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Abstract

Reinforcement learning (RL) agents typically optimize objective reward functions to achieve task perfor-
mance. However, in real-world decision-making, in financial contexts, agents often operate under bounded
rationality and are influenced by cognitive biases. This paper explores how some behavioral biases (includ-
ing varying attitude towards risk and loss) can be systematically embedded into the reward functions of
RL agents, moving beyond the view of biases as noise to be eliminated. We also propose a framework for
testing biases such as overconfidence and intelligence into financial RL testing process. We further analyze
how these modifications affect learning dynamics, agent behavior, and economic outcomes. We find that
reward function design strongly shapes RL agent behavior: risk-seeking agents achieve higher returns in
favorable markets but incur elevated downside risk, while risk-averse agents provide stable yet less prof-
itable outcomes. Additionally, we observe that agents trained on extended datasets without volatility-aware
objectives exhibit overconfidence-like behaviors, overfitting to past trends and reducing adaptability.

Keywords: financial markets, deep learning, reinforcement learning, forecast comparison, reward
functions

1. Introduction

Reinforcement learning has achieved large success in domains ranging from game playing through
robotics to financial modeling. At its core, it relies on an agent interacting with an environment to max-
imize cumulative rewards, with the reward abstraction serving as the agent’s primary source of feedback.
However, the implementation of this reward function is both critical and non-trivial, often determining the
agent’s learning dynamics, convergence and ultimately - performance.

Traditionally, reward functions are constructed to reflect objective task performance (Sutton & Barto,
2020). Yet, in many real-world decision-making scenarios, agents - both artificial and human - operate under
bounded rationality and are influenced by cognitive biases (Jara-Ettinger et al., 2016; Leibo et al., 2017). In
economics and psychology, these biases are well-documented, often leading to systematic deviations from
optimality, i. a. prospect theory (Tversky & Kahneman, 1974), time-inconsistent and endowment-biased
preferences (Kopczewski & Bil, 2024; O’Donoghue & Rabin, 1999) or herding (Banerjee, 1992), among
others, have been shown to influence human decision processes.

Our work explores how such behavioral biases can be explicitly embedded into the reward functions
of reinforcement learning agents. Rather than treating biases as noise or irrationality to be eliminated, we
investigate the potential of using them to guide learning, imagining that real agents - investors, also follow
similar, biased reward systems. Beyond shaping reward functions, biases can be modeled through exposure
to biased data, overtraining to simulate overconfidence, or modifying agent’s action space to reflect heuristic



decision patterns. This perspective opens new directions in financial reinforcement learning design: agents
that simulate human-like behavior for modeling of human-driven systems.

Our contribution is two-fold. First, we demonstrate how incorporating behavioral biases, such as over-
confidence, risk and loss aversion, into reinforcement learning reward functions influences learning param-
eters and the training dynamics in real environments. Second, we evaluate their impact on economic criteria
and the agent’s capacity to replicate human-like strategies in uncertain, noisy domains.

2. Literature review

Early applications of reinforcement learning (RL) in financial forecasting laid the foundation for mod-
ern algorithmic trading systems. Notably, Moody and Saffell (2001); Nevmyvaka et al. (2006) pioneered
adaptive learning models that leveraged past market data to optimize trading strategies dynamically. These
early studies framed financial trading as a sequential decision-making problem, where RL agents learned
policies to maximize a predefined reward function, typically tied to profit or risk-adjusted returns. Building
on these foundations, subsequent research expanded RL applications into more complex trading environ-
ments, e.g. Chan and Shelton (2001) developed a simulation model focusing on the trading dynamics of a
single security. Their framework allows the market maker to achieve multiple objectives, such as maximiz-
ing profits and minimizing the bid-ask spread. Another paper by Nevmyvaka et al. (2006) applies RL to
high-frequency trading, using limit order book data, emphasizing the need for adaptability in rapidly evolv-
ing financial markets. Avellaneda and Stoikov (2008) proposed a stochastic control framework for a market
maker operating in a limit order book. The trader chooses bid and ask quotes dynamically to maximize ex-
pected utility of terminal wealth, modeled using exponential utility. In these early implementations, reward
functions were primarily designed to optimize standard performance metrics, such as cumulative returns or
Sharpe ratios, without incorporating behavioral considerations.

Reward function design has undergone significant refinement since then. Early approaches often relied
on cumulative reward signals rooted in basic reinforcement learning setups (such as cumulative profit), as
formalized by Sutton and Barto (2020), but such naive formulations often led to instability or unintended
behavior in complex environments. As such, Nevmyvaka et al. (2006) proposed that incorporating execution
costs and market impact into the reward structure improves real-world robustness, while Avellaneda and
Stoikov (2008) introduced a utility-based reward framework where a market maker maximizes the expected
exponential utility of terminal wealth, explicitly penalizing inventory risk. More recently, more researchers
are developing topics like reward shaping and programmatic reward design that encode domain constraints
directly into the learning process, while reward machines allow modular specification of complex objectives
(Camacho et al., 2019; Icarte et al., 2022). An alternative to manually designing reward functions is called
inverse RL, which seeks to infer the reward structure from observed expert behavior. Ng and Russell
(2000) first formalized inverse RL as the problem of recovering an unknown reward function given expert
demonstrations. Abbeel and Ng (2004) later developed practical algorithms that enabled RL agents to mimic
expert behavior in robotics. More recently, Google introduced Receding Horizon Inverse Planning (RHIP)
algorithm demonstrating scalability in inverse RL by efficiently estimating reward functions in large-scale
applications like Google Maps, enabling more accurate modeling of user behavior Barnes et al. (2024). All
these advancements reflect a broader trend - reward functions are no longer just performance measures but
central tools for controlling agent behavior in sparse reward environments.

With the advent of deep reinforcement learning there has been increasing interest in reward function
design, particularly in aforementioned environments. Vecerik et al. (2018) demonstrated that auxiliary re-
wards, such as predicting future states or leveraging expert demonstrations, significantly improved sample
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efficiency in deep RL. Similarly, Burda et al. (2018) introduced curiosity-driven rewards, an intrinsic moti-
vation mechanism that encouraged exploration in sparse-reward environments. Despite these advances, fi-
nancial applications of RL have remained largely reliant on conventional reward formulations. Historically,
trading agents have been designed to optimize monetary reward signals, such as immediate profit or risk-
adjusted returns. More recently, Deng et al. (2017) demonstrated that deep RL could learn effective trading
policies purely from raw financial data, optimizing reward functions based on immediate returns without
requiring intricate reward engineering. Several contemporary studies continue to adopt this approach. For
instance, Otabek and Choi (2024) applied Deep Q-Networks to optimize Bitcoin trading strategies, using a
simple financial reward function centered on maximizing trading profits. Similarly, Cao et al. (2024:) ex-
plored high-frequency trading strategies using Proximal Policy Optimization, employing a straightforward
reward function based on the Sharpe ratio. Additionally, Goluža et al. (2024) introduced a novel RL-based
framework that integrates imitation learning to mitigate market noise while prioritizing financial gains.

