and the abnormal
return for RSec, RNAV , and RDiff from January 2012 to June 2023. All numbers are annualized and
expressed in percentage points. t-statistics, shown in parentheses, are calculated using Newey and
West (1987) standard errors, with the lag selected based on the first occurrence of an insignificant
residual autocorrelation. *, ** report statistical significance at the 5%, and 1% level.

βHKMλHKM βMKTλMKT βLRFλLRF Exp. Ret. Real. Ret. Abn. Ret.

RSec 1.184 2.785 -0.445** 3.524 2.252 -1.272
(1.74) (1.85) (-3.87) (1.87) (1.44) (-1.40)

RNAV -0.632* 2.323* 0.283 1.974 2.130 0.156
(-2.43) (1.97) (0.76) (1.41) (1.61) (0.30)

RDiff 1.815** 0.463 -0.728* 1.550 0.122 -1.428
(2.64) (1.00) (-2.22) (1.81) (0.19) (-1.65)

the intermediary risk factor (HKM), and the liquidity risk factor (LRF). This analysis relies
on the risk exposures reported in Table 3 and the factor risk prices estimated using a two-
step Fama-MacBeth procedure. Let us first examine the compensation for intermediary risk.
For the secondary market ETF returns, the HKM factor contributes approximately 1.184%
per year to expected returns, while the corresponding impact on NAV expected returns is
−0.632%. This results in a significant difference of 1.815% (t-statistic = 2.64). In contrast,
the liquidity risk factor reduces the ETF’s expected return by −0.445%, whereas it increases
the NAV’s expected return by 0.283%. This leads to a significant difference of -0.728%
(t-statistic = −2.22). Meanwhile, market risk does not significantly differentiate expected
returns between the ETF and its NAV. When aggregating all three factors, Column 4 shows
that the total expected return is 3.524% for the ETF compared to 1.974% for the NAV,
yielding a marginally significant gap of 1.550% (t-statistic = 1.81). Overall, this analysis
underscores that intermediary and liquidity risks play a crucial role in explaining differences
in expected returns between the ETF and its NAV, while market risk has a negligible impact.

Realized Returns and Abnormal Return. Columns 5–6 of Table 4 show that, in
practice, both the ETF and the NAV generate realized excess returns of around 2% per year.
As a result, the difference in realized returns (RDiff ) remains economically negligible. This
alignment in returns supports the notion that ETF secondary market prices do not exhibit
large or persistent deviations from the value of the underlying portfolios. If such deviations
were present, they would create significant arbitrage opportunities, which are unlikely to
persist in real-world markets.
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Of course, ETF and NAV returns may still exhibit differences in abnormal returns due
to their distinct risk exposures, even if their realized returns are closely aligned. The final
column of Table 4 reports the average abnormal return. While the NAV shows a higher
abnormal return than the secondary market, the difference of 1.428% falls just below typical
significance thresholds (t-statistic = 1.65). Hence, although our analysis highlights that the
ETF’s risk profile strongly differs from that of the NAV, the trade-off appears reasonable:
ETF investors effectively exchange liquidity risk for intermediary risk in what seems to be a
fair deal.

5.3 AP-Specific Intermediary Risk

Having established that ETF returns are sensitive to broad shifts in intermediary health, we
now investigate whether the specific APs serving a given ETF introduce an additional source
of risk for investors (Prediction 3). This is a natural concern, as ETF liquidity and price
efficiency rely heavily on the ability of APs to facilitate creation and redemption processes
without disruption, and investors may not be able to diversify this risk, particularly in
markets with a limited number of active APs, such as corporate bond ETFs.

We include the AP-specific intermediary risk, HKM Ind.
i,t , as defined in Section 3.3, as

an additional factor in the three-factor model of Equation (3), focusing solely on the return
differential for brevity. Note that while the three factors—MKT, HKM, and LRF—are the
same for each fund on a given date t, the values of the HKM Ind.

i,t factor vary across funds.
Similar to our analysis in Section 5.1, we run time-series regressions for each fund using
a rolling window, this time incorporating the HKM Ind.

i,t factor. Table 5 reports the time-
series averages of the cross-sectional means of the estimated factor exposures, along with
their corresponding t-statistics based on Newey and West (1987) standard errors. Because
constructing AP-specific intermediary risk relies on N-CEN filings, this analysis is based on
a shorter sample, spanning from August 2017 through June 2023, compared to the analysis
of Table 3.10

Panel A presents the results for the full sample. First, the relationship between interme-
diary and illiquidity risk follows the same structural pattern as in Section 5.1, confirming the
robustness of our findings, even in this shorter sample and with the inclusion of AP-specific

