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Abstract: 

 
Dividend payout is a crucial corporate finance decision. Predicting whether a stock will give a 

dividend or not is, therefore, of critical importance. In this research, we forecast equity dividends, 

special dividends, and equity dividend growth using machine learning techniques employing a 

large number of firm-year observations and sixty-nine features. We utilized logistic regression, 

decision trees, random forests, XGBoost, and Artificial neural networks for this purpose. Among 

these, tree-based models demonstrated the best performance. Random Forest and XGBoost are 

found to be the best models for the prediction task. Random forest gives 96.7% and 95.12% 

accuracies for equity dividends and equity dividend growth, respectively. While XGBoost gives 

99.90% accuracy for special dividends prediction. Our models also exhibited excellent 

performance across all 10 performance metrics. Additionally, we analyzed feature importance for 

each model and target variable. To the best of our knowledge, our study shows the highest 

accuracies among all published works for equity dividends and equity dividend growth. Further 

we are the first to predict special dividends using machine learning techniques. And finally our 

models do not use any market related variables so these models can be used for unlisted firms as 

well. 
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1 Introduction 

 
Dividend decisions are critical for both investors and firms. Investors exhibit varying preferences 

regarding dividend payments. While some favor companies that provide regular cash flows 

through dividends, others prefer firms that reinvest their earnings to generate long-term growth. 

Consequently, a company’s dividend payout policy can significantly influence investor decision- 

making. From the firm’s perspective, retaining profits is essential to meet capital needs and reduce 

reliance on costly external funding through equity or debt. This creates a strategic challenge to 

optimize the distribution of profits. The complexity of this decision underscores its importance in 

shaping corporate financial strategy. 

The COVID-19 pandemic had a significant impact on dividend payouts, with many firms 

reducing or suspending their dividends to maintain liquidity during the height of the crisis. A 

study of 8,889 firms across G-12 countries revealed that the proportion of dividend suspensions 

and omissions was markedly higher during the pandemic. However, the majority of firms 

managed to maintain or even increase their dividends, likely as a means of signaling financial 

stability and positive prospects to investors (Ali, 2021). 

However, after COVID-19, the situation has changed. Globally, dividend payouts reached a 

record $1.75 trillion US dollars in 2024, representing a 6.6% increase on a year-on-year basis, 

according to the Janus Henderson Global Dividend Index. This growth is well spread across 

sectors, including tech, banking, media, etc.. Globally, 88% of companies either raised or 

maintained their dividend payouts. The forecast for 2025 anticipates further growth of 5%, 

reaching a new record of $1.83 trillion US dollars, indicating sustained confidence in corporate 

earnings and a commitment to shareholder returns (Fund Society, 2025) 

In India, companies are spending a large chunk of their profits on dividend payouts, rewarding 

their shareholders. The year 2024 witnessed a 12% year-on-year rise in dividend payouts, 

reaching a record high of INR 2.2 trillion, the highest in at least six years (Bhalerao, 2024). Many 

large Indian firms like Infosys, Vedanta, Coal India, and Hindustan Zinc have raised their 

dividends in recent years, with several of them reaching record-high amounts (Reuters, 2024; 

Shah, 2024) 

Predicting whether a stock will pay a dividend is an important task. Some investors choose to 

invest in dividend-paying stocks. According to the Bird-in-Hand Theory, dividend-paying stocks 

are particularly favored by income-focused investors, such as retirees and conservative investors, 

who seek regular and predictable cash flows. These investors prioritize stability and lower risk, 

often preferring established companies that consistently distribute dividends. During market 
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downturns, even the non-conservative investors prefer dividend-paying stocks because they are 

generally less volatile (WalletInvestor, 2022). As per Agency Theory, investors prefer 

dividends because paying dividends can reduce agency problems by limiting the discretionary 

cash available to managers (Jensen & Meckling, 1976). The importance of dividends is so 

significant that Benjamin Graham once stated, “The true investor will do better if he forgets about 

the stock market and pays attention to his dividend returns and the operating results of his 

companies” (Graham, 1947). While this sentiment might be considered outdated by some, but 

many investors still prefer dividends. 

On the other hand, some investors do not prefer to invest in dividend-paying stocks. Reinvesting 

dividends can compound returns over time, appealing to long-term investors focused on wealth 

accumulation. .(WalletInvestor, 2022). The Tax Preference Theory posits that investors favor 

long-term capital gains due to tax advantages over receiving dividends, as dividends are taxed at 

the income tax rate, which is generally higher than the capital gains tax rate (Brennan, 1970; 

Litzenberger & Ramaswamy, 1979). According to Feldstein and Green (1979), businesses aiming 

to maximize the value of their shares could retain earnings instead of paying dividends and later 

distribute the funds to shareholders in a manner that allows for more favorable taxation as capital 

gains. 

So, as discussed above, different investors have varying proclivities towards dividends, making 

it extremely important to predict a company's dividend policy in the future. Existing literature on 

predicting dividends using machine learning is scarce, particularly in the Indian context. 