Despite the success of these approaches in financial applications, several limitations arise from their
reliance on traditional reward formulations. Financial markets are not solely driven by rational decision-
making, but are influenced by cognitive and emotional biases exhibited by market participants. Standard
RL models typically assume agents behave as utility-maximizing rational actors, consistent with classical
economic theory (Von Neumann & Morgenstern, 1944). However, such assumptions fail to capture the
behavioral biases observed in real-world trading. Behavioral finance literature has extensively documented
systematic deviations from rationality, including cognitive distortions that significantly impact financial
decision-making (Barberis & Thaler, 2002; Kahneman & Tversky, 1979). These include: (a) loss aversion
- a disproportionate sensitivity to losses relative to gains (Kahneman & Tversky, 1979); (b) risk aversion -
a tendency to overweigh potential negative outcomes, leading to suboptimal avoidance of uncertainty (Pratt,
1964); (c) overconfidence - the overestimation of one’s information accuracy or forecasting ability, often
resulting in excessive trading (Fischhoff et al., 1977; Odean, 1998); These behavioral distortions suggest
that effective modeling of financial agents requires reward functions that can account for bounded rationality
and cognitive biases, potentially through hybrid RL-behavioral frameworks.

Prospect theory (Kahneman & Tversky, 1979), which laid ground for many other biases to be found,
introduced a value function that is concave for gains, convex for losses, and steeper for losses, encapsu-
lating the essence of loss aversion. Several researchers have incorporated prospect theory - based reward
structures into RL models to simulate more human-like trading behavior. For instance, Prashanth, L.A.
et al. (2016) modified reward functions to weight gains and losses asymmetrically, allowing RL agents
to exhibit greater conservatism during market downturns. In other paper Ramasubramanian et al. (2021)
introduced a cumulative prospect theory utility function instead of expected returns, showing that their
approach is better aligned to mimick human investors. Other studies have explored risk-sensitive reinforce-
ment learning, where agents are incentivized not just to maximize expected returns but to account for down-
side risk. Mihatsch and Neuneier (2002) introduced risk-sensitive utility functions that penalized volatility,
while Eriksson and Dimitrakakis (2019) experimented with utility-based functions explicitly modeling risk
preferences. Similarly, Chow et al. (2015) proposed Conditional Value-at-Risk-constrained reinforcement
learning. Another promising direction involves multi-objective RL, where hybrid reward functions balance
traditional performance metrics with behavioral bias corrections. Peschl et al. (2021) proposed a system for
combining rewards from several different experts, they present their results on tasks that require an agent
to act and choose between conflictive choices. In another study, Fulfillment Priority Logic was introduced,
a framework that allows to define logical formulas representing intentions and priorities in multi-objective
RL, which agents should follow. Interdisciplinary approaches that merge neuroeconomics and RL have
also emerged. Studies such as Schultz et al. (1997) have examined how dopamine neurons encode re-
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ward prediction errors or newer paper by Wang et al. (2018) proposes that the prefrontal cortex functions
as a meta-reinforcement learning system, dynamically adjusting reward-based learning strategies based on
context and past experiences.

An additional psychological perspective relevant to reward function design in RL is provided by Re-
inforcement Sensitivity Theory (RST) (Corr & Cooper, 2016; Gray & McNaughton, 2007), which models
individual differences in sensitivity to reward and punishment through two key neuropsychological systems:
the Behavioral Inhibition System (BIS) and the Behavioral Activation System (BAS) (Carver & White,
1994). The BIS is sensitive to signals of punishment, uncertainty, and novelty, promoting avoidance behav-
iors and heightened sensitivity to potential losses, thus linking directly to phenomena such as loss aversion
and risk aversion. Conversely, the BAS responds to cues of reward and goal attainment, fostering approach
behaviors and correlating with overconfidence and risk-seeking tendencies. Empirical studies have demon-
strated that individual differences in BIS/BAS activation predict variation in financial risk-taking behavior
(Vermeersch et al., 2013), investment decision-making (Peterson, 2007), and susceptibility to biases such as
overconfidence (Krupić, 2017; Visser et al., 2019). Integrating RST-inspired mechanisms into RL models
could enable agents to exhibit heterogenous, human-like behavioral patterns under risk and uncertainty. For
example, Kim and Lee (2011) showed that individuals with higher BAS and low BIS tend to exhibit lower
loss aversion and higher willingness to take financial risks, while those with higher BIS demonstrate con-
servative gambling behaviors. These insights suggest that parametrizing reward functions or policy updates
to reflect varying BIS/BAS profiles could enhance the behavioral realism of RL agents in financial contexts,
but the application needs to be applied on an individual level

Recent studies have also begun to explore how RL models exhibit overconfidence bias, mostly on Large
Language Models (LLM) example. Hayes et al. (2024) demonstrated that RL-based decision-making mod-
els develop relative value biases, reinforcing overconfidence in suboptimal strategies. Similarly, Leng et al.
(2025); Li et al. (2024) showed that human-designed reward functions can inadvertently encourage over-
confident behaviors, leading to premature convergence on flawed policies. In case of Leng et al. (2025)
they also provide a way to reshape reward calculation so that the models are less overconfident. Yang
et al. (2024) proposed knowledge transfer techniques to mitigate overconfidence in large language models
(LLMs), suggesting that similar methods could be applied to RL environments. In the case of financial
markets overconfidence can be viewed through the lens of overfitting. Overfitting occurs when an agent
over-optimizes for a specific environment, leading to poor generalization in new conditions. We believe
that in RL, excessive training in a stable market environment can reinforce rigid, overfitted policies, pre-
venting adaptability in volatile conditions, which for a trained agent would resemble a human-like agent
that is biased with overconfidence.

