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Abstract

This paper examines the microstructure of cryptocurrency markets through the

lens of liquidity dynamics, using high-frequency (15-minute) spread data from Bi-

nance and Coinbase for bitcoin and ethereum, paired with both fiat currencies and

stablecoins. Using spectral analysis techniques, we identify significant cyclical patterns

in intraday liquidity. Our analysis reveals distinct differences between weekday and

weekend liquidity patterns, with weekend trading exhibiting significantly flatter intra-

day fluctuations and generally tighter spreads. This contrast highlights the influence

of institutional trading activity that follows traditional market hours, even in mar-

kets theoretically designed for continuous operation. Out-of-sample tests confirm that

models incorporating periodic components significantly improve predictive accuracy

for most cryptocurrency pairs.
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1 Introduction

Assessing liquidity is critical to developing robust investment strategies, as liquidity directly

affects transaction costs and the ability to enter or exit positions without significant price

impact. From a market efficiency perspective, understanding liquidity dynamics helps assess

the extent to which cryptocurrency markets are efficient and where inefficiencies may lie

(Al-Yahyaee et al., 2020).

The cryptocurrency market presents unique challenges in measuring liquidity due to the

lack of standardized metrics and the fragmented nature of trading across multiple exchanges.

Cryptocurrencies are traded on hundreds of platforms, each with its order book and liquid-

ity profile. Furthermore, cryptocurrencies can be traded 24 hours a day, seven days a week

against fiat currencies and other cryptocurrencies (Brauneis et al., 2021). This fragmenta-

tion requires empirical verification of models originally proposed for equity and traditional

currencies markets to assess their applicability and accuracy in the cryptocurrency context.

Many studies highlight the potential for higher returns from illiquid cryptocurrencies.

Zhang and Li (2023) show a negative relationship between liquidity and expected returns

in the cryptocurrency market. Specifically, cryptocurrencies with higher liquidity in a given

week tend to have lower returns in the following week. Han (2023) argues that cryptocur-

rencies with high liquidity risk (beta) earned a risk-adjusted return that was 4.4% higher

per week than those with low liquidity risk, after controlling for market, size, and reversal

factors. Zaremba et al. (2021) show a daily reversal effect, but the pattern is cross-sectional

by liquidity, and the handful of the largest and most tradable coins show daily momentum

rather than reversal.

If alphas are concentrated in hard-to-trade assets and critically dependent on harvesting

extreme returns on small, illiquid, and volatile coins (see also Cakici et al. (2024), an impor-

tant consideration is whether these returns remain attractive after accounting for the higher

transaction costs prevalent in this market. As liquidity itself is unobservable, we apply one

of the most popular proxies, which is the difference between ask and bid prices named the
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spread (Będowska-Sójka, 2018; Fong et al., 2017).

This study aims to analyze spreads calculated at 15-minute intervals for 12 cryptocur-

rency trading pairs across two major exchanges (Binance and Coinbase). We focus on Bitcoin

and Ethereum—the two largest cryptocurrencies by market capitalization—paired with var-

ious quote currencies including fiat (USD, EUR) and stablecoins (USDT, USDC, FDUSD).

This comprehensive approach allows us to investigate liquidity dynamics across different

trading venues and quote currencies within the cryptocurrency ecosystem.

Our analysis proceeds in multiple stages. First, we examine basic statistical properties of

cryptocurrency spreads, testing for autocorrelation and stationarity. Second, we apply spec-

tral analysis techniques including Fast Fourier Transform (FFT) and harmonic regression to

identify and characterize cyclical patterns in intraday liquidity. Third, we investigate differ-

ences between weekday and weekend trading patterns to understand how trading behavior

varies across the continuous 24/7 market cycle. Fourth, we develop an integrated model

of spread determinants that incorporates market returns, volatility measures, and the peri-

odic components identified through our spectral analysis. Finally, we conduct out-of-sample

forecasting experiments to assess whether incorporating these periodic patterns improves

predictive accuracy.

In the literature, there are papers devoted to the application of machine learning methods

in cryptocurrency price forecasting (Bouteska et al., 2024; Cheng et al., 2024; Maciel et al.,

2022; Nasirtafreshi, 2022). Although there are some works applying traditional financial

econometrics models in forecasting liquidity (Fiszeder et al., 2024; Tzeng and Su, 2024),

there is a lack of such studies devoted to intraday liquidity forecasting based on a machine

learning approach.

Our paper makes several important contributions to the literature on cryptocurrency

market microstructure. While various studies have examined price dynamics and return

patterns in cryptocurrency markets, far less attention has been paid to the temporal pat-

terns of liquidity provision in these markets. Studies examining intraday patterns have
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been conducted on stock markets (Boudt and Petitjean, 2014; Będowska-Sójka, 2021) and

traditional currency markets, but systematic analysis of cryptocurrency liquidity at high

frequency remains limited. Contrary to the U-shaped patterns commonly observed in equity

markets (Będowska-Sójka, 2020; Cenesizoglu and Grass, 2018), we uncover distinct cyclical

patterns in cryptocurrency spreads that follow global trading hours despite the market’s

24/7 operation.

Furthermore, we extend the emerging literature on cryptocurrency liquidity forecasting

by evaluating whether the incorporation of these cyclical patterns enhances predictive ac-

curacy. While several studies have applied machine learning approaches to cryptocurrency

price prediction (Bouteska et al., 2024; Cheng et al., 2024; Maciel et al., 2022; Nasirtafreshi,

2022), there remains a gap in research on modeling and forecasting intraday liquidity dy-

namics in these markets. Our findings demonstrate that traditional econometric models

incorporating periodic components can effectively capture the systematic variations in cryp-

tocurrency spreads, providing valuable insights for market participants seeking to optimize

trading strategies in these rapidly evolving markets.

2 Data and Preliminary Results

2.1 Data Sources

The dataset used in this study consists of high-frequency order book data collected from two

major cryptocurrency exchanges: Binance and Coinbase. Following Hansen et al. (2024), we

focused on two major cryptocurrencies: Bitcoin (BTC) and Ethereum (ETH), selected for

their dominant market positions and fundamental importance to the broader crypto ecosys-

tem. Bitcoin remains the benchmark cryptocurrency with the largest market capitalization,

while Ethereum is the primary platform for decentralized applications and smart contracts.

On Binance, these cryptocurrencies have been paired with three stablecoins that provide

significant liquidity in the ecosystem: Tether (USDT), USD Coin (USDC), and First Digital
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USD (FDUSD), resulting in six cryptocurrency-stablecoin trading pairs. In parallel, on

Coinbase, we collected data for the same cryptocurrencies paired with USD, EUR, and

USDT, providing an additional six trading pairs and enabling cross-exchange comparisons.

For each trading pair, we collected the best bid and ask prices as well as order book depth

information at 15-minute intervals, allowing us to calculate the mid-price and spread metrics.

The data collection period spanned until March 31, 2025.

A key aspect of our research design is the deliberate inclusion of different types of trading

pairs across multiple exchanges. By examining both centralized exchange environments

(Binance and Coinbase) and different quote currencies (USDT, USDC, FDUSD, USD, EUR),

we can identify similarities and differences in market microstructure across these distinct

liquidity environments. This comprehensive approach enables us to analyze liquidity patterns

specifically within the cryptocurrency ecosystem, comparing how the same assets perform

across different trading venues and against different stablecoins or fiat currencies.

2.2 Spreads Calculation

To ensure a robust measurement of liquidity in cryptocurrency markets, we employ a volume-

weighted approach for calculating bid-ask spreads. For our liquidity proxy, we use the Percent

Quoted Spread (PQS) (?), defined as:

PQSt =
P t

ask,VW − P t
bid,VW

P t
mid,VW

(1)

where P t
ask,VW and P t

bid,VW represent the volume-weighted ask and bid prices at time t, and

P t
mid,VW is the mid-price calculated as the average of volume-weighted bid and ask prices.