10We have N-CEN data reaching back to June 2017, but we require at least 2 months of data to be included
in the estimation window for the factor exposures, which is why the reported coefficients start in August
2017.
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Table 5: Exposure to Fund-Specific Intermediary Risk

This table shows the time-series averages of cross-sectional means for the exposures of the ETF
return differential to intermediary, illiquidity, market, and individual intermediary risk factors. This
table uses daily return corporate bond ETF data from August 2017 through June 2023. The table
reports the coefficients from a four-factor model, extending the three-factor model by the individual
intermediary risk factor. Panel A reports the means for the full sample, consisting of 113 ETFs.
Panel B and C contain 70 investment-grade and 43 high-yield ETFs, respectively. t-statistics, shown
in parentheses, are calculated using Newey and West (1987) standard errors, with the lag selected
based on the first occurrence of an insignificant residual autocorrelation. *, ** report statistical
significance at the 5%, and 1% level.

βHKM βMKT βLRF γHKMInd.

Panel A: Full Sample

RDiff 0.051** 0.276** -0.163** 0.029**
(6.90) (3.32) (-4.66) (9.94)

Panel B: Investment Grade

RDiff 0.036** 0.286* -0.154* 0.012**
(6.66) (2.27) (-2.45) (8.03)

Panel C: High Yield

RDiff 0.070** 0.250** -0.148** 0.058**
(8.63) (10.58) (-3.24) (17.86)
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intermediary risk. βHKM remains positive and significant, highlighting the heightened sen-
sitivity of secondary market returns to intermediary risk, while βLRF remains negative and
significant, reaffirming the greater exposure of NAV returns to market-wide illiquidity risk.
Beyond these broader risk dynamics, the key focus here is the role of AP-specific interme-
diary risk. ETFs exhibit a statistically significant higher exposure to this factor than their
NAVs, as captured by γHKMInd. . This suggests that negative shocks to an AP’s intermedia-
tion capacity—beyond broader intermediary risk— particularly hinder its ability to arbitrage
price deviations, which in turn increases the risk exposure for ETF investors, in line with
Prediction 3 of our model.

It is difficult to judge the economic magnitude of this additional risk. Assuming the AP-
specific risk is fully diversifiable, it follows naturally that no compensation would be required,
implying a zero market price of risk. In contrast, for an undiversified investor holding only
a single ETF, this additional exposure to AP-specific intermediary risk would be fully borne
by the investor. In this case, our estimates indicate that a one-standard-deviation upward
shock in the AP-specific risk factor leads to 0.85 of a standard deviation higher ETF–NAV
return differential.11

Our results remain robust when we examine investment-grade and high-yield ETFs sep-
arately in Panels B and C, respectively. High-yield ETFs, in particuar, exhibit a significant
exposure to their AP-specific intermediary risks, as evidenced by the large and highly sta-
tistically significant average exposure to the individual HKM Ind. factor, γHKMInd. .

5.4 Drivers of the Systematic Risk in the Return Differential

Having established that the secondary market ETF has a significantly different risk profile
from its underlying portfolio NAV, we now investigate whether the magnitude of these dis-
crepancies correlates with the liquidity of the ETF’s portfolio and the financial health of its
APs. According to Prediction 4, the ETF–NAV return differential should exhibit a higher
loading on aggregate intermediary risk when the portfolio is more illiquid and when the APs
responsible for arbitrage have weaker balance sheets. Prediction 5, by contrast, suggests that
the return differential should show a more negative exposure to liquidity risk as the portfolio
becomes more illiquid and a higher exposure to liquidity risk when AP health improves.

11We calculate this by multiplying the estimated γHKMInd. coefficient of 0.029 from Table 5 by the average
cross-sectional standard deviation of 0.047 for the HKM Ind. factor, which gives 0.00136. This is equivalent
to 0.85 times the average cross-sectional standard deviation of the return differential (0.0016) in the sample
used for this analysis.
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Intuitively, these two predictions state that the healthier the ETF’s APs and the less severe
the illiquidity friction in the ETF’s underlying portfolio, the more closely the risk profiles of
the secondary market ETF and its portfolio NAV should align.