What we also notice is that one critical area of research is the divergence between expected and realized
volatility in financial markets. Investors may overestimate short-term risks during turbulent periods (causing
excessive caution) or underestimate risk during stable conditions (leading to overconfidence). This effect is
particularly evident in the equity premium puzzle (Mehra & Prescott, 1985), where expected returns often
exceed what is predicted by standard risk models, suggesting that investors demand higher compensation
for perceived risk rather than actual risk. We believe that risk estimation functions in financial models
should explicitly incorporate investor expectations, as the divergence between expected and realized rewards
remains underexplored in financial reinforcement learning.

Building on aforementioned literature, we hypothesize that the choice and design of reward functions
will play a large role in shaping the performance and behavior of RL agents in financial markets. Dif-
ferent formulations encode distinct behavioral assumptions and optimization goals. We expect that agents
trained with varying reward structures will exhibit systematically different trading strategies and risk pro-
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files. Moreover, by parametrizing reward functions to reflect individual differences in risk preferences and
loss aversion, inspired by prospect theory and RST, we hypothesize that agents can be induced to mimic
diverse human-like decision-making styles, from highly conservative to risk-seeking. This would allow RL
agents to better model the heterogeneity observed among real-world investors. Our approach systematically
implements and compares multiple reward formulations grounded in economic and behavioral theories, in-
cluding prospect theory-based value functions, loss aversion penalties, risk-sensitive utility functions, and
volatility-aware objectives. In contrast to earlier financial RL studies that often relied on shallow models
or narrow market conditions, we utilize deep RL architectures and conduct experiments across an extensive
dataset encompassing both volatile and stable market periods.

Additionally, we hypothesize that overconfidence can manifest in RL agents through overfitting and
poor generalization. We expect that agents exposed to larger training datasets or subjected to extended
training durations will become less adaptable and more resistant to new market signals. Finally, we hypoth-
esize that reward functions incorporating expected volatility, rather than relying solely on realized returns,
will improve agent performance in out-of-sample tests, particularly in turbulent markets. Rather than view-
ing overfitting as a proxy for intelligence (Fernando et al., 2017; Gigerenzer & Brighton, 2009; Lake et al.,
2016), we argue that true intelligence is better reflected in an agent’s capacity to adapt to new information
and generalize across varying market regimes To investigate the emergence of overconfidence-like behavior,
we analyze how increased training data exposure and extended training durations affect agent generalization
and adaptability, testing whether agents trained on longer histories become overfit and resistant to new or
contradictory market signals.

3. Technical approach

3.1. Reinforcement Learning

Reinforcement Learning (RL) is a machine learning paradigm where an agent learns to make sequential
decisions by interacting with an environment. Through a trial-and-error process, the agent refines its policy
based on feedback received in the form of rewards, with the goal of maximizing long-term cumulative
rewards (Sutton & Barto, 2020).

Formally, RL problems are modeled as a Markov Decision Process (MDP), defined by the tuple (S , A, P,R, γ):

• S - the set of all possible states representing the environment;

• A - the set of all possible actions the agent can take;

• P(s′|s, a) - the transition probability function, which defines the probability of reaching state s′ after
taking action a in state s;

• R(s, a) - the reward function, providing scalar feedback for taking action a in state s;

• γ ∈ [0, 1] - the discount factor, which determines the relative importance of future rewards compared
to immediate rewards.

At each discrete time step t, the agent observes the current state st, selects an action at according to its
policy π(a|s), and transitions to a new state st+1 with probability P(st+1|st, at) . The agent then receives a
reward rt = R(st, at), which it uses to improve future decision-making. The agent’s objective is to maximize
the expected cumulative discounted reward, known as the return Gt, which is expressed as:
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Gt =

∞∑
k=0

γkrt+k. (1)

The optimal policy π∗ is the policy that maximizes the expected return Gt from any given state. To
achieve this, RL agents often rely on estimating an action-value function Q(s, a), which represents the
expected cumulative reward for taking action a in state s and following an optimal strategy thereafter. This
function satisfies the Bellman equation:

Q(s,a) = E
[
R(s, a) + γmax

a′
Q(s′,a′) | s, a

]
. (2)

Traditional RL methods struggle with high-dimensional state spaces and complex decision environ-
ments.

Modern deep RL algorithms fall into two broad categories: (a) value-based methods estimate Q∗(s, a)
using a deep neural network, updating the network weights using temporal difference learning; (b) poli-
cy-based methods learn a direct mapping from states to actions, optimizing policies via gradient ascent in
the policy space.

Hybrid approaches, such as actor - critic methods, combine both value and policy learning, offering a
more stable and efficient framework for training RL agents. As RL research advances, the reward function
remains a critical component, directly shaping the agent’s learning behavior and influencing the effective-
ness of learned policies.

3.1.1. Proximal Policy Optimization
Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a policy optimization algorithm that

improves stability in reinforcement learning by constraining the magnitude of policy updates. Instead of
applying large and potentially destabilizing updates to the policy parameters, PPO introduces a clipped
surrogate objective that ensures incremental improvements while preventing drastic policy shifts.

The foundation of PPO is the probability ratio, which measures the change in policy before and after an
update:

rt(θ) =
πθ(at|st)
πθold(at|st)

, (3)

where πθold(at|st) is the policy before the update, and πθ(at|st) is the updated policy.
To ensure stable updates, PPO employs a clipped surrogate objective:

LCLIP(θ) = Et
[
min
(
rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât

)]
, (4)

where Ât is the estimated advantage function, and ϵ is a hyperparameter that controls the range within
which updates are allowed. The clipping mechanism ensures that rt(θ) remains within a predefined range,
preventing excessively large policy updates that could degrade learning stability.

To estimate the advantage function Ât, PPO uses Generalized Advantage Estimation (GAE), which
smooths the advantage estimate across multiple time steps:

Ât = δt + (γλ)δt+1 + · · · + (γλ)T−tδT , (5)

where δt = rt + γV(st+1) − V(st) represents the temporal difference (TD) error, V(s) is the estimated
value function, γ is the discount factor, and λ controls the extent to which bootstrapped estimates influence
the advantage computation.
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PPO alternates between collecting trajectories through interactions with the environment and perform-
ing multiple epochs of stochastic gradient descent (SGD) on minibatches of data. To further encourage
exploration, PPO includes an entropy bonus, given by:

LENTROPY(θ) = −β
∑

a

πθ(a|s) log πθ(a|s), (6)

where β is a hyperparameter controlling the strength of the entropy regularization.
The final objective function combines:

1. the clipped policy loss to ensure stable updates,

2. the value function loss to improve state-value estimation, and

3. the entropy bonus to promote exploration:

L(θ) = Et
[
LCLIP(θ) − c1LVF(θ) + c2LENTROPY(θ)

]
, (7)

where LVF(θ) is the squared-error loss for the value function, and c1, c2 are weighting coefficients.
During training, PPO iteratively samples trajectories from the environment, updates the policy using

gradient ascent, and refines the agent’s decision-making by constraining policy shifts, leading to a more
stable and sample-efficient learning process.