Unlike traditional spread calculations that rely solely on the best bid and ask prices, our

methodology incorporates volume-weighted prices calculated based on all orders where the

cumulative transaction volume exceeds USD 100,000. Specifically:
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P t
bid,VW =

∑N
i=1 P t

bid,i × V t
bid,i∑N

i=1 V t
bid,i

(2)

P t
ask,VW =

∑N
i=1 P t

ask,i × V t
ask,i∑N

i=1 V t
ask,i

(3)

where:

• P t
bid,i and P t

ask,i are the bid and ask prices at level i of the order book at time t.

• V t
bid,i and V t

ask,i are the corresponding bid and ask volumes at level i.

This volume-weighted approach offers several advantages for studying cryptocurrency

markets. It provides a more accurate estimate of liquidity by filtering out small nominal

trades and reducing bias from small trades that may not reflect true market conditions. It

also facilitates comparability across cryptocurrency pairs and exchanges, ensuring consis-

tency regardless of the specific asset being traded. We applied this methodology consistently

across all cryptocurrency trading pairs from both Binance and Coinbase, collecting data at

15-minute intervals to capture intraday liquidity dynamics.

Figure 1 shows the time series of spreads for all 12 cryptocurrency markets in our study.

Each chart displays the spread dynamics over time for a particular market, with the av-

erage spread level shown in the upper right-hand corner. The figure highlights significant

differences in both spread behavior and liquidity levels across cryptocurrency markets and

exchanges.

2.3 Descriptive Statistics

Table 1 presents the descriptive statistics for the spread series across all 18 market pairs

analyzed: twelve cryptocurrency pairs (from both Binance and Coinbase) and six traditional

currency pairs. The statistics include the count (number of observations), mean, standard

deviation, percentiles (1%, 25%, median, 75%, 99%), skewness, and kurtosis, with all values
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Figure 1: Time Series of Spreads for Cryptocurrency Pairs

Note: The figure shows the time series of spreads for cryptocurrency pairs from both Binance (BTC and ETH paired with
USDT, USDC, and FDUSD) and Coinbase (BTC and ETH paired with USD, EUR, and USDT). Data was collected at 15-
minute intervals through March 31, 2025. Each chart shows the spread dynamics over time for a particular market, with the
average spread level shown in the upper right-hand corner. The figure highlights significant differences in both spread behavior
and liquidity levels across different trading pairs and exchanges.

expressed as percentages (i.e., a value of 0.01 corresponds to 0.01%).

Panel A shows that cryptocurrency markets on Binance generally exhibit extremely tight

spreads, with means ranging from nearly 0.00% (BTCUSDT, BTCUSDC) to 0.01% (BTCF-

DUSD, ETHUSDC, ETHFDUSD). The data shows significant differences between trading

pairs denominated in different stablecoins, with FDUSD pairs consistently showing wider

spreads than their USDT counterparts. All Binance cryptocurrency pairs exhibit extremely

high positive skewness (ranging from 4.95 to 35.98) and excess kurtosis (95.85 to 1881.17),

indicating that their distributions are highly skewed to the right with frequent extreme val-

ues. Panel B reveals that cryptocurrency pairs on Coinbase generally have wider spreads

than their Binance counterparts, with means ranging from 0.01% (BTC-USD, ETH-USD) to

7



Work
ing

pa
per

Table 1: Descriptive Statistics of Market Spreads for Cryptocurrency and Traditional Cur-
rency Pairs

Count Mean Std 1% 25% Median 75% 99% Skew Kurtosis
Symbol

Panel A: Binance

BTCFDUSD 25665 0.02 0.01 0.01 0.02 0.02 0.03 0.05 2.44 19.09
BTCUSDC 25665 0.02 0.02 0.00 0.01 0.01 0.02 0.09 5.05 60.98
BTCUSDT 25665 0.00 0.00 0.00 0.00 0.00 0.00 0.02 2.56 16.45
ETHFDUSD 25665 0.05 0.01 0.02 0.04 0.04 0.05 0.09 6.91 144.51
ETHUSDC 25665 0.05 0.03 0.02 0.04 0.05 0.06 0.14 4.99 75.83
ETHUSDT 25665 0.01 0.01 0.00 0.00 0.01 0.01 0.03 12.84 502.90

Panel A: Coinbase

BTC-EUR 24835 0.09 0.06 0.04 0.07 0.09 0.10 0.23 21.54 755.67
BTC-USD 24835 0.02 0.01 0.00 0.02 0.02 0.03 0.05 10.46 459.05
BTC-USDT 24835 0.07 0.04 0.04 0.06 0.07 0.08 0.15 31.35 1414.19
ETH-EUR 24835 0.12 0.11 0.07 0.09 0.11 0.13 0.30 37.81 1876.99
ETH-USD 24835 0.04 0.02 0.02 0.03 0.04 0.05 0.08 29.50 1403.03
ETH-USDT 24835 0.09 0.07 0.05 0.08 0.09 0.10 0.21 55.68 5019.49

Note: This table presents descriptive statistics for percent quoted spreads (PQS) for cryptocurrency and traditional currency
markets. The data spans through March 31, 2025, collected at 15-minute intervals. Panel A shows statistics for Bitcoin (BTC)
and Ethereum (ETH) pairs on Binance with three stablecoins: Tether (USDT), USD Coin (USDC), and First Digital USD
(FDUSD). Panel B shows the same cryptocurrencies on Coinbase paired with USD, EUR, and USDT.

0.04% (ETH-EUR, ETH-USDT). Notably, EUR-denominated pairs show consistently wider

spreads than USD-denominated pairs on the same exchange. Similar to Binance, Coinbase

pairs also exhibit extremely high skewness (2.63 to 48.12) and kurtosis (25.82 to 3191.46),

with ETH-EUR showing the most extreme distributional characteristics. The observed data

includes approximately 25,665 observations for Binance cryptocurrency pairs, 24,835 for

Coinbase cryptocurrency pairs, and between 20,526 and 23,139 observations for traditional

currency pairs.

We perform several stationarity tests on our spread series, as reported in Table A.3 in

Appendix A. The Augmented Dickey-Fuller (ADF), DF-GLS, Phillips-Perron and Zivot-

Andrews tests consistently reject the null hypothesis of a unit root for all currency pairs,

indicating the absence of stochastic trends (The Zivot-Andrews test, which allows for a

possible structural break, also rejects the null hypothesis of a unit root in all cases). However,

the KPSS test, which uses stationarity as the null hypothesis, shows mixed results, with some

series potentially showing non-stationarity. As shown in Table A.4, both the Box-Pierce and

Ljung-Box tests strongly reject the null hypothesis of no autocorrelation for all series, with
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particularly high test statistics for traditional currency pairs. These results confirm the

presence of significant temporal dependencies in spread dynamics in both cryptocurrency

and traditional currency markets, justifying our focus on periodicity patterns.

2.4 How Liquidity is Distributed over Time

2.4.1 Intraday Patterns of Liquidity and Volatility

As the first step, we explore the relationship between market liquidity and volatility through-

out the trading day. For each cryptocurrency pair, we organize observations into 15-minute

time intervals across the trading day. For each time interval and trading pair, we compute

three key statistical measures: the 25th percentile (Q1), median, and 75th percentile (Q3)

of both spread and absolute log return values. This approach captures both the typical

liquidity and volatility levels (median) and their dispersion (interquartile range) at different

times of day, while minimizing the impact of outliers that frequently occur in high-frequency

cryptocurrency data.

To extract the general trend that may be obscured by time-specific noise, we apply a

centered moving average to the median values. For each time of day, we calculate a 15-period

window (corresponding to a 3.75-hour interval) that smooths out short-term fluctuations

while preserving the underlying periodic patterns.

Figure 2 presents a paired visualization where each cryptocurrency pair’s spread (top

panel) and volatility (bottom panel) are displayed directly above one another. The gray

shaded areas indicate the interquartile range (25th to 75th percentile) for both metrics,

capturing the typical variation around the median. To facilitate interpretation, we overlay

time zone bands corresponding to primary global market hours: Asian markets (01:00-10:00

CET, light red), European markets (09:00-17:00 CET, light blue), and US markets (14:30-

22:00 CET, light green).