We use a panel regression to test these relationships in the data. To measure an ETF’s
portfolio liquidity, we compute the weighted average of the relative bid-ask spreads of the
corporate bonds in the portfolio, denoted as Rel. BAS Hold (see Appendix C.1 for further
details). We assess the financial health of ETF-specific APs using the Fund Capital Ratio,
as defined in Equation (2). This analysis covers the period from June 2017 to June 2023, as
we rely on N-CEN data to calculate the Fund Capital Ratio. Specifically, we estimate:

βi,t = δ1Rel. BAS Holdi,t + δ2 Fund Capital Ratioi,t + Γ′Xi,t + di + dt + εi,t, (6)

where βi,t denotes the risk exposure of the return differential between secondary market
and NAV returns (βDiff,HKM for intermediary risk or βDiff, LRF for liquidity risk). Xi,t is
a set of ETF-specific, time-varying controls including AUM, net expense ratio, and fund
age. The explanatory variables are calculated as rolling means over the same period used
to estimate the betas. Further, we include fund fixed effects di to control for unobserved,
time-invariant characteristics (e.g., stable ETF–AP relationships), and date fixed effects dt

to capture market-wide shocks, such as a general decline in the intermediation capacity of
all APs.

Panel A of Table 6 presents results for the full sample, with t-statistics based on stan-
dard errors clustered by date and fund. Columns 1 and 2 focus on how the differential
exposure to intermediary risk depends on the ETF’s underlying portfolio liquidity and the
financial health of its APs (see Prediction 4). Column 1 shows that the gap in intermedi-
ation risk exposure rises significantly with portfolio illiquidity (as indicated by the positive
and significant coefficient on Rel. BAS Hold) and with weaker AP health (the negative and
significant coefficient on Fund Capital Ratio). After adding time fixed effects in Column 2,
the effect of portfolio illiquidity on βDiff,HKM is slightly reduced but remains highly signifi-
cant. The coefficient estimate for Fund Capital Ratio decreases and approaches borderline
significance, likely because the corporate bond ETF market is highly concentrated among
four major APs, leaving little cross-ETF variation in Fund Capital Ratio once date effects
are accounted for. Quantitatively, a one-standard-deviation increase in portfolio illiquidity
(a decrease in Fund Capital Ratio) leads to a 0.236 (0.136) standard-deviation increase in
the gap between secondary market ETF and portfolio NAV exposures to intermediary risk.

Panels B and C of Table 6 show results for investment-grade and high-yield ETFs, re-
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Table 6: Effect of Portfolio Illiquidity and AP Health on Systematic Risk Dif-
ferences

This table reports the coefficients from the regression of intermediary risk (liquidity risk) in the return
differential (βDiff,HKM ) on portfolio illiquidity (Rel. BAS Hold) and the health of a funds’ APs (Fund
Capital Ratio) in column one and two (three and four). We control for the assets under management, the
age of the fund and the net expense ratio. Panel A reports the regression results for the full sample consisting
of 112 ETFs, Panel B for 69 investment-grade ETFs, and Panel C for 43 high-yield ETFs. All variables are
standardized by their panel standard deviation. Standard errors are clustered by date and fund. *, ** report
statistical significance at the 5%, and 1% level.

βDiff,HKM βDiff,HKM βDiff,LRF βDiff,LRF

Panel A: Full Sample

Rel. BAS Hold 0.395** 0.236** -0.433** 0.008
(6.99) (4.18) (-4.82) (0.08)

Fund Capital Ratio -0.441** -0.136 0.514** 0.003
(-8.15) (-1.83) (4.80) (0.02)

Controls Yes Yes Yes Yes
Fixed Effects Fund Fund + Date Fund Fund + Date
Observations 102,256 102,256 102,256 102,256
R2 0.698 0.853 0.328 0.599

Panel B: Investment Grade

Rel. BAS Hold 0.364** 0.208** -0.456** -0.028
(4.43) (2.67) (-4.18) (-0.32)

Fund Capital Ratio -0.432** -0.011 0.885** 0.079
(-4.42) (-0.09) (7.38) (0.57)

Controls Yes Yes Yes Yes
Fixed Effects Fund Fund + Date Fund Fund + Date
Observations 63,705 63,705 63,705 63,705
R2 0.685 0.817 0.447 0.786

Panel C: High Yield

Rel. BAS Hold 0.425** 0.270** -0.521** -0.491**
(5.12) (3.46) (-5.76) (-2.84)

Fund Capital Ratio -0.581** -0.194 0.099 0.109
(-8.49) (-1.87) (0.72) (0.63)

Controls Yes Yes Yes Yes
Fixed Effects Fund Fund + Date Fund Fund + Date
Observations 38,551 38,551 38,551 38,551
R2 0.510 0.881 0.435 0.665
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spectively. The key findings from the full sample (Panel A) carry over to both subsamples,
confirming the robustness of our results. Notably, the intermediary risk exposure of the
return differential is particularly sensitive to changes in portfolio illiquidity and AP health
in the high-yield segment. Overall, these findings align with Prediction 4.