3.1.2. Advantage Actor Critic
Advantage Actor-Critic (A2C) (Mnih et al., 2016) is an on-policy reinforcement learning algorithm

that integrates policy-based learning (actor) with value-based learning (critic) to improve stability and ef-
ficiency. A2C is a synchronized and computationally efficient variant of Asynchronous Advantage Actor-
Critic (A3C), designed for streamlined training.

A2C consists of two primary components:

(a) actor - learns a policy πθ(a|s) that maps states s to actions a, aiming to maximize the expected cumu-
lative reward;

(b) critic - learns a value function Vϕ(s) that estimates the expected return from a given state s, serving
as a baseline for policy updates.

The actor optimizes the policy using the policy gradient theorem, which states that the gradient of the
expected return can be expressed as:

∇θJ(θ) = Et
[
∇θ log πθ(at|st)Ât

]
, (8)

where Ât = Q(st, at) − V(st) is the advantage function, which determines whether taking action at in
state st leads to higher-than-expected rewards, Q(st, at) is the action-value function, estimating the expected
return of taking action at in state st and V(st) is the state-value function, estimating the expected return from
state st The advantage function Ât provides a learning signal to improve the policy by favoring actions that
perform better than expected, while discouraging suboptimal ones.

The critic updates the value function Vϕ(s) by minimizing the temporal difference (TD) error, defined
as:
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Lcritic(ϕ) = Et

[(
rt + γVϕ(st+1) − Vϕ(st)

)2]
, (9)

where rt is the reward received at time t, and γ is the discount factor determining the weight of future
rewards. This loss function ensures that the critic accurately estimates the expected future return.

To encourage exploration, A2C incorporates an entropy regularization term, defined as:

H(πθ) = −
∑

a

πθ(a|s) log πθ(a|s), (10)

which maximizes policy entropy, preventing premature convergence to suboptimal deterministic poli-
cies.

The total A2C objective function integrates the actor loss, critic loss, and entropy bonus, balancing
learning efficiency and exploration:

L(θ, ϕ) = −Et
[
∇θ log πθ(at|st)Ât

]
+ c1Et

[(
rt + γVϕ(st+1) − Vϕ(st)

)2]
− c2Et

[
H(πθ)

]
, (11)

where c1 and c2 are hyperparameters that balance the contributions of the critic loss and entropy regu-
larization. The first term corresponds to the actor’s objective, maximizing policy improvement. The second
term represents the critic’s loss, minimizing the TD error. The third term promotes policy exploration
through entropy regularization.

A2C alternates between sampling environment interactions and performing gradient-based updates, en-
abling stable training while efficiently leveraging both policy-based and value-based learning. Its syn-
chronous nature ensures that updates are computed deterministically, reducing variance and improving
sample efficiency compared to its asynchronous counterpart, A3C.

3.1.3. Reward functions
The reward function plays a fundamental role in shaping an agent’s behavior. It serves as the primary

feedback mechanism that guides the learning process, determining how an agent evaluates the desirability
of different actions in a given state (Ng et al., 1999). The goal of an RL agent is to maximize the expected
cumulative reward over time, as expressed in equation 1.

An appropriately designed reward function ensures that the agent learns a policy that is aligned with
the desired objectives. Conversely, a poorly defined reward function may lead to reward hacking, where the
agent discovers unintended strategies that optimize for the specified reward but fail to achieve meaningful
goals (Amodei et al., 2016).

The simplest form of a reward function assigns a numerical value to each state-action pair based on
direct performance metrics:

R(s, a) =

+1, if the action leads to a favorable outcome,
−1, if the action leads to an unfavorable outcome.

(12)

Other form does it in a continuous manner:

R(s, a) = f (·), (13)

where f is a function of an underlying metric, such as profit or return.
Another technique includes reward shaping that modifies the original reward function to accelerate

learning while preserving the optimal policy. One well-known technique is potential-based reward scaling
(Ng et al., 1999):
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F(s, s′) = γΦ(s′) − Φ(s), (14)

where Φ(s) is a potential function encoding additional domain knowledge. This technique ensures
policy invariance while guiding the agent towards desirable behaviors.

In financial reinforcement learning, reward functions are usually tailored to optimize trading strategies
or portfolio allocation. Some of the most commonly used reward formulations include:

• profit and loss (PnL) (Jiang et al., 2017; Théate & Ernst, 2021):

Rt = Pt − Pt−1, (15)

where Pt represents the portfolio value at time t. This formulation encourages the agent to maximize
absolute returns.

• risk-adjusted return:

– Sharpe ratio (Rodinos et al., 2023):

Rt =
E[rt]
σ[rt]

, (16)

where rt is the return at time t, and σ[rt] is the standard deviation of returns. The Sharpe ratio
ensures that the agent maximizes returns while minimizing volatility.

• risk-aware return:

– VaR-based (Ma & Yu, 2018):

Rt = E[rt] − λ · VaRα(rt, ..., rt−k), (17)

where λ is a risk penalty factor, and VaRα is the Value at Risk at confidence level α.

– CVaR-based (Ni et al., 2024; Ying et al., 2022):

Rt = E[rt] − λ · CVaRα(rt, ..., rt−k), (18)

where Conditional VaR (CVaR) accounts for extreme losses beyond the VaR threshold.

• behavioral finance-based (prospect theory) (Borkar & Chandak, 2021; Prashanth, L.A. et al., 2016;
Von Neumann & Morgenstern, 1944):

Rt = w+(rt) · v+(rt) − w−(rt) · v−(rt), (19)

where v+(rt) and v−(rt) are value functions for gains and losses and w+(rt) and w−(rt) are probability
weighting functions.

4. Experiment setting

Our proposal is to examine loss aversion and risk aversion by designing reinforcement learning (RL)
agents with reward functions that explicitly encode these biases. To incorporate it, we propose five distinct
reward functions (including two novel ones - based on VaR expectations), each designed to penalize exces-
sive risk-taking and emphasize preservation of capital. These reward functions adjust the agent’s sensitivity
to drawdowns and volatility, mimicking real-world investor behavior as described in Prospect Theory.