Our analysis of intraday liquidity and volatility patterns reveals important insights into

cryptocurrency market microstructure. For cryptocurrency pairs on both Coinbase and
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Figure 2: Joint Intraday Analysis of Spreads and Volatility for Cryptocurrency Pairs

Note: For each cryptocurrency pair, the top panel shows the median spread (blue) and the bottom panel
shows the median volatility (red). Both panels include the interquartile range (gray shaded area) and a
15-period moving average (dashed lines). Background colors indicate primary market hours in CET: Asian
markets (01:00-10:00, light red), European markets (09:00-17:00, light blue), and US markets (14:30-22:00,
light green). The analysis covers all 12 cryptocurrency pairs across Binance and Coinbase exchanges.
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Binance, we observe a distinct inverted sinusoidal pattern in spreads, characterized by the

lowest spreads during Asian and early European market hours, followed by a rapid transition

that peaks at the beginning of the US trading session. Volatility follows a remarkably similar

pattern, with price fluctuations rising exactly as spreads increase.

This strong temporal correspondence suggests that liquidity in cryptocurrency markets

responds directly to changes in market volatility, regardless of whether the quoted currency

is a fiat currency (USD, EUR) or a stablecoin (USDT, USDC, FDUSD). The synchronized

movement between spreads and volatility across nearly all cryptocurrency markets supports

the hypothesis of market-making risk models, where liquidity providers require wider spreads

as compensation for taking positions during periods of higher price uncertainty.

This relationship appears to be particularly strong in cryptocurrency markets, suggest-

ing that despite their 24/7 operation, these markets experience significant intraday fluctu-

ations in liquidity that are closely tied to global trading patterns and volatility regimes.

Interestingly, we observe consistent patterns across both major cryptocurrencies (BTC and

ETH) and across different exchanges (Binance and Coinbase), indicating that these liquid-

ity dynamics may be fundamental characteristics of cryptocurrency markets rather than

exchange-specific phenomena.

2.4.2 Weekend vs. Weekday Patterns in Cryptocurrency Markets

One of the distinct features of cryptocurrency markets is their continuous 24/7 operation,

which allows us to examine the contrast between weekend and weekday trading conditions.

Figure 3 presents a detailed comparison of intraday spread and volatility patterns between

weekdays (blue) and weekends (green) for twelve cryptocurrency pairs across Binance and

Coinbase exchanges.

Our analysis reveals a notable contrast between weekday and weekend trading dynamics

in cryptocurrency markets.

First, spreads are consistently lower on weekends for nearly all cryptocurrency pairs,

11



Work
ing

pa
per

Figure 3: Comparison of Weekday and Weekend Liquidity and Volatility Patterns for Cryp-
tocurrency Pairs

Note: For each cryptocurrency pair, the top panel shows spread patterns and the bottom panel shows
volatility (absolute log returns). Blue lines and shading represent weekday patterns (Monday-Friday), while
green represents weekend patterns (Saturday-Sunday). Solid lines show median values, dashed lines show
15-period moving averages, and shaded areas represent the interquartile range. The analysis covers six pairs
each from Binance and Coinbase exchanges.
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with the gap being most pronounced during periods that coincide with typical global trading

hours (15:00-18:00 CET). This pattern is particularly evident for the BTC-EUR, BTC-USD

and BTCFDUSD pairs, where median spreads can be 20-50% higher on weekdays than on

weekends during peak hours. Importantly, the weekend spread narrowing is accompanied by

a corresponding decrease in volatility. For all cryptocurrency pairs, weekend median volatility

is lower than weekday volatility, especially during these hours. This parallel movement

reinforces our earlier finding that liquidity provision in cryptocurrency markets is closely

linked to volatility.

Second, weekend spreads display a substantially flattened pattern with minimal intra-

day variation. The characteristic peaks observed during weekday trading hours are almost

entirely absent on weekends, resulting in a relatively stable spread throughout the day.

Weekend volatility is remarkably flat across all hours, appearing as an almost horizontal line

for most pairs. To further explore intraday patterns in market liquidity and volatility, we

conducted a granular day-of-week analysis for each trading day (Monday through Sunday)

in Figure A.3 in the Appendix. The results confirm that weekends show flattened patterns

as demonstrated earlier.

These findings indicate that despite the 24/7 nature of cryptocurrency markets, their

microstructure dynamics remain heavily influenced by global trading patterns. The near-

complete flattening of intraday patterns during weekends strongly suggests that the char-

acteristic volatility and spread fluctuations observed during weekdays are largely driven by

institutional trading activity that follows traditional hours. When this institutional pressure

is reduced during weekends, cryptocurrency markets exhibit fundamentally different and

more stable liquidity characteristics.

This weekend-weekday dichotomy provides valuable insights into the evolving market

structure of cryptocurrencies, suggesting that despite their technological innovations and

continuous operation, these markets still reflect important aspects of traditional trading

behavior and institutional participation.
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3 Relative analysis

3.1 Relative volatility and spread for Hour-of-the-Day

To examine the intraday behavior of market liquidity and volatility, we use a relative analysis

technique that examines how these measures vary over different time periods. Unlike absolute

measures, this approach normalizes values against recent history, allowing direct comparisons

between different market pairs despite their different starting levels. Our first step was to

examine how volatility and spread behave at different hours of the day relative to other

hours within the same day. Following Hansen et al. (2024), we compute hour-specific relative

measures for both volatility and spread:

λhour
σ (h) = 1

nh

∑
w,d

|yτ(w,d,h)|∑23
j=0 |yτ(w,d,h−j)|

(4)

λhour
s (h) = 1

nh

∑
w,d

sτ(w,d,h)∑23
j=0 sτ(w,d,h−j)

(5)

where:

• h – hour of the day, h = 0, . . . , 23

• w – week number in our sample

• d – day of the week

• yτ(w,d,h) – absolute return at time point (w, d, h)

• sτ(w,d,h) – spread at time point (w, d, h)

• nh ≈ 7 × W – number of observations per hour, where W is the total number of weeks

in our sample

The interpretation of these measures is straightforward - if λhour
σ (h) > 1, volatility is higher

at hour h compared to the daily average. If λhour
s (h) > 1, the spread is higher at hour h,

indicating lower liquidity. This hourly analysis allows us to identify specific times of day

14



Work
ing

pa
per

when liquidity conditions systematically deviate from the daily average, which is particu-

larly important for understanding market microstructure in 24/7 cryptocurrency markets

compared to traditional currency markets with more defined trading sessions.

Figure 4 shows the results of this analysis across all market pairs in polar coordinates,

where the angle represents the hour of the day and the distance from the center represents the

relative measure. Cryptocurrency pairs show remarkably similar patterns across exchanges

and pairs, with volatility and spreads forming clear directional patterns around US trading

hours (15:00-18:00 CET). In contrast, traditional currency pairs show more varied patterns,

with volatility and spread measures sometimes moving in opposite directions during certain

hours. In particular, all traditional currency pairs show a sharp decrease in both volatility

and spreads during the market lull between the US close and the Asian open (22:00-01:00

CET).

3.2 Relative Volatility and Spread for Day-of-the-Week

Building on our hour-of-the-day analysis, we apply a similar normalization approach to

examine day-of-the-week patterns of volatility and spreads, and see if both characteristics

are lower during the weekend. For each day of the week, we compute a ratio measure that

compares the sum of the spread (or volatility) on that day to the sum over the previous

seven days. Formally, for each market pair, we calculate:

λday
σ (d) = 1

nd

∑
w

|yτ(w,d,h)|∑6
i=0 |yτ(w,d−i,h)|

(6)

λday
s (d) = 1

nd

∑
w

sτ(w,d,h)∑6
i=0 sτ(w,d−i,h)

(7)

where:

• d – day of the week, d = 1, . . . , 7

• w – week number
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Figure 4: Polar Representation of Hour-of-Day Relative Measures

Note: Each chart shows the relative volatility measure (red bars) and spread measure (blue line) in polar
coordinates. The radial axis represents the ratio value, with the circle at 1.0 indicating the average level.
The angular coordinate represents the hour of the day, with midnight at the top and proceeding clockwise.