We next turn to the drivers of the differential exposure to illiquidity risk. Column 3 of
Panel A in Table 6 regresses βDiff,LRF on Rel. BAS Hold and Fund Capital Ratio without
time fixed effects. The coefficient on Rel. BAS Hold is negative and highly significant,
while the coefficient on Fund Capital Ratio is positive and also highly significant. Hence, a
decline in portfolio liquidity or AP health appears to increase the NAV’s relative exposure to
illiquidity risk relative to the secondary market ETF’s. However, after adding date fixed ef-
fects in Column 4, both coefficients lose significance, suggesting that time-series fluctuations,
rather than ETF-specific factors, primarily drive the gap in liquidity risk exposure.

When splitting the sample into investment-grade and high-yield ETFs (Panels B and C),
we again find limited evidence that Fund Capital Ratio strongly affects the differential
exposure to illiquidity risk. This likely reflects the limited cross-sectional variation in
Fund Capital Ratio noted earlier, reducing the power to detect a significant effect. Nonethe-
less, portfolio illiquidity plays a key role in high-yield ETFs. In Column 4 of Panel C,
Rel. BAS Hold remains negative and significant, indicating that a one-standard-deviation
increase in portfolio bid-ask spreads widens the illiquidity risk exposure gap by 0.491 stan-
dard deviations. Thus, the high-yield results lend empirical support to Prediction 5 a), even
though Prediction 5 b) remains less evident in our data.

6 Conclusion

Our findings show that, although corporate bond ETFs substantially reduce investors’ ex-
posure to illiquidity risk relative to holding individual bonds, they also entail much higher
intermediary risk. We develop a stylized model in which two partially integrated markets,
linked by APs, explain these differences. The model’s predictions regarding ETFs’ stronger
sensitivity to intermediary constraints and weaker exposure to liquidity frictions are strongly
supported by our empirical analysis, particularly for high-yield funds, ETFs with less liquid
portfolios, and those served by financially weaker APs.

From an expected return perspective, our results indicate that the ETF earns a higher
theoretical premium linked to intermediary risk, while its underlying bond portfolio gains a
premium for bearing higher liquidity risk, suggesting a quid pro quo exchange.
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We also show that AP-specific balance sheet capacity plays a unique role: on top of the
increased exposure to aggregate intermediary risk, the ETF faces heightened risks when its
specific (usually small) set of APs is financially strained. While highly diversified investors
may not demand an extra risk premium for this idiosyncratic component, those holding a
smaller set of ETFs could be more vulnerable to AP-specific shocks.

Overall, our results highlight an important trade-off in corporate bond ETFs: they trans-
form a market with high trading frictions into a more liquid exchange-traded product but at
the cost of bringing substantial intermediary risk. This arrangement works well when APs
remain adequately capitalized, but if APs become financially constrained, the ETF’s added
intermediary risk could pose a threat that may even carry systemic implications.
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A Model Analysis

Proof of Proposition 1: The first-order condition with respect to the hedger’s demand
xB implies that the hedger’s demand is

xB =
πB

σ2 + ν2
(µ− p)− u.

Similarly, for the ETF market, we can characterize the representative hedger’s optimal allo-
cation as

xE =
πE

σ2
(µ− q)− ū.

The optimal portfolio of the intermediary specialized in the bond market is given by

yB =
πI

σ2 + ν2
(µ− p).

The optimal portfolio of the intermediary specialized in the ETF market is given by

yE =
ξπI

σ2
(µ− q).

The optimal AP portfolio is given by

wB =
πAP

ν2
(q − p),

wE =
πAP

σ2
(µ− q)− πAP

ν2
(q − p).

Using the market clearing conditions

xB + yB +wB = 0,

xE + yE +wE = 0,

we can represent the risk premia as the solution to the following system of equations:

a(µ− p)− b(µ− q) = u,

−b(µ− p) + d(µ− q) = ū,
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where

a =
1

σ2 + ν2
(πB + πI) +

πAP

ν2
, b =

πAP

ν2
, d =

πAP

σ2
+

πAP

ν2
+

πE + ξπI

σ2
.

By comparing coefficients, we can show that ΓΣ

(
u

ū

)
solves the above system of equations.

This proves equation (4) of Proposition 1.

Proof of Proposition 2: Proposition 2 can be derived by expressing the matrix Γ as the

sum of two matrices: a diagonal matrix 1
det

(
ΠE 0

0 ΠB

)
and a matrix with only off-diagonal

elements 1
det

(
0 −ΠE,adj

−ΠB,adj 0

)
. This leads to the representation:

(
µ− p

µ− q

)
=

ΠBΠE

det
·

(
ΠB 0

0 ΠE

)−1

· Σ ·

(
u

ū

)
− ΠB,adjΠE,adj

det
·

(
0 ΠE,adj

ΠB,adj 0

)
· Σ ·

(
u

ū

)
.