All of them include a standard reward E[rt] = Pt − Pt−1, however each adds factors on top of that:
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• risk-loving expected VaR-based - the agent is incentivized to take on higher risk by positively weight-
ing changes in VaR:

R = E[rt] + E(VaRt) − VaRt−1 (20)

• risk-averse expected VaR-based - the agent is negatively incentivized to take on higher risk by nega-
tively weighting changes in VaR:

R = E[rt] − E(VaRt) − VaRt−1 (21)

These reward functions reward for taking actions that increase or decrease the portfolio risk, instead
only looking on the portfolio risk itself.

• loss-averse - the agent is penalized when gaining losses, where penalty factor is equal to 1.5:

R =

E[rt] if E[rt] ≥ 0
1.5 · E[rt] if E[rt] < 0

(22)

• extreme loss-averse - the agent is extremely penalized when gaining losses, where penalty factor is
equal to 2.5:

R =

E[rt] if E[rt] ≥ 0
2.5 · E[rt] if E[rt] < 0

(23)

• prospect theory based - where agent scales gains and losses nonlinearly, making the agent sensitive
to small fluctuations while reducing the impact of extreme returns:

R =

E[rt]0.88 if E[rt] ≥ 0
2.25 · E[rt]0.88 if E[rt] < 0

(24)

Specific parameters of this function were hypertuned on a single asset (S&P 500) in one training
period (period I).

• benchmark - gains and losses are equally rewarding or penalizing the agent.

In contrast, we assume that overconfidence bias does not originate directly from the reward function,
but rather from the agent’s association with data. Specifically, we hypothesize that overfitting - where the
agent excessively tailors its strategy to a limited dataset - can serve as a proxy for overconfidence, leading
to excessive reliance on historical patterns. An overconfident agent may underestimate (or overestimate if
trained on volatile market period) tail risks, assuming that market conditions will remain consistent with
past observations. To test this hypothesis, we first evaluate the agent’s performance after different numbers
of training epochs, assessing whether prolonged training leads to reinforced overconfidence and overfitting
or contributes to better generalization. By analyzing how the agent’s behavior evolves with increasing
training duration, we aim to determine whether excessive exposure to the same dataset results in rigid
trading strategies that fail to adapt to new market conditions. Additionally, we investigate whether exposure
to a broader dataset (in form of broader time horizon that the agent learns on) mitigates overfitting-induced
overconfidence. We assume that intelligence of trading agents (and through that real-life investors) is linked
to the ability to generalize across diverse datasets, rather than rigidly adhering to patterns observed in a
single, limited environment.
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4.1. Technical details

We employ twelve different agents: two models (A2C and PPO) with six different reward functions. We
trained and tested these agents in four different time periods:

1. period I: training: 2004-01-01 to 2007-12-31; testing: 2008-01-01 to 2008-12-31;

2. period II: training: 2009-01-01 to 2012-12-31; testing: 2013-01-01 to 2013-12-31;

3. period III: training: 2014-01-01 to 2017-12-31; testing: 2018-01-01 to 2018-12-31;

4. period IV: training: 2019-01-01 to 2022-12-31; testing: 2023-01-01 to 2023-12-31;

In addition to that we also trained agents in expanding window fashion to test for overconfidence when
a broader dataset is introduced (this scenario is presented in the figure 1).

Figure 1: Schema of model training and testing in our approach.

The experiment was conducted on a dataset encompassing a diverse set of financial assets, grouped into
four categories:

• Indexes: (a) WIG20 (b) S&P 500 (c) FTSE 250 (d) Nikkei 225 (e) NASDAQ 100 (f) Dow Jones
Industrial Average (g) KOSPI (h) Shanghai Stock Exchange Composite (i) DAX (j) CAC 40

• Stocks: (a) Apple (b) Meta (only periods II, III and IV) (c) Amazon (d) Tesla (only period II, III and
IV) (e) Google (f) Netflix

• Currencies: (a) EUR/PLN (b) GBP/PLN (c) USD/PLN (d) EUR/USD (e) EUR/GBP (f) USD/GBP
(g) CHF/GBP (h) CHF/USD (i) EUR/CHF (j) CHF/PLN

• Goods: (a) Bitcoin (only periods III and IV) (b) Gold Futures (c) Brent Crude Oil Futures
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The agent’s performance was evaluated after several epochs: {5,000; 10,000; 25,000; 50,000; 75,000;
100,000; 150,000; 250,000}. Every model was trained ten times and the reported results were averaged.

To compare agents’ results we used four different metrics:

• annual return:
(

Vend
Vstart

) N
252−1

, where Vstart is endowment at the beginning of the test and Vend is final
portfolio value, and N is number of days in testing sample - in this scenario typically equal to 252,
full financial year assumed to be 252 days.

• sharpe ratio -
1
N
∑N

t=1(rt−r f )
σ(rt−r f ) ×

√
252, where rt is return at timestep t, r f is a risk free rate of return, here

assumed to be 0.

• number of trades - number of puts and calls made by an agent, regardless of quantity of shares;

• daily Value-at-Risk - is a VaR at 5% confidence level of all rates od return throughout testing period,
calculated as a 5% percentile.

5. Results

In table 1 we demonstrate how different reward functions shape trading behavior, influencing risk, re-
turn, and trading frequency in distinct ways.

The risk-loving and benchmark agents consistently exhibit the highest annual returns, particularly in
later periods. Risk-loving, achieving 16.38% in period IV, maintains the most aggressive approach, though
this comes with significantly higher daily Value at Risk (VaR), peaking at -0.0333 in period I Despite this
volatility, it also produces the highest Sharpe ratio (0.6486) in the final period, suggesting that risk-taking
is rewarded in favorable market conditions. Benchmark, while also generating strong returns, takes a more
balanced approach by executing a significantly higher number of trades, frequently adjusting positions to
optimize outcomes.

Conversely, extreme loss-averse and prospect theory prioritize downside protection at the expense of
profitability. Extreme loss averse struggles in early periods, with negative returns in period I (-1.86%), but
improves over time, reaching 4.53% in period IV. Its low VaR (-0.0031 in period IV) confirms a highly
risk-averse strategy. Similarly, prospect theory remains conservative, maintaining low volatility but failing
to capitalize on market gains, reflected in its consistently low Sharpe ratio (≈0.27-0.28).