• h – hour of the day

• yτ(w,d,h) – absolute return at time point (w, d, h)

• sτ(w,d,h) – spread at time point (w, d, h)
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• nd ≈ W – number of observations per day of the week

If λday
σ (d) > 1, volatility is higher on day d compared to the weekly average. If λday

s (d) > 1,

the spread is higher on day d, indicating lower liquidity. Figure 5 presents the results of

this analysis for selected cryptocurrency pairs. For cryptocurrency pairs, weekdays (Mon-

day through Friday) show relatively stable volatility and spread measures near the neutral

threshold, while weekends show low volatility (often 30-40% below average) and narrower

spreads.

4 Fast Fourier Transform Analysis and Harmonic Mod-

eling

To rigorously characterize the underlying periodicities in the spread time series, apply spec-

tral analysis techniques to logarithmic bid-ask spreads. We employ a three-stage approach:

(1) objectively identify the dominant frequencies in liquidity patterns, (2) estimate the phase

relationships that determine cycle timing, and (3) statistically validate the significance of

these cyclical components using the complete time series data.

We begin by computing the median log-spread values for each time point across the day,

resulting in a 96-element vector (representing 15-minute intervals). Fast Fourier Transform

(FFT) is then applied to this median pattern to decompose it into its frequency components.

FFT efficiently transforms time-domain data into the frequency domain by expressing the

signal as a sum of sinusoidal components of varying frequencies and amplitudes:

X(k) =
N−1∑
n=0

x(n)e−i2πkn/N (8)

where X(k) represents the spectral components, x(n) is our time-series data, and N is

the number of time points. By analyzing the magnitude of these spectral components, we

identify the dominant frequencies f1, f2, ..., fn ranked by their power in the spectrum. These
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Figure 5: Day-of-Week Relative Volatility and Spread Measures

Note: The bars (red) represent the relative volatility measure for each day of the week, with error bars
showing the statistical uncertainty (Q1 to Q3 range). The blue dashed line shows the corresponding relative
spread measure. The horizontal line at 1.0 indicates the average level. Values above 1.0 indicate higher-
than-average volatility or spreads for that day.

frequencies represent the most important cyclical patterns in the intraday spread data.

Using the dominant frequencies identified in Step 1, we fit two harmonic regression models

to the median log-spread pattern:

1. Single-frequency model:

log(St) = a0 + A1 sin(2πf1t + ϕ1) + εt (9)
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2. Two-frequency model:

log(St) = a0 + A1 sin(2πf1t + ϕ1) + A2 sin(2πf2t + ϕ2) + εt (10)

where a0 is the intercept, A1 and A2 are amplitude parameters, and ϕ1 and ϕ2 are phase

shift parameters that determine the timing of peaks and troughs in the cyclical pattern1.

The phase parameters ϕ1 and ϕ2 are particularly important as they capture the timing of

liquidity cycles throughout the day. These phase shifts allow us to determine when spreads

tend to widen or narrow within the identified periodic cycles.

Finally, to validate the periodicity patterns identified in the previous step and ensure

they represent genuine cyclical behavior rather than random fluctuations, we extend our

analysis beyond the median pattern to the full log-spread time series. We implement a

formal statistical testing framework using harmonic regression. We first convert timestamps

into normalized time to standardize the analysis across different market pairs:

tnorm = hours + minutes/60
24 (11)

Next, using the frequencies and estimated phase parameters from Steps 1 and 2, we

construct explanatory variables of the form:

X1(t) = sin(2πf1t + ϕ̂1) (12)

X2(t) = sin(2πf2t + ϕ̂2) (13)

where ϕ̂1 and ϕ̂2 are the phase parameters estimated in Step 2. We then perform linear

regression on the complete time series of log-spreads:

log(St) = β0 + β1X1(t) + β2X2(t) + ϵt (14)
1We estimate these parameters using non-linear least squares optimization with the the function, which

minimizes the sum of squared residuals between the observed median pattern and the harmonic model
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This allows us to apply standard statistical inference techniques to assess the significance of

the periodic components. This regression uses heteroskedasticity and autocorrelation con-

sistent (HAC) standard errors to account for potential serial correlation in the residuals.

The t-statistics and p-values from this regression provide formal statistical tests of the sig-

nificance of the identified cyclical components across the entire sample period, not just in

the median pattern. Additionally, we evaluate the overall explanatory power of the periodic

components using the coefficient of determination (R2).

To visualize the fit of our harmonic models, Figure 6 presents the results of both single-

frequency and two-frequency harmonic regressions for each market pair in our sample. The

figure displays the median log-spread across the trading day (blue line) along with the in-

terquartile range (gray shaded area), and overlays the fitted values from the single-frequency

model (green dashed line) and the two-frequency model (purple dashed line).

Table 2 presents the results of our harmonic regression analysis. The table reports the

dominant frequencies, phase shifts, parameter estimates, and corresponding t-statistics for

both single-frequency and two-frequency models across all cryptocurrency assets in our sam-

ple. A notable pattern emerges: almost all cryptocurrency assets exhibit a primary cyclical

component with frequency of approximately 0.01, corresponding to a daily (24-hour) cycle.

This consistency suggests a strong global trading pattern affects cryptocurrency liquidity

regardless of trading venue or specific asset. The t-statistics reported in Table ?? reveal that

the cyclical components are highly significant for all cryptocurrency assets.

Our analysis reveals several key insights about cryptocurrency market microstructure.

First, the majority of cryptocurrency pairs exhibit a consistent primary cycle with frequency

around 0.01 (corresponding to one cycle per day), suggesting that despite their 24/7 op-

eration, these markets are heavily influenced by global daily trading patterns. The phase

shifts (ϕ) are also relatively consistent across most pairs, indicating synchronized timing of

liquidity provision across different cryptocurrency markets. Second, the t-statistics for both

the primary and secondary frequencies are highly significant (many exceeding |15|), confirm-
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Figure 6: Harmonic Model Fit to Intraday Log-Spreads.

Note: This figure shows the median log-spread pattern across the trading day (blue solid line) with the
interquartile range (gray shaded area). The green dashed line represents the fitted values from the single-
frequency harmonic model, while the purple dashed line shows the fitted values from the two-frequency
model. Colored bands highlight major trading sessions: Asian (red), European (blue), and US (green).

ing that these cyclical patterns represent genuine market phenomena rather than random

variations. This provides strong statistical evidence for the presence of predictable intraday

liquidity cycles in cryptocurrency markets. Third, while secondary frequencies vary some-

what between different cryptocurrency pairs, they commonly fall in the range of 0.02-0.03,

corresponding to approximately 8-12 hour cycles. These secondary cycles may reflect the

influence of major global trading sessions (Asian, European, and US) on cryptocurrency

liquidity provision. It is important to note that despite the strong statistical significance of

these cyclical components, the overall explanatory power of the harmonic models remains
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Table 2: Harmonic Regression Results for Intraday Spread Periodicity

Single-frequency harmonic model Two-frequency harmonic model

Symbol f1 ϕ β1 Tβ1 R2 f1 β1 Tβ1 f2 β2 Tβ2 R2 Nobs

Panel A: Binance

BTCFDUSD 0.01 -0.71 -0.08 -28.49 0.03 0.01 -0.08 -23.84 0.03 0.03 7.68 0.03 25665
BTCUSDC 0.01 -0.62 -0.18 -21.35 0.02 0.01 -0.18 -16.87 0.03 0.08 6.85 0.02 25665
BTCUSDT 0.01 2.12 0.26 10.73 0.00 0.01 0.26 10.16 0.06 -0.17 -6.53 0.01 25665
ETHFDUSD 0.01 -1.07 -0.03 -12.76 0.01 0.01 -0.03 -10.37 0.03 0.03 9.05 0.01 25665
ETHUSDC 0.01 -1.12 -0.05 -13.31 0.01 0.01 -0.05 -10.31 0.03 0.04 8.24 0.01 25665
ETHUSDT 0.01 -0.92 -0.09 -8.98 0.00 0.01 -0.09 -7.95 0.02 0.06 5.27 0.00 25665