If we define ω as ΠBΠE

det , we immediately obtain the representation given in Proposition 2.
Note that det ≡ ΠBΠE − ΠB,adjΠE,adj > 0 since ΠB > ΠB,adj > 0 and ΠE > ΠE,adj > 0.
Thus, ω > 1.

Proof of Proposition 3: By substituting the standardized bond and ETF risk premia,
σ2(u+ ū) + ν2u for bonds and σ2(u+ ū) for ETFs, into the risk premium expressions from
Proposition 2, we obtain:

µ− p =
ΠE

det
·
(
σ2(u+ ū) + ν2u

)
− ΠE,adj

det
· σ2(u+ ū),

and

µ− q =
ΠB

det
· σ2(u+ ū)− ΠB,adj

det
·
(
σ2(u+ ū) + ν2u

)
.

From the above expressions, the difference p− q can be derived as:

p− q =
1

det
(
ν2 · ΠB,adj · ū− ν2 · ΠE · u

)
.

Given that ΠB,adj · ū = ΠE · u and det > 0, it follows directly that p = q. Consequently,
both (i) and (ii) from Proposition 3 hold true.
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Proof of Prediction 1: Following Haddad and Muir (2021), we define the elasticity of
the bond risk premium, βp,I , and the ETF risk premium, βq,I , with respect to shocks in the
intermediary’s risk-bearing capacity, πI , in the bond market:

βp,I =
∂(µ− p)

∂πI

· πI

µ− p
= − 1

det
· ∂det
∂πI

· πI +
1

det
· ξ · ν2 · u · 1

µ− p
· πI

βq,I =
∂(µ− q)

∂πI

· πI

µ− q
= − 1

det
· ∂det
∂πI

· πI +
1

det
· σ

2 · ū · ν2

(σ2 + ν2)
· 1

µ− q
· πI .

As βp,I < 0 and βq,I < 0, the ETF is more exposed to shocks in the risk-bearing capacity
πI iff βp,I > βq,I , i.e.:

ξ · ν2 · u · (µ− q) >
σ2 · ū · ν2

(σ2 + ν2)
· (µ− p).

Given p = q and thus ū
u
= ΠE

ΠB,adj
from Proposition 3, the above inequality simplifies to

ξ >
πE + πAP

πB

,

which proves (i) of Prediction 1.

Proof of Prediction 2: Define the elasticity of the bond risk premium, βp,ν2 , and the
elasticity of the ETF risk premium, βq,ν2 w.r.t. liquidity shocks ν2:

βp,ν2 =
∂(µ− p)

∂ν2
· ν2

µ− p
=

1

det
· ν2

(
ΠE · u
µ− p

− ΠB,adj · ΠE,adj

σ2 + ν2

)
βq,ν2 =

∂(µ− q)

∂ν2
· ν2

µ− q
=

1

det
· ν2

(
ΠB,adj · ū · σ2

(µ− q) · (σ2 + ν2)
− ΠB,adj · ΠE,adj

σ2 + ν2

)
.

Again using p = q and ΠB,adj · ū = ΠE · u from Proposition 3, it is evident that βp,ν2 >

βq,ν2 > 0. This proves Prediction 2.

Proof of Prediction 3: Finally, let the elasticities of risk premia with respect to shocks
in the risk-bearing capacity of the AP be defined as follows:

βp,AP =
∂(µ− p)

∂πAP

· πAP

µ− p
= − 1

det
· ∂det
∂πAP

· πAP +
1

det
· (σ2 · (u+ ū) + ν2 · u) · 1

µ− p
· πAP

βq,AP =
∂(µ− q)

∂πAP

· πAP

µ− q
= − 1

det
· ∂det
∂πAP

· πAP +
1

det
· (σ2 · (u+ ū)) · 1

µ− q
· πAP .

From these expressions, it is clear that βq,AP < βp,AP < 0 when ν2 · u > 0. This is exactly
the statement of Prediction 3.
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Proof of Prediction 4: Let’s consider the difference in risk exposure to intermediary
risk between the ETF and the bond β∆I

≡ βq,I − βp,I . If Prediction 1 holds, this difference
is negative, given by

β∆I
=

1

det
·
(
σ2 · ν2 · ū
σ2 + ν2

· 1

µ− q
· πI − ξ · ν2 · u · 1

µ− p
· πI

)
.

Differentiating with respect to ν2 yields:

∂β∆I

∂ν2
=

∂

∂ν2

(
σ2 · ν2 · ū
σ2 + ν2

)
· 1

det · (µ− q)
· πI +

∂

∂ν2

(
1

det · (µ− q)

)
· σ2ν2ū

σ2 + ν2
· πI

− ξ · u · 1

det · (µ− p)
· πI −

∂

∂ν2

(
1

det · (µ− p)

)
· ξ · ν2 · u · πI .