Loss-averse and risk-averse strike a middle ground, delivering moderate returns while keeping risk in
check. Loss-averse improves its performance over time, reaching 3.99% in period IV, while risk-averse
maintains relatively steady performance across periods, balancing returns and trading frequency. These
models maintain higher trade counts, particularly risk-averse, which frequently executes over 270 trades
per period, reinforcing its cautious but adaptive approach.

Across time periods, all models perform poorly in period I, reflecting the challenges of pre-2008 market
conditions, with risk-loving and benchmark suffering the largest drawdowns. However, in later periods, par-
ticularly period II and IV, risk-seeking strategies clearly outperform, while loss-averse models lag behind.
The final period highlights the growing gap between these approaches, with risk-loving and benchmark
significantly outpacing others in both return and risk-adjusted performance.
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In table 2 we present results in regard to the RL model. Across all periods, the A2C model generally
performs better with longer training horizons, achieving its best performance at 250,000 steps, where it
reaches a Sharpe ratio of 0.505 and an annual return of 7.98% in the period IV. This trend suggests that
A2C benefits from extended exploration and refinement, gradually learning a more stable policy. The
improvement is particularly clear post-2008, as the model transitions from negative or marginal returns in
earlier periods to positive returns with improving risk-adjusted performance.

The PPO model, on the other hand, shows a different learning curve. It achieves competitive or superior
Sharpe ratios at much shorter timesteps, with its peak Sharpe value of 0.549 observed already at 5,000
steps. Although its absolute annual returns are generally lower than A2C’s at higher steps, PPO consistently
maintains lower risk exposure, as indicated by its more favorable daily VaR across nearly all periods and
step counts. This suggests that PPO develops more risk-aware policies more quickly, favoring stability over
aggressive return-seeking.

In terms of trading behavior, A2C models exhibit higher trading frequency across all timesteps, partic-
ularly as training progresses, with average trade counts reaching over 270 trades at 250,000 steps. PPO, in
contrast, reduces trading frequency steadily with more training, suggesting that its policies converge toward
more selective, long-term positioning.

When comparing performance across time periods, both models struggle in the pre-crisis (2004–2007)
period, often posting negative returns and Sharpe ratios. However, they both adapt more effectively to post-
crisis and post-pandemic periods, with the 2019–2022 window yielding the best overall results for both
A2C and PPO, highlighting how recent market dynamics may be more predictable or model-friendly.

In summary, A2C benefits from longer training and achieves higher returns, particularly in the most
recent data, while PPO converges faster to a stable policy and exhibits better risk control early on. These
findings suggest that A2C may be preferable in environments where sufficient training time and compute
are available, while PPO provides a more robust choice for quicker deployment with lower risk exposure.
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Currency pairs (results in table 3) generally offered stable and profitable environments for the trading
agent. Assets such as CHF/GBP, USD/GBP, and EUR/GBP achieved consistently strong Sharpe ratios,
often exceeding 1.0, especially in early and late periods. Their daily VaR values remained low throughout,
suggesting relatively limited downside volatility. This performance indicates that currencies are highly
model-friendly, offering frequent trading opportunities with predictable risk-return profiles.

In contrast, goods such as Brent Crude Oil Futures and Gold Futures showed much more variable
performance. Brent Crude exhibited significant drawdowns, particularly in the period I, with a Sharpe ratio
of –1.07 and the highest VaR across all assets. Gold performed better in recent years, especially in period
IV, where it posted a Sharpe ratio above 0.5, suggesting that commodities can offer strong returns, but only
under certain market conditions. Their performance is heavily dependent on macroeconomic regimes and
periods of volatility.

The stock indexes revealed a strong temporal dependency in model performance. Across most indexes,
returns were negative and risk-adjusted performance was poor in the period I. However, the same indexes
- such as the S&P 500, NASDAQ 100, and Dow Jones - rebounded significantly in later years, particularly
period IV, where Sharpe ratios frequently exceeded 1.0, with NASDAQ reaching 1.88, the highest among
all assets.

Finally, the individual stocks exhibited a wide range of behaviors. Early periods were generally unfa-
vorable, with Amazon, Apple, and Google experiencing negative returns and low Sharpe ratios. However,
by the period IV, these assets showed remarkable improvements. Apple and Netflix, in particular, reached
Sharpe ratios of 1.54 and 0.86, respectively, indicating strong returns with manageable risk. These patterns
reflect how high-growth tech stocks may become more learnable over time as trends solidify and volatility
becomes more structured.

Overall, the findings suggest that asset class and market maturity play crucial roles in the success of
reinforcement learning-based trading strategies. Currency markets emerge as consistently favorable for
learning-based agents, offering smooth trends and low-risk trades. Indexes and tech stocks, while volatile,
yield higher returns and stronger Sharpe ratios in more recent years. Commodities remain challenging,
offering potential upside only in select conditions. These distinctions underscore the need to adapt model
expectations and reward structures to the characteristics of each market.

233



Table 4: Comparison of performance between single-period and expanding-window training across models, asset classes, and
reward functions.

Model / Group Single-Period Training Expanding-Window Training
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A2C 0.0405 -0.0080 217.81 0.2674 0.0408 -0.0084 231.99 0.2663
Currencies 0.0024 -0.0035 343.56 0.0305 0.0021 -0.0036 350.77 0.0240

extreme loss-averse 0.0019 -0.0029 376.27 0.0312 0.0019 -0.0031 382.50 0.0133
loss-averse 0.0022 -0.0034 394.10 0.0294 0.0022 -0.0034 398.39 0.0251
prospect theory 0.0023 -0.0031 381.57 0.0295 0.0019 -0.0032 388.65 0.0224
risk-averse 0.0012 -0.0022 359.37 0.0255 0.0011 -0.0023 371.65 0.0214
risk-loving 0.0044 -0.0059 150.57 0.0429 0.0034 -0.0057 160.58 0.0395
benchmark 0.0022 -0.0035 399.47 0.0243 0.0023 -0.0037 402.84 0.0220

Goods -0.0251 -0.0116 73.47 -0.0526 -0.0313 -0.0132 98.60 -0.1036
extreme loss-averse -0.0018 -0.0040 46.35 0.0514 -0.0089 -0.0068 86.29 -0.0448
loss-averse -0.0216 -0.0089 91.41 -0.0116 -0.0222 -0.0105 117.70 -0.0546
prospect theory -0.0038 -0.0046 52.51 0.0170 -0.0144 -0.0079 87.80 -0.0520
risk-averse -0.0131 -0.0097 149.21 -0.0408 -0.0143 -0.0098 144.93 -0.0728
risk-loving -0.0693 -0.0238 10.29 -0.1773 -0.0685 -0.0232 13.95 -0.1937
benchmark -0.0414 -0.0187 91.09 -0.1542 -0.0598 -0.0209 140.93 -0.2036