Panel B: Coinbase

BTC-EUR 0.01 -0.55 -0.05 -17.31 0.01 0.01 -0.05 -13.91 0.02 0.02 6.69 0.01 24835
BTC-USD 0.02 -0.31 0.04 8.80 0.00 0.02 0.04 7.51 0.04 -0.03 -4.31 0.00 24835
BTC-USDT 0.01 -0.88 -0.04 -16.53 0.01 0.01 -0.04 -13.35 0.02 0.03 9.64 0.02 24835
ETH-EUR 0.02 -1.07 0.02 8.83 0.00 0.02 0.02 6.83 0.04 -0.02 -4.29 0.00 24835
ETH-USD 0.01 -0.25 -0.02 -7.05 0.00 0.01 -0.02 -5.54 0.03 0.02 5.75 0.00 24835
ETH-USDT 0.01 -0.27 -0.05 -20.03 0.02 0.01 -0.05 -15.77 0.02 0.03 9.90 0.02 24835

Note: The table presents harmonic regression results for log-transformed spreads using two model specifications. The first
model includes a single-frequency component, while the second incorporates two frequency components. Bold and underlined
values indicate t-statistics with absolute values greater than 3, representing statistical significance at approximately the 0.1%
level. T values represent t-statistics for the amplitude parameters. Freq represents the identified dominant frequencies from
Fourier analysis, measured in cycles per day. R2 represents the coefficient of determination for each model. ϕ represents the
estimated phase shift in radians.

modest, with R2 values between 0.00 and 0.03 in all cases. This suggests that while cyclical

patterns are significant contributors to spread variation in cryptocurrency markets, they are

only one component of the complex factors driving market liquidity. The consistent pres-

ence of significant cyclical patterns across different exchanges (Binance and Coinbase) and

different cryptocurrency pairs (BTC and ETH with various quote currencies) indicates that

these periodic liquidity fluctuations may be fundamental features of cryptocurrency market

microstructure rather than exchange-specific phenomena.

4.1 Integrated Model

Having shown the existence of significant cyclical patterns in liquidity through our FFT

analysis, we now incorporate these periodic components into a comprehensive model of

spread determinants. We construct a regression framework that captures multiple dimensions

of market conditions that may affect liquidity:
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log(St) = α +
3∑

j=0
βjrt−j + γ1r

2
t + γ2σt + δ · FFTt + εt (15)

where log(St) is the logarithm of the bid-ask spread at time t, rt−j represents returns at

various lags (with j = 0 being contemporaneous returns), r2
t is the squared return as a mea-

sure of instantaneous volatility, σt is the exponentially weighted moving average (EWMA)

volatility with a decay factor of 0.1, and FFTt is the periodic component identified through

our Fourier analysis, defined as sin(2πf1t + ϕ̂1). This specification allows us to disentangle

the effects of market returns, volatility dynamics, and cyclical patterns on market liquidity.

The model incorporates three key categories of explanatory variables:

1. Return dynamics: Current and lagged returns (rt, rt−1, rt−2, rt−3) capture the rela-

tionship between price movements and liquidity, including potential asymmetric re-

sponses to positive versus negative returns.

2. Volatility measures: Two complementary measures of volatility are included: squared

returns (r2
t ) as a high-frequency indicator of instantaneous volatility, and EWMA

volatility (σt) as a smoothed measure of sustained volatility.

3. Periodicity component: The FFTt variable incorporates the dominant cyclical pat-

tern identified through our Fourier analysis, enabling us to capture the systematic

intraday variations in liquidity that follow regular temporal patterns.

To facilitate direct comparison of coefficient magnitudes across variables and market

pairs, all explanatory variables are standardized to have a mean of zero and a standard

deviation of one. This standardization ensures that the reported coefficients represent the

effect of a one standard deviation change in the explanatory variable on the log spread.

To ensure robust statistical inference, we estimate this model using heteroskedasticity

and autocorrelation consistent (HAC) standard errors with Newey-West correction. This

approach accounts for potential serial correlation and time-varying volatility in the residu-

als. Additionally, we apply a Bonferroni correction to our significance threshold to address
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the multiple testing problem arising from analyzing 18 different market pairs simultaneously.

Specifically, we divide the standard 2.5% significance level by 12, resulting in an adjusted

significance level of approximately 0.00139. This corresponds to a t-statistic threshold of ap-

proximately 3. Consequently, in Table 3, we highlight coefficients with t-statistics exceeding

3 in absolute value as statistically significant.

Table 3 presents the regression results for all market pairs in our sample. Several key pat-

terns emerge across different cryptocurrency pairs and exchanges. First, volatility emerges

as the strongest determinant of spreads for all cryptocurrency pairs. The EWMA volatility

measure (σt) shows particularly large and highly significant positive coefficients, ranging from

0.18 for BTCUSDT on Binance to 0.47 for ETH-USDT on Coinbase. This strong positive

relationship indicates that sustained periods of high volatility significantly increase spreads,

consistent with increased risk for market makers during volatile conditions. The instanta-

neous volatility measure (r2
t ) shows more mixed effects, with significant positive coefficients

for several bitcoin pairs (particularly on Coinbase), but weaker effects for other pairs. This

suggests that the persistent component of volatility (captured by the EWMA) is a more

consistent determinant of liquidity than instantaneous volatility spikes.

Second, we observe consistently negative and statistically significant coefficients on both

contemporaneous and lagged returns across most cryptocurrency pairs. This inverse relation-

ship between returns and spreads suggests that liquidity tends to decrease (spreads widen)

during periods of price declines. The effect is particularly pronounced for ETH pairs, where

the contemporaneous return coefficient reaches -0.06 for ETH-USD on Coinbase (t-statistic:

-6.38). Lagged returns also show significant negative relationships with spreads, especially in

the first lag (rt−1), indicating persistent effects of price movements on liquidity. This finding

suggests that cryptocurrency market makers may adjust their liquidity provision asymmetri-

cally in response to price movements, potentially reflecting risk management considerations

during market downturns.

Third, the periodicity component (FFT) shows statistical significance for several cryp-
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tocurrency pairs, but with varying directions and magnitudes. For Binance, BTCFDUSD,

BTCUSDC, and ETHUSDC show significant negative coefficients, while BTCUSDT shows

a significant positive coefficient. On Coinbase, BTC-EUR shows a significant negative coef-

ficient, while BTC-USD and ETH-EUR show significant positive coefficients. These mixed

effects suggest that while cyclical patterns are present in cryptocurrency liquidity, their in-

fluence varies across different trading pairs and exchanges. The fact that some pairs show

negative coefficients (indicating tighter spreads during peak cycle times) while others show

positive coefficients highlights the complexity of intraday liquidity patterns in cryptocurrency

markets

Fourth, the weekend dummy variable reveals interesting patterns in weekend trading

behavior. Six out of the twelve cryptocurrency pairs show statistically significant weekend

effects, but with differing signs. BTC-USD, BTC-USDT, and ETH-USD on Coinbase, along

with ETHFDUSD on Binance, show significant positive coefficients, indicating wider spreads

during weekends. In contrast, BTCFDUSD and ETHUSDT on Binance show significant

negative coefficients, suggesting tighter spreads during weekends. These divergent patterns

may reflect different types of market participants and trading behaviors across exchanges

and cryptocurrency pairs during non-business days. Finally, the explanatory power of our

model varies across cryptocurrency pairs. The highest R2 values are observed for ETH-

USDT on Coinbase (0.28), BTCFDUSD on Binance (0.25), and ETHFDUSD on Binance

(0.23), indicating that our model captures a substantial portion of the variation in spreads for

these pairs. The lowest R2 is for BTCUSDT on Binance (0.04), suggesting that additional

factors may be driving liquidity for this pair. Overall, the model performs well for most

cryptocurrency pairs, with a median R2 of approximately 0.17 across all pairs.