Substituting the following partial derivatives

∂

∂ν2

(
1

det · (µ− p)

)
= − 1

(det · (µ− p))2
(ΠE · u)

∂

∂ν2

(
1

det · (µ− q)

)
= − 1

(det · (µ− q))2

(
σ2

σ2 + ν2
· ΠB,adj · ū

)
∂

∂ν2

(
σ2ν2

σ2 + ν2
· ū
)

=
σ4

(σ2 + ν2)2
· ū,

into the expression above yields:

∂β∆I

∂ν2
=

σ4

(σ2 + ν2)2
· ū · πI

det · (µ− q)
·
(
1− ν2

det · (µ− q)
· ΠB,adj · ū

)
− ξ · u · πI

det · (µ− p)

(
1− ν2

det · (µ− p)
· ΠE · u

)
.

We can now apply p = q and ΠB,adj · ū = ΠE · u from Proposition 3, and after some
rearrangement, obtain ξ > σ2·(πE+πAP )

(σ2+ν2)·πB+ν2·πI
as the necessary and sufficient condition for

∂β∆I

∂ν2
< 0.

For ξ > πE+πAP

πB
, this condition is naturally satisfied, thereby proving Prediction 4 a). In

other words, the negative risk exposure difference β∆I
becomes even more negative with

higher illiquidity.
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Differentiating β∆I
with respect to πAP yields:

∂β∆I

∂πAP

= −σ2 · ν2 · ū
σ2 + ν2

· πI ·
σ2 · (u+ ū)

(det · (µ− q))2
+ ξ · ν2 · u · πI ·

σ2 · (u+ ū) + ν2 · u
(det · (µ− p))2

.

Under the assumption that p = q, and thus ΠB,adj · ū = ΠE · u, as well as ξ > πE+πAP

πB
, it

follows
∂β∆I

∂πAP

> 0.

In other words, the negative risk exposure difference β∆I
becomes less negative as the health

of the AP improves. This is precisely embodied in Prediction 4 b).

Proof of Prediction 5: Let’s consider the difference in risk exposure to illiquidity risk
between the ETF and the bond β∆ν2

≡ βq,ν2−βp,ν2 . According to Prediction 2, this difference
is negative, given by

β∆ν2
=

1

det
· ν2 ·

(
ΠB,adj · ū · σ2

(µ− q) · (σ2 + ν2)
− ΠE · u

µ− p

)
.

Differentiating with respect to ν2 yields:

∂β∆ν2

∂ν2
=

(
ΠB,adj · ū · σ2

det · (µ− q) · (σ2 + ν2)
− ΠE · u

det · (µ− p)

)
+ ν2·

[
∂

∂ν2

(
σ2

σ2 + ν2

)
· ΠB,adj · ū
det · (µ− q)

+
σ2

σ2 + ν2
· ∂

∂ν2
(ΠB,adj) ·

ū

det · (µ− q)
+

σ2

σ2 + ν2
· ΠB,adj · ū · ∂

∂ν2

(
1

det · (µ− q)

)
− ∂

∂ν2

(
1

det · (µ− p)

)
· ΠE · u

]
.

Substituting the partial derivatives and using ΠB,adj · ū = ΠE ·u, so that p = q, we conclude
that

∂β∆ν2

∂ν2
< 0,

which proves Prediction 5 a).

Differentiating β∆ν2
with respect to πAP yields:

∂β∆ν2

∂πAP

= − σ2 · (u+ ū)

(det · (µ− q))2
· ν

2 · ΠB,adj · ū · σ2

σ2 + ν2
+

σ2 · (u+ ū) + ν2 · u
(det · (µ− p))2

· ν2 · ΠE · u

− 1

det · (µ− p)
· ν2 · u.
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Under the assumption that p = q, and thus ΠB,adj · ū = ΠE · u, it follows that:

∂β∆ν2

∂πAP

=
ΠE,adj · σ2 · (u+ ū) · (σ2 + ν2) · ν2 · u− ΠE · σ2 · (u+ ū) · σ2 · ν2 · u

(det · (µ− q))2 · (σ2 + ν2)
.

∂β∆
ν2

∂πAP
> 0, i.e. the negative risk exposure difference β∆ν2

becomes less negative as the health
of the AP improves, if:

ΠE,adj · σ2 · (u+ ū) · (σ2 + ν2) · ν2 · u− ΠE · σ2 · (u+ ū) · σ2 · ν2 · u > 0

⇔σ2 + ν2

σ2
>

ΠE

ΠE,adj

,

which proofs Prediction 5 b).