Indexes 0.0398 -0.0082 168.02 0.3555 0.0373 -0.0082 185.92 0.3427
extreme loss-averse 0.0157 -0.0042 137.08 0.2470 0.0145 -0.0052 172.01 0.2263
loss-averse 0.0441 -0.0088 220.64 0.3775 0.0363 -0.0081 233.49 0.3565
prospect theory 0.0156 -0.0043 140.50 0.2543 0.0123 -0.0049 177.56 0.2463
risk-averse 0.0125 -0.0046 231.78 0.2813 0.0111 -0.0047 235.56 0.2628
risk-loving 0.0826 -0.0149 13.71 0.4831 0.0797 -0.0147 20.31 0.4644
benchmark 0.0683 -0.0124 264.44 0.4896 0.0700 -0.0119 276.60 0.5001

Stocks 0.1704 -0.0171 100.08 0.7995 0.1824 -0.0185 116.91 0.8662
extreme loss-averse 0.0242 -0.0049 69.47 0.4348 0.0649 -0.0085 100.05 0.6211
loss-averse 0.0710 -0.0097 116.14 0.6596 0.0980 -0.0124 131.16 0.7415
prospect theory 0.0304 -0.0062 84.86 0.4663 0.0768 -0.0101 114.19 0.6717
risk-averse 0.0888 -0.0108 161.70 0.8082 0.0828 -0.0122 158.09 0.7980
risk-loving 0.4165 -0.0361 45.16 1.2197 0.4012 -0.0345 90.01 1.1761
benchmark 0.3912 -0.0347 123.18 1.2086 0.3707 -0.0335 107.98 1.1885

PPO 0.0288 -0.0061 197.55 0.2277 0.0291 -0.0063 210.05 0.2259
Currencies 0.0020 -0.0026 283.97 0.0414 0.0022 -0.0027 296.42 0.0311

extreme loss-averse 0.0009 -0.0012 232.33 0.0291 0.0015 -0.0014 249.13 0.0398
loss-averse 0.0020 -0.0018 285.24 0.0719 0.0020 -0.0020 298.52 0.0061
prospect theory 0.0011 -0.0013 242.63 0.0166 0.0017 -0.0016 257.09 0.0398
risk-averse 0.0009 -0.0011 381.08 0.0519 0.0008 -0.0013 389.02 0.0318
risk-loving 0.0040 -0.0061 190.90 0.0439 0.0042 -0.0060 205.01 0.0457

Goods -0.0210 -0.0099 95.75 -0.0514 -0.0243 -0.0104 101.82 -0.0756
extreme loss-averse -0.0041 -0.0031 51.56 0.0604 -0.0035 -0.0036 60.01 0.0596
loss-averse -0.0062 -0.0040 63.95 0.0133 -0.0073 -0.0049 76.55 -0.0248
prospect theory -0.0043 -0.0031 51.34 0.0497 -0.0048 -0.0035 58.28 0.0332
risk-averse -0.0101 -0.0076 160.64 -0.1438 -0.0124 -0.0075 157.69 -0.1589
risk-loving -0.0703 -0.0243 65.91 -0.2069 -0.0716 -0.0243 70.07 -0.2150
benchmark -0.0310 -0.0172 181.10 -0.0812 -0.0464 -0.0185 188.30 -0.1476

Indexes 0.0253 -0.0061 166.56 0.2900 0.0269 -0.0064 179.85 0.2941
extreme loss-averse 0.0032 -0.0019 98.51 0.1577 0.0080 -0.0032 142.88 0.1897
loss-averse 0.0063 -0.0028 132.88 0.1981 0.0105 -0.0037 160.17 0.2058
prospect theory 0.0038 -0.0019 97.76 0.1782 0.0065 -0.0025 118.58 0.1908
risk-averse 0.0073 -0.0042 262.51 0.2576 0.0066 -0.0041 254.74 0.2527
risk-loving 0.0800 -0.0146 99.46 0.4902 0.0798 -0.0146 103.49 0.4908
benchmark 0.0514 -0.0111 308.26 0.4581 0.0500 -0.0102 299.24 0.4346

Stocks 0.1295 -0.0133 109.88 0.6777 0.1289 -0.0132 123.73 0.6934
extreme loss-averse 0.0189 -0.0029 53.33 0.2699 0.0234 -0.0036 58.68 0.2950
loss-averse 0.0250 -0.0040 70.77 0.4036 0.0410 -0.0054 80.41 0.4713
prospect theory 0.0187 -0.0029 53.59 0.2879 0.0217 -0.0034 57.26 0.3044
risk-averse 0.0386 -0.0062 154.49 0.6402 0.0375 -0.0065 153.75 0.6307
risk-loving 0.3942 -0.0351 122.10 1.2617 0.3587 -0.0320 184.68 1.2525
benchmark 0.2814 -0.0286 204.98 1.2028 0.2911 -0.0282 207.63 1.2068

Grand Total 0.0347 -0.0071 207.68 0.2476 0.0350 -0.0074 221.02 0.2461
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In table 4 we present the overconfidence bias imitation results, comparing single- to multi-period train-
ing. Overall, performance is relatively stable between the two approaches, with only slight differences in
annual return, risk exposure, and Sharpe ratio.

At a high level, A2C and PPO models show minimal differences in average outcomes. For instance,
A2C’s overall Sharpe ratio decreases slightly from 0.2674 (single) to 0.2663 (multi), while PPO’s per-
formance follows a similar trend. This suggests that expanding the training window does not necessarily
improve model robustness or risk-adjusted returns, at least when evaluated over similar validation periods.

When broken down by asset class, patterns vary. Stocks benefit modestly from multi-period training,
showing improved average Sharpe ratios and slightly higher trade counts. In contrast, currency pairs and
goods exhibit slightly worse Sharpe ratios under multi-training, indicating potential overfitting or diminish-
ing returns from added historical data in these markets. These effects may stem from higher stationarity in
currency markets, where recent data is more informative than long-term history.