In addition, to quantify the relative importance of each explanatory variable, we use a

standardized approach that takes into account the different scales and distributions of the

predictors. We standardize all explanatory variables and the dependent variable to have a

mean of zero and a standard deviation of one, and fit an OLS regression model with the
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Table 3: Regression Results for Log-Spread

Returns Volatility Periodicity Calendar
Symbol α rt rt−1 rt−2 rt−3 r2

t σt FFT Weekend R2

Panel A: Binance

BTCFDUSD 0.03 -0.01 -0.03 -0.02 -0.01 0.07 0.43 -0.07 -0.12 0.25
(4.48) (-1.85) (-4.70) (-4.40) (-2.28) (5.24) (45.04) (-10.53) (-7.42)

BTCUSDC 0.00 -0.03 -0.02 -0.01 -0.01 0.04 0.39 -0.04 -0.01 0.18
(0.40) (-5.00) (-3.79) (-2.68) (-2.07) (3.46) (40.49) (-4.87) (-0.72)

BTCUSDT -0.00 -0.03 -0.02 -0.01 -0.01 0.02 0.18 0.02 0.01 0.04
(-0.45) (-4.56) (-4.03) (-1.15) (-1.29) (2.64) (24.86) (3.06) (0.81)

ETHFDUSD -0.03 -0.04 -0.04 -0.02 -0.01 0.09 0.44 0.00 0.10 0.23
(-3.69) (-5.79) (-5.11) (-3.70) (-1.56) (2.23) (34.51) (0.17) (6.98)

ETHUSDC 0.00 -0.04 -0.03 -0.01 -0.01 0.06 0.28 -0.03 -0.01 0.11
(0.33) (-5.44) (-4.34) (-2.50) (-2.57) (1.92) (25.56) (-3.70) (-0.59)

ETHUSDT 0.02 -0.02 -0.02 -0.02 0.00 0.02 0.26 -0.01 -0.05 0.08
(1.91) (-3.61) (-3.28) (-3.10) (0.12) (1.32) (31.51) (-1.39) (-3.48)

Panel B: Coinbase

BTC-EUR -0.03 -0.02 -0.01 -0.01 -0.00 0.13 0.33 -0.02 0.09 0.16
(-2.96) (-1.99) (-1.54) (-1.19) (-0.35) (8.57) (28.65) (-3.34) (5.38)

BTC-USD -0.06 -0.03 -0.03 -0.02 -0.02 0.06 0.22 0.04 0.20 0.06
(-6.45) (-5.42) (-4.63) (-4.16) (-3.34) (7.46) (28.97) (6.03) (12.28)

BTC-USDT -0.04 -0.03 -0.02 -0.02 -0.01 0.15 0.40 0.00 0.14 0.22
(-4.97) (-3.67) (-3.60) (-2.53) (-1.92) (9.91) (40.65) (0.48) (8.99)

ETH-EUR -0.00 -0.03 -0.03 -0.03 -0.02 0.09 0.31 0.03 0.01 0.13
(-0.49) (-2.77) (-3.79) (-3.32) (-2.70) (3.33) (22.75) (3.79) (0.80)

ETH-USD -0.05 -0.06 -0.04 -0.03 -0.02 0.06 0.39 0.01 0.16 0.17
(-5.63) (-6.38) (-6.20) (-4.72) (-3.46) (2.47) (35.41) (0.94) (9.21)

ETH-USDT -0.01 -0.04 -0.05 -0.04 -0.02 0.09 0.47 -0.06 0.03 0.28
(-1.17) (-3.83) (-6.53) (-4.07) (-4.15) (3.06) (37.99) (-9.14) (1.92)

Note: This table presents regression results for spread predictability, with variables grouped into three categories: (1) Returns,
(2) Volatility, and (3) Intraday Periodicity. For each currency pair, the first row shows coefficient estimates and the second row
(in parentheses) shows corresponding t-statistics. We apply a Bonferroni correction to our significance threshold to address the
multiple testing problem arising from analyzing 12 different market pairs simultaneously. Bold and underlined values indicate
coefficients with t-statistics having absolute values above 3 (we divide the standard 2.5% significance level by 18, resulting in
an adjusted significance level of approximately 0.00139). Returns variables include contemporaneous returns (rt) and three lags
of returns (rt−1 through rt−3). Volatility measures include squared returns (r2

t ) and exponentially weighted moving average
volatility (σt). The periodicity component (FFT) captures cyclical intraday patterns identified through Fourier analysis. The
R2 column shows the model’s explanatory power.

standardized variables. We then calculate the absolute value of each standardized coefficient

and normalize these absolute values by dividing by their sum, expressing the contribution

of each variable as a proportion of the total explained effect.

Figure 7 shows the relative importance of each explanatory variable across all cryptocur-

rency pairs. For all pairs, volatility (σt) emerges as the overwhelmingly dominant factor,

accounting for 40-70% of the explained variation in spreads. Returns (both contempora-

neous and lagged) collectively make a substantial contribution, particularly for pairs on

Coinbase. The cyclical component and weekend effect show varying levels of importance
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across different pairs, with the weekend effect being particularly important for BTC-USD

and BTC-USDT on Coinbase.

Figure 7: Relative Importance of Factors in Log-Spread Determination

Note: This table presents the normalized variable importance for each explanatory factor across all market
pairs. Values represent the proportion of total explained effect attributable to each variable, calculated from
the absolute standardized regression coefficients and normalized to sum to 1. Higher values indicate greater
relative importance in explaining log-spread variation.

5 Out-of-Sample Forecasting Performance

5.1 Forecasting Methodology

To assess the practical value of incorporating periodic patterns into liquidity modeling, we

evaluate the out-of-sample predictive performance of our models. For our forecasting exer-

cise, we implement a more focused set of explanatory variables than in our full regression

analysis, selecting variables with the strongest predictive power. We prepare a set of predic-

tive features including:

• Lagged spread values (three lags of the spread variable: log(St−1), log(St−2), log(St−3));

• Return measures (three lags: rt−1, rt−2, rt−3);

• Volatility measures (lagged volatility values: σt−1, σt−2, σt−3);
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• Mean reversion term (difference between the previous spread and its medium-term

moving average - 96 previous observations);

• Intraday periodical component (sine wave with the dominant frequency and phase

identified in our spectral analysis).

For each market pair, we split the data into training (60%) and testing (40%) sets. We

estimate two model specifications on the training data: full model (including all variables

with intraday periodical component) and restricted model (excluding intraday periodical

component but retains all other variables). We generate out-of-sample forecasts for loga-

rithmic spreads using both models on the test data. We evaluate forecasting performance

using multiple complementary metrics like Root Mean Squared Error (RMSE), Mean Ab-

solute Error (MAE), Mean Absolute Percentage Error (MAPE) nad Directional Accuracy

(DA). We formally test for statistically significant differences in forecast accuracy using the

Diebold-Mariano test, which evaluates whether one forecasting method consistently outper-

forms another.

Table 4: Out-of-Sample Forecast Performance Comparison

DM Test Forecast-accuracy metrics

MSE RMSE MAE MAPE (%) DA (%)

Symbol Stat p-value Full No FFT Full No FFT Full No FFT Full No FFT Full No FFT

Panel A: Binance

BTCFDUSD -1.605 0.108 0.081 0.081 0.285 0.285 0.222 0.223 6.00 6.00 33.10 33.00
BTCUSDC -5.539 0.000 0.541 0.545 0.736 0.738 0.489 0.490 9.80 9.80 34.80 34.70
BTCUSDT -0.375 0.708 7.729 7.731 2.780 2.781 2.563 2.564 36.00 36.00 40.60 40.00
ETHFDUSD 0.985 0.324 0.037 0.037 0.193 0.193 0.139 0.139 4.60 4.60 33.30 33.10
ETHUSDC 3.721 0.000 0.083 0.082 0.287 0.287 0.189 0.188 6.10 6.10 33.70 33.70
ETHUSDT -0.401 0.689 1.028 1.028 1.014 1.014 0.789 0.788 14.90 14.90 34.80 34.80