B Data

B.1 N-CEN Filings

We use Form N-CEN filings to construct a daily fund capital ratio for each ETF. Form N-
CEN is an annual regulatory filing that investment companies have been required to submit
to the Securities and Exchange Commission (SEC) since June 1, 2019.12 In addition to
general fund information, the filing contains a section detailing the APs for each ETF. This
section provides comprehensive information on all APs with a legal agreement to create or
redeem ETF shares, including each AP’s Legal Entity Identifier (LEI) and the total dollar
value of creations and redemptions during the reporting period. This amount may be zero
if the AP did not engage in any creation or redemption activity during that period.

Most ETFs from the same fund sponsor are typically reported under a single Central
Index Key (CIK).13 Additionally, each ETF is assigned a unique series identification num-
ber, referred to as the "ETF Series ID". We obtain the series identification number and
corresponding CIK for each ETF in our sample to download and parse all historical N-CEN
filings from the SEC EDGAR database.

Next, we identify all active APs in our ETF sample by excluding those that neither
created nor redeemed shares during the reporting period. We also remove observations

12See https://www.sec.gov/files/formn-cen.pdf.
13Certain fund sponsors establish multiple trusts for their corporate bond ETFs, resulting in ETFs from

the same sponsor being reported under different CIKs.
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where an AP’s LEI is missing. Finally, we consolidate all APs under their ultimate parent
company, as determined by their LEI. For example, J.P. Morgan Securities LLC, J.P. Morgan
Clearing Corp., and JPMorgan Chase Bank, National Association are all subsidiaries of the
ultimate parent company, JPMorgan Chase & Co. Parent company information is sourced
from the Global Legal Entity Identifier Foundation (GLEIF).

B.2 TRACE

We use TRACE Enhanced data from July 2002 to June 2023 to compute the daily relative
bid-ask spread for each bond. To obtain additional bond characteristics, we merge TRACE
Enhanced with the FISD database. We then apply the data filtering procedure of Dickerson,
Mueller, and Robotti (2023), which builds on the methodologies of Dick-Nielsen (2014).

In the first step, we exclude all non-U.S. bonds and bonds denominated in currencies
other than USD. Additionally, we restrict the sample to fixed-coupon corporate bonds that
are non-convertible, not asset-backed, and do not fall under Rule 144A. We further refine the
dataset by excluding private placements and bonds lacking information on accrued interest.

In the second step, we remove all cancellations, corrections, and reversals. For a more
detailed description of the filtering procedure, we refer to Dickerson, Mueller, and Robotti
(2023).

The final filtered sample comprises 96,064 bonds and 130,488,269 trades over the period
from January 2010 to June 2023. Based on this filtered dataset, we compute the daily relative
bid-ask spread for each bond, serving two key purposes: (1) to construct the ETF portfolio
illiquidity measure, and (2) to compute the liquidity risk factor.

B.3 Morningstar ETF Portfolio Holdings

To construct the daily ETF portfolio illiquidity measure, we obtain daily portfolio holdings
for our corporate bond ETF sample from Morningstar. The dataset includes all holdings
within each ETF portfolio, such as corporate bonds, cash positions, and derivative contracts.
For our analysis, we focus exclusively on corporate bond holdings. Each position includes
the respective CUSIP of the bond, along with its notional value and market value held by
the ETF.

We extend the holding data by merging it with information on outstanding ETF shares
and ETF flows from Bloomberg. We rely on Bloomberg for this information because we
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detect systematic reporting issues in Morningstar’s ETF holdings, where reported holdings
lag the actual reporting date by one to two days. This phenomenon is well-documented in
prior studies and does not appear to be specific to Morningstar, as Koont, Ma, Pástor, and
Zeng (2022) and Shim and Todorov (2023) identify similar data synchronization errors in
the ETF Global database.

To correct for these discrepancies, we manually align portfolio changes in Morningstar
with changes in outstanding ETF shares and flows from Bloomberg. Such misalignments are
typically easy to identify, as creation and redemption events are infrequent for most ETFs.
Furthermore, almost all ETFs from the same issuer exhibit the same data synchronization
issue, allowing us to shift most ETFs from the same issuer by the same number of days
within a given period.14

After implementing this alignment procedure, we merge the one-month rolling-window
relative bid-ask spread from B.2 with the holding data to compute the ETF portfolio illiq-
uidity measure.