Across reward functions, the differences are again small but reveal tendencies in model behavior. Risk-
neutral and risk-loving agents, which prioritize return over risk, tend to show slightly lower Sharpe ratios in
the multi-training setup, possibly due to overconfidence from past market trends being incorporated into the
policy. On the other hand, risk-averse agents (e.g., loss-averse, prospect theory) demonstrate more stable
or even slightly improved risk-adjusted performance in some asset groups, suggesting that multi-period
training may help them generalize more cautious policies.

An interesting observation arises in the stock index and individual stock categories, where multi-period
training leads to more trades on average, especially for risk-averse agents. This implies that broader histori-
cal exposure may help these models identify more nuanced price movements, though not always translating
into better Sharpe ratios.

In summary, while expanding the training window introduces a richer learning context, and should
lower overconfidence, its impact on performance is subtle and highly dependent on the asset class and
reward structure. In stable or stationary markets like currencies, single-period training may be sufficient.
For more complex or volatile assets like stocks, a broader training window can offer slight advantages,
particularly for more cautious strategies. However, the overall message is that more data does not guarantee
better results, and tailoring training schemes to market characteristics remains essential.

6. Summary

This study investigated how behavioral biases can be explicitly embedded into RL agents operating in
financial markets. While traditional RL relies on reward functions aligned with objective task performance,
real-world investors operate under bounded rationality and cognitive biases - such as loss aversion, risk
aversion, and overconfidence. Building on behavioral economics and psychology, we design RL agents
whose reward functions incorporate these biases, aiming to replicate diverse, human-like trading styles.
Rather than treating biases as irrational noise, we leverage them as mechanisms to guide agent learning,
better modeling the heterogeneity observed among real-world investors and human-driven markets.

To test these ideas, we implement a systematic experimental framework using deep RL agents (A2C and
PPO) trained with six distinct reward functions: risk-loving, risk-averse, loss-averse, extreme loss-averse,
Prospect Theory-based, and an unbiased benchmark. We also explore overconfidence by manipulating train-
ing regimes - varying the number of training steps and using both fixed-period and expanding-window train-
ing. Experiments are conducted across four historical market periods (2004–2022), using a broad dataset of
indexes, stocks, currencies, and commodities. The agents’ performance is evaluated using standard financial
metrics (annual return, Sharpe ratio, number of trades, Value-at-Risk), providing a comprehensive basis for
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analyzing how different bias-driven reward structures and training exposures affect learning, generalization,
and trading behavior.

Building on behavioral and economic theories, we hypothesized that the choice and design of reward
functions would substantially influence the performance and behavior of RL agents in financial markets.
Specifically, we expected that parametrizing reward functions to reflect varying risk preferences and loss
aversion would induce systematically distinct trading styles and risk profiles, from highly conservative to
risk-seeking. Additionally, we hypothesized that overconfidence-like behaviors would emerge via over-
fitting when agents are exposed to extended training horizons or larger datasets, and that volatility-aware
reward functions would enhance out-of-sample robustness, particularly under turbulent conditions.

Our results confirm that the choice of reward function dramatically shaped agent behavior and outcomes.
Risk-loving and benchmark agents achieved the highest returns, but exhibited high risk and volatility (high
daily VaR, frequent large drawdowns in 2004–2007). Conversely, extreme loss-averse and Prospect Theory-
based agents consistently protected against downside risk but failed to capture large market gains, resulting
in low Sharpe ratios and limited profitability. Balanced strategies such as loss-averse and risk-averse agents
delivered moderate, stable returns and higher trade frequencies, confirming the capacity of parametrized
reward functions to induce heterogeneous, human-like behaviors, consistent with our expectations.

The A2C model benefited from extended training, reaching its best Sharpe ratio (0.505) and annual
return (7.98%) in 2019–2022 after 250k steps. PPO converged more quickly, achieving competitive risk-
adjusted returns at shorter horizons, while maintaining lower VaR and more selective trading. This suggests
that PPO naturally develops more risk-aware policies with limited training, whereas A2C relies on pro-
longed exploration to optimize more aggressive strategies.

In terms of the asset class, currency pairs consistently provided favorable environments for learning-
based agents, with strong and stable Sharpe ratios and low downside risk, validating the hypothesis that RL
agents can model stable and predictable markets effectively. In contrast, commodities exhibited volatile,
regime-dependent performance; stock indexes and tech equities became highly learnable past 2008 crisis,
particularly in the 2019–2022 period where NASDAQ-100 reached a Sharpe ratio of 1.88.

Comparing single-period and expanding-window training revealed that while overall performance re-
mained similar, overfitting tendencies were observed in certain contexts. For instance, currency agents
and goods traders slightly underperformed under multi-period training - suggesting diminished adaptability
when exposed to extended histories, rejecting our overconfidence hypothesis. Stocks benefited modestly
from multi-period training, indicating that complex, non-stationary assets may benefit from richer historical
contexts, while stable markets favor more recent data. Risk-neutral and risk-loving agents exhibited slight
performance degradation under multi-period training, supporting the view that reward functions encoding
volatility awareness can mitigate overfitting risks.

Agents with volatility-aware components in their reward functions demonstrated more robust general-
ization across market regimes, particularly in stocks and commodities. These agents outperformed purely
return-seeking strategies in out-of-sample evaluations, validating the hypothesis that volatility-sensitive ob-
jectives improve robustness in turbulent environments.

In conclusion, the results strongly confirm that reward function design affects both trading behavior and
performance, enabling RL agents to mimic a wide range of investor archetypes. Moreover, overconfidence
and overfitting risks are real and measurable, particularly under extended training horizons and with com-
plex reward objectives. These insights extend prior work by demonstrating that deep RL agents - when
equipped with well-designed reward functions - can model the behavioral diversity and adaptive challenges
faced by real-world investors across heterogeneous markets and dynamic regimes.
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Figure 2: Actions taken by an agent while trading S&P 500 in 2023 testing sample for PPO model after training model for 5000
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Figure 3: Actions taken by an agent while trading S&P 500 in 2023 testing sample for PPO model after training model for 75000
timesteps for all tested reward functions (one of the model iterations

Figure 4: Actions taken by an agent while trading S&P 500 in 2023 testing sample for PPO model after training model for 250000
timesteps for all tested reward functions (one of the model iterations

241


	Introduction
	Literature review
	Technical approach
	Reinforcement Learning
	Proximal Policy Optimization
	Advantage Actor Critic
	Reward functions


	Experiment setting
	Technical details

	Results
	Summary
	Attachments