Panel B: Coinbase

BTC-EUR -3.674 0.000 0.068 0.068 0.261 0.261 0.187 0.187 7.90 7.90 33.90 34.00
BTC-USD -2.136 0.033 0.281 0.281 0.530 0.530 0.304 0.305 7.10 7.10 34.00 33.80
BTC-USDT -2.473 0.013 0.039 0.039 0.198 0.198 0.140 0.141 5.60 5.60 33.60 33.60
ETH-EUR -2.776 0.006 0.048 0.048 0.219 0.219 0.153 0.153 7.60 7.60 32.60 32.50
ETH-USD 0.939 0.348 0.049 0.049 0.222 0.222 0.151 0.151 4.80 4.80 33.50 33.50
ETH-USDT -2.060 0.039 0.057 0.057 0.239 0.240 0.171 0.171 10.20 10.20 32.90 32.90

Note: This table presents forecast evaluation metrics comparing models with and without the periodicity (FFT) component.
The Diebold-Mariano test evaluates whether forecast improvements are statistically significant, with negative values favoring
the FFT model and bold underlined values indicating statistical significance at the 5% level or better. For each metric, the
better performing model is highlighted in bold. For error metrics (RMSE, MAE, MAPE), lower values are better, while for
directional accuracy (DA), higher values are better.
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Table 4 presents the results of our forecasting analysis for cryptocurrency pairs across

Binance and Coinbase exchanges. The Diebold-Mariano test results reveal that the inclusion

of the FFT component significantly improves forecasting accuracy for several cryptocurrency

pairs, though the pattern is not uniform across all pairs.

For Binance cryptocurrencies, BTCUSDC shows a highly significant improvement (DM

= -5.539, p-value < 0.001) when incorporating the FFT component, suggesting that cyclical

patterns substantially enhance predictive power for this pair. Interestingly, ETHUSDC shows

a significant positive DM statistic (3.721, p-value < 0.001), indicating that for this particular

pair, the model without the FFT component performs better. The remaining four Binance

pairs (BTCFDUSD, BTCUSDT, ETHFDUSD, and ETHUSDT) show DM statistics that

are not statistically significant, suggesting that the inclusion of the FFT component neither

significantly improves nor harms forecast accuracy for these pairs.

For Coinbase cryptocurrencies, four out of six pairs show statistically significant improve-

ments with the inclusion of the FFT component: BTC-EUR (DM = -3.674, p-value < 0.001),

BTC-USD (DM = -2.136, p-value = 0.033), BTC-USDT (DM = -2.473, p-value = 0.013),

and ETH-EUR (DM = -2.776, p-value = 0.006). ETH-USDT also shows a significant im-

provement (DM = -2.060, p-value = 0.039). ETH-USD is the only Coinbase pair that does

not show a significant difference between the models, with a positive but non-significant DM

statistic (0.939, p-value = 0.348).

Examining the error metrics in detail, both MSE and RMSE generally favor the full

model for most cryptocurrency pairs, though the improvements are often quite modest.

For instance, BTCUSDC on Binance shows an MSE improvement from 0.545 to 0.541, while

BTC-USDT on Coinbase shows an RMSE improvement from 0.198 to 0.198 (difference visible

only at more decimal places). While these gains appear small numerically, their statistical

significance in several cases (as confirmed by the Diebold-Mariano test) suggests consistent

improvements that could yield economically meaningful benefits over numerous transactions.

Mean Absolute Error (MAE) follows a similar pattern to RMSE, with the full model
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generally outperforming the restricted model, albeit with small margins. In two cases

(ETHUSDT on Binance and ETHUSDC on Binance), the restricted model actually per-

forms marginally better in terms of MAE. Percentage errors (MAPE) show the full model

consistently performing better across all cryptocurrency pairs, though the improvements are

very small, typically around 0.1 percentage points or less.

In terms of directional accuracy (DA), which measures the ability to correctly predict

the direction of spread changes, the full model generally performs better than the restricted

model. BTC-USDT on Binance shows the largest improvement, with the full model correctly

predicting 40.6% of direction changes compared to 40.0% for the restricted model. For

most other pairs, the improvements in directional accuracy are minimal (0.1-0.2 percentage

points), and in one case (BTC-EUR on Coinbase), the restricted model actually achieves

slightly higher directional accuracy (34.0% versus 33.9%).

The relatively modest improvements in forecast metrics despite statistically significant

DM test results for several pairs suggest that while periodic patterns do contribute to fore-

cast accuracy, their impact varies considerably across different cryptocurrency pairs and

exchanges. This heterogeneity in forecasting performance may reflect differences in market

microstructure, trading activity, or liquidity provision mechanisms across different cryptocur-

rency markets.

6 Concluding Remarks

This study provides an examination of market liquidity dynamics in the cryptocurrency

markets, focusing on Bitcoin and Ethereum traded on two major exchanges: Binance and

Coinbase. By analyzing high-frequency order book data through the lens of spectral analysis

and statistical techniques, we have uncovered several key insights into the nature of liquidity

provision in these relatively new but increasingly important markets.

Our results show that despite their 24/7 operation, cryptocurrency markets exhibit strong
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and statistically significant cyclical patterns in liquidity. These patterns are characterized by

an inverted sinusoidal structure, with the lowest spreads typically observed during Asian and

early European trading hours, followed by wider spreads during the North American trading

session. The remarkable consistency of these patterns across cryptocurrencies and exchanges

suggests the presence of global factors affecting the provision of liquidity in cryptocurrency

markets, regardless of the specific trading venue or cryptocurrency.

The harmonic regression analysis shows that most cryptocurrency pairs share a domi-

nant frequency of approximately 0.01 cycles per observation (corresponding to a daily cycle),

with additional secondary frequencies that likely reflect the influence of major global trading

sessions. These periodic components are highly statistically significant, as evidenced by the

robust t-statistics obtained in our regression analysis. This finding suggests that cryptocur-

rency liquidity is significantly influenced by traditional business hours and global trading

patterns, despite the theoretical capacity of markets to operate around the clock.

Our analysis of weekend versus weekday trading patterns further supports this conclusion.

We document a striking flattening of intraday spread patterns during weekends, with signif-

icantly lower volatility and generally tighter spreads compared to weekdays. This marked

difference between weekend and weekday liquidity patterns strongly suggests that institu-

tional trading activity, which follows traditional market hours, plays a key role in shaping

the microstructure of the cryptocurrency market.

The integrated regression model shows that volatility is the dominant determinant of

spread variation, accounting for 40-70% of the explained variation across all cryptocurrency

pairs. This finding is consistent with risk-based theories of liquidity provision, where market

makers demand wider spreads as compensation for taking positions during periods of higher

price uncertainty. Returns also exhibit a significant and consistent negative relationship

with spreads, suggesting that market liquidity tends to deteriorate during price declines.

This asymmetric liquidity response to price movements may reflect risk management con-

siderations by liquidity providers during market downturns.
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The forecasting analysis shows that the inclusion of periodic components can improve the

accuracy of spread predictions for many cryptocurrency pairs, particularly those traded on

Coinbase. While the numerical improvements in predictive metrics are modest, the statistical

significance of these improvements for several pairs suggests potential economic value for

market participants engaged in high-frequency or high-volume trading.

Several avenues for future research emerge from our analysis. First, examining how these

liquidity patterns have evolved over time, particularly as institutional participation in cryp-

tocurrency markets has increased, could provide insights into the evolution of the market.

Second, exploring the relationship between liquidity patterns and the specific characteristics

of different cryptocurrencies (such as market capitalization, use case, or technological fea-

tures) could help identify factors that contribute to more robust liquidity. Third, examining

how liquidity dynamics differ between centralized exchanges, decentralized exchanges, and

over-the-counter markets would enhance our understanding of the cryptocurrency market

ecosystem more broadly.
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A Appendix

Figure A.1: Time series of mid prices for cryptocurrency and traditional currency pairs from
July 1, 2024 to February 16, 2025.