C Variable Construction

C.1 Relative Bid-Ask Spread of ETF Portfolio Holdings

Based on the filtered TRACE sample, we compute the daily relative bid-ask spread for each
bond following the methodology of Hong and Warga (2000). This dataset includes 89,343
bonds and 11,326,398 bond-day observations spanning from January 2010 to June 2023.
Since many bonds are traded infrequently, we are unable to calculate a relative bid-ask
spread for each bond on a daily basis. To address this limitation, we compute a rolling
mean of the relative bid-ask spread, denoted by Rel. BAS, based on the available estimates
from the preceding month. This approach increases the dataset to 28,782,999 bond-day
observations. The daily portfolio illiquidity proxy for each ETF is given by:

Rel. BAS Holdi,t =
∑

i∈Bondsi,t

MVi,f,t∑
i∈Bondsi,t

MVj,i,t

·Rel. BASj,t.

Here, Bondsi,t refers to the set of bonds held by ETF i on day t for which a relative bid-ask
spread estimate is available. MVj,i,t represents the market value of the fund’s holdings in
bond j on day t.

14Occasionally, breakpoints occur in the reporting time series, eliminating the need for further adjustments.
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C.2 Market and Liquidity Risk Factors

To construct the market factor and the liquidity risk factor, we use bond pricing data from
Dickerson, Mueller, and Robotti (2023).15 This dataset is constructed by applying the filter-
ing procedure described in Appendix B.2. The dataset is available at a daily frequency and
contains the clean price (Prc), accrued interest (AccInt), dirty price (DrtPrc), accumulated
coupon payments (AccCpn), and several other bond measures. For each bond, we construct
a continuous time series of potential trading days. If a bond does not trade on a given day,
we forward-fill dirty prices and accumulated coupon payments. The daily bond return is
calculated as:

Reti,t =
DrtPrci,t + AccCpni,t − AccCpni,t−1

DrtPrci,t−1

− 1.

This methodology ensures that the bond return is zero whenever no trade occurs. Further-
more, it accounts for all coupon payments and accrued interest accrued between two trading
days. Bond returns are winsorized at the 1st and 99th percentiles daily. We extend this
dataset by incorporating the current outstanding amount of each bond, which is matched
based on CUSIP. Outstanding bond amounts are obtained from Refinitiv (LSEG). The fi-
nal sample consists of 54,672 unique bonds and 42,738,288 bond-day observations, with an
average of 12,552 bonds per day over the period from January 2010 to June 2023.

The market factor is constructed from the dataset of daily bond returns. Each day, the
market portfolio return is calculated by weighting individual bond returns by their respective
outstanding amounts. To derive the market factor, we subtract the daily risk-free rate from
the market portfolio return.

The liquidity risk factor is constructed by first merging the daily relative bid-ask spread
with the dataset of bond returns, reducing the sample to 52,182 bonds and 24,704,626 bond-
day observations. At the end of each month, all bonds are sorted into decile portfolios based
on their average relative bid-ask spread for that month. Within each portfolio, bonds are
value weighted. The liquidity risk factor is computed as the return difference between the
highest and lowest relative bid-ask spread portfolios.

15Dickerson, Mueller, and Robotti (2023) provide code and data on their website, Open Source Bond Asset
Pricing (https://openbondassetpricing.com/).
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C.3 Time-Varying Price of Risk

We estimate a daily price of risk for the HKM factor, liquidity risk factor, and market factor
using rolling-window regressions, with a window length of two years. We use 32 corporate
bond portfolios like Dickerson, Mueller, and Robotti (2023), consisting of 10 portfolios sorted
on the yield spread, 5 portfolios sorted on credit, 5 portfolios sorted on liquidity, and 12
industry portfolios, where we use the Fama-French industry classification scheme. To receive
a daily price of risk, we first do a time-series regression over the respective window period
from τ = t− 1 to τ ≈ t− 500:

Ri,τ = ai + βHKM
i,t HKMτ + βMKT

i,t MKTτ + βLRF
i,t LRFτ + ϵi,τ .

We then perform a cross-sectional regression of excess returns on day t on the estimated
betas to obtain the daily price of risk for each factor:

Ri,t = γi + β̂HKM
i,t λHKM

t + β̂MKT
i,t λMKT

t + β̂LRF
i,t λLRF

t + ωi,t.

Figure 4 shows the one-year moving average of the time-varying price of risk for each factor
together with its time-series average. Intermediary, market, and liquidity risk are on average
positively priced with 53.35%, 2.69%, and 2.76% p.a., respectively. He, Kelly, and Manela
(2017) report a similar high intermediary price of risk.
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Figure 4: Time-Varying Risk Premia
This figure shows the one year moving average of the daily time-varying risk premia λHKM ,
λMKT , and λLRF , along with their time-series averages. NBER recession periods are shaded
in grey. All numbers are expressed in basis points.
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