Note: The chart shows the evolution of mid prices calculated as (P t
ask + P t

bid)/2 for the analyzed market
pairs. Cryptocurrency prices display higher volatility compared to the traditional currency pairs. All series
are normalized to their initial values for comparison purposes.
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Table A.1: Stationarity Test Results for Cryptocurrency Market Spreads

Symbol ADF DFGLS PP ZA KPSS
Stat p-val Stat p-val Stat p-val Stat p-val Stat p-val

Symbol

BTC-EUR Coinbase -12.47 0.0 -11.09 0.0 -140.63 0.0 -13.96 0.0 1.20 0.01
BTC-USD Coinbase -8.78 0.0 -6.45 0.0 -155.73 0.0 -11.24 0.0 1.31 0.01
BTC-USDT Coinbase -16.93 0.0 -10.71 0.0 -80.78 0.0 -17.47 0.0 0.55 0.01
BTCFDUSD Binance -11.71 0.0 -11.59 0.0 -182.80 0.0 -12.29 0.0 0.52 0.01
BTCUSDC Binance -8.16 0.0 -8.00 0.0 -154.23 0.0 -12.17 0.0 1.30 0.01
BTCUSDT Binance -14.61 0.0 -6.92 0.0 -196.81 0.0 -15.43 0.0 0.83 0.01
ETH-EUR Coinbase -16.09 0.0 -13.06 0.0 -83.99 0.0 -17.81 0.0 0.56 0.01
ETH-USD Coinbase -13.68 0.0 -6.69 0.0 -100.87 0.0 -14.71 0.0 0.93 0.01
ETH-USDT Coinbase -15.74 0.0 -12.87 0.0 -132.75 0.0 -16.55 0.0 0.53 0.01
ETHFDUSD Binance -11.32 0.0 -5.17 0.0 -169.32 0.0 -11.88 0.0 0.34 0.01
ETHUSDC Binance -7.50 0.0 -4.98 0.0 -140.26 0.0 -10.56 0.0 2.32 0.01
ETHUSDT Binance -11.03 0.0 -4.20 0.0 -199.37 0.0 -11.34 0.0 0.41 0.01

Note: The table presents the results of stationarity tests for the spread series of 12 cryptocurrency markets.
Both the Augmented Dickey-Fuller (ADF) and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests were
run. The ADF test consistently rejects the null hypothesis of a unit root for all series, while the KPSS test
gives mixed results, with some markets showing signs of non-stationarity. These tests were performed on
spreads calculated at 15-minute intervals, collected from 1 July 2024 to 31 March 2025.

Table A.2: Results of the Box-Pierce and Ljung-Box Tests for Autocorrelation in Spread
Series

Box-Pierce Stat Box-Pierce p-value Ljung-Box Stat Ljung-Box p-value
Symbol

BTC-EUR Coinbase 20427.45 0.0 20431.93 0.0
BTC-USD Coinbase 40414.08 0.0 40424.82 0.0
BTC-USDT Coinbase 22796.32 0.0 22800.14 0.0
BTCFDUSD Binance 45298.06 0.0 45310.39 0.0
BTCUSDC Binance 71069.75 0.0 71089.14 0.0
BTCUSDT Binance 4889.24 0.0 4890.56 0.0
ETH-EUR Coinbase 23845.75 0.0 23849.67 0.0
ETH-USD Coinbase 26605.78 0.0 26610.90 0.0
ETH-USDT Coinbase 8759.59 0.0 8761.13 0.0
ETHFDUSD Binance 47721.17 0.0 47733.93 0.0
ETHUSDC Binance 88257.49 0.0 88281.88 0.0
ETHUSDT Binance 10472.65 0.0 10475.42 0.0

Note: This table presents the test statistics and p-values from the Box-Pierce and Ljung-Box tests applied to
the spread series of various cryptocurrency pairs (symbols). Both tests assess the presence of autocorrelation
in the spread data up to a specified number of lags. These tests were performed on spreads calculated at
15-minute intervals, collected from 1 July 2024 to 31 March 2025.
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Figure A.2: Partial Autocorrelation (PACF) Plots for Cryptocurrency Market Spreads

Note: The table shows the results of autocorrelation analysis for the spread series of 12 cryptocurrency
markets using the Box-Pierce and Ljung-Box tests. Both tests indicate significant autocorrelation in the
spread series, with p-values of 0.00 across all markets. This highlights the persistence of spread values over
time and suggests predictive patterns within liquidity dynamics. These tests were performed on spreads
calculated at 15-minute intervals, collected from from 1 July 2024 to 31 March 2025.

37



Work
ing

pa
per

Figure A.3: Day-of-Week Analysis of Spread Patterns for Cryptocurrency Pairs
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Table A.3: Stationarity Test Results for Cryptocurrency Market Log-Spreads

Symbol ADF DFGLS PP ZA KPSS
Stat p-val Stat p-val Stat p-val Stat p-val Stat p-val

BTC-EUR Coinbase -7.66 0.00 -6.24 0.00 -164.22 0.0 -12.16 0.00 0.94 0.01
BTC-USD Coinbase -12.15 0.00 -9.46 0.00 -194.13 0.0 -13.30 0.00 0.12 0.09
BTC-USDT Coinbase -9.51 0.00 -7.36 0.00 -181.48 0.0 -11.25 0.00 1.06 0.01
BTCFDUSD Binance -12.10 0.00 -10.78 0.00 -198.12 0.0 -12.72 0.00 0.24 0.01
BTCUSDC Binance -9.84 0.00 -9.84 0.00 -210.24 0.0 -12.12 0.00 1.00 0.01
BTCUSDT Binance -8.46 0.00 -4.68 0.00 -212.85 0.0 -15.85 0.00 0.56 0.01
ETH-EUR Coinbase -8.49 0.00 -8.49 0.00 -164.50 0.0 -11.90 0.00 0.75 0.01
ETH-USD Coinbase -9.64 0.00 -3.02 0.00 -195.71 0.0 -11.06 0.00 1.12 0.01
ETH-USDT Coinbase -10.44 0.00 -10.43 0.00 -176.39 0.0 -11.33 0.00 0.46 0.01
ETHFDUSD Binance -9.55 0.00 -7.93 0.00 -200.07 0.0 -12.17 0.00 0.87 0.01
ETHUSDC Binance -5.94 0.00 -4.57 0.00 -200.36 0.0 -8.07 0.00 3.45 0.01
ETHUSDT Binance -8.09 0.00 -7.87 0.00 -224.38 0.0 -10.91 0.00 1.59 0.01

Note:

Table A.4: Results of the Box-Pierce and Ljung-Box Tests for Autocorrelation in Spread
Series

Box-Pierce Stat Box-Pierce p-value Ljung-Box Stat Ljung-Box p-value
Symbol

BTC-EUR Coinbase 70065.93 0.0 70086.17 0.0
BTC-USD Coinbase 9773.53 0.0 9776.21 0.0
BTC-USDT Coinbase 36909.35 0.0 36919.56 0.0
BTCFDUSD Binance 33251.93 0.0 33261.11 0.0
BTCUSDC Binance 30663.87 0.0 30672.48 0.0
BTCUSDT Binance 36945.82 0.0 36956.38 0.0
ETH-EUR Coinbase 56426.98 0.0 56442.87 0.0
ETH-USD Coinbase 27926.11 0.0 27933.98 0.0
ETH-USDT Coinbase 37809.88 0.0 37820.30 0.0
ETHFDUSD Binance 32144.03 0.0 32152.84 0.0
ETHUSDC Binance 55566.84 0.0 55582.72 0.0
ETHUSDT Binance 22205.16 0.0 22211.49 0.0

Note: This table presents the test statistics and p-values from the Box-Pierce and Ljung-Box tests applied to
the spread series of various cryptocurrency pairs (symbols). Both tests assess the presence of autocorrelation
in the spread data up to a specified number of lags. These tests were performed on spreads calculated at
15-minute intervals, collected from 1 July 2024 to 31 March 2025.
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Figure A.4: Partial Autocorrelation (PACF) Plots for Cryptocurrency Market Spreads

Note: The table shows the results of autocorrelation analysis for the spread series of 12 cryptocurrency
markets using the Box-Pierce and Ljung-Box tests. Both tests indicate significant autocorrelation in the
spread series, with p-values of 0.00 across all markets. This highlights the persistence of spread values over
time and suggests predictive patterns within liquidity dynamics. These tests were performed on spreads
calculated at 15-minute intervals, collected from from 1 July 2024 to 31 March 2025.
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