Moreover, the existing studies primarily focus on listed companies. Further, they do not account 

for special dividends or dividend growth trajectories. Thus, in this paper, we employed various 

kinds of algorithms and methods to fill this gap. 

We employ traditional statistical learning methods, advanced machine learning algorithms, and 

cutting-edge deep learning models on a large database to predict whether a company will change 

its dividend issuance. Further, dividends are classified as equity dividends and special dividends. 

Equity dividends are the regular periodic payouts. In contrast, special dividends are one-time 

distributions, typically resulting from extraordinary events, such as asset sales or exceptional 

earnings, and are not expected to recur regularly. In this study, we build separate models to predict 

both types of dividends. Additionally, we develop another model to predict whether a company’s 

equity dividend will rise in the future. Our research provides a robust comparative analysis of 

these methods, offering novel insights into predictive accuracy and efficiency. The study also 

conducts a thorough examination of feature importance, identifying the factors that have the most 

significant impacts on equity dividend payment, special dividend decisions, and dividend growth 

trends. It provides useful information for investors, policymakers, and business decision-makers. 
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Our study is based on an extensive dataset comprising 55,708 unique listed and unlisted 

companies, spanning up to 37 years, resulting in a total of 283,162 firm-year observations. We 

utilize a total of 69 features, which can broadly be classified into categories such as liquidity, 

profitability, leverage, investments, expenses, dividend history, other firm characteristics, 

industry-level influences, and macroeconomic indicators. We used a diverse set of models, 

including Logistic Regression, Decision Tree, Random Forest, XGBoost, and Artificial Neural 

Networks, to achieve maximum predictive accuracy. For optimal model performance, 

hyperparameter tuning and regularization techniques likes Lasso, Ridge and Elastic Nets were 

used for each model. 

We found that tree-based algorithms performed better than other models. For equity dividend 

prediction Random Forest classifier achieves the highest accuracy of 96.7%. For predicting the 

special dividend, XGBoost emerged as the best model, delivering an outstanding accuracy of 

99.90%. For the dividend growth prediction, the Random Forest model again proved to be the 

best, with an accuracy of 95.12%. We also analyzed the ROC curves of all the models to showcase 

their discriminative power. Additionally, we considered 10 other performance metrics including 

precision, recall, specificity, sensitivity, and F1 score. The models perform extremely well in 

terms of all these metrics. These results highlight the robustness and predictive power of tree- 

based models. 

Tree-based models demonstrated their superiority for our dataset due to their ability to effectively 

handle non-linear data. While the Logistic Regression is advantageous for inference, as it provides 

a direct insight into the nature and impact of each feature on the target variable, its performance 

was lower for prediction. However, it remains a reliable option, especially as we addressed 

multicollinearity and worked with a large-scale dataset. 

Furthermore, we validated the necessity of machine learning models in this prediction problem. 

Dividend Smoothing Theory suggests that the dividends are highly autocorrelated, so simple 

Time Series Models may be sufficient to predict dividends. We compare the performance on two 

datasets, one including dividend history features and the other excluding them. Although 

dividend-history variables were found to be important for prediction, they were not the sole 

drivers of accuracy, as the other features also significantly contributed to the model's 

performance. 

We contribute to the existing literature in several ways. First, our research is the first to forecast 

special dividends using machine learning models. Second, it is the first to categorize businesses 

according to whether or not their dividends will increase. Finally, our features do not include any 
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market-related variables, allowing our models to be used for predicting dividends of unlisted 

companies as well. 

The structure of the paper is organized as follows: section 2 reviews the relevant literature on 

dividend prediction. In section 3, we detail the data collection process and the criteria for sample 

selection. section 4 presents the methodology used in the study. The results of our analysis are 

discussed in section 5, and section 6 concludes with a summary of key findings along with 

industry applicability of this study and scope for future research. 
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2 Literature review 

 
Numerous classical theories regarding dividend payout policies offer differing perspectives. 

Some argue that dividend policy has no effect on the value of the firm, while others advocate for 

or against paying dividends. This topic has always been a subject of debate among academics and 

practitioners. The classical theories about dividend policies are discussed in Section 2.1. 

Additionally, many research articles highlight the influence of various financial factors, such as 

profitability, liquidity, and leverage, as well as economic conditions, board structure, corporate 

governance, macroeconomic factors, and industry-specific dynamics on dividend policies. These 

elements, which can significantly shape a firm’s approach to dividends, are comprehensively 

reviewed in Section 2.2. Furthermore, Section 2.3 examines similar machine learning based 

studies, drawing comparisons to provide a holistic view of the theoretical and empirical 

underpinnings of dividend policy decisions. 

2.1 Existing Theories about Dividend Policy 

 
The Dividend Irrelevance Theory, developed by Modigliani and Miller (1961), hypothesizes 

that a firm's market value is based on its earning power and the risk of its underlying assets, not 

on how these earnings are distributed between retained earnings and dividends, in a perfect capital 

market free from taxes, transaction costs, and information asymmetry. According to this theory, 

the value of a company is determined solely by its earning power and investment decisions, not 

by how profits are distributed between dividends and retained earnings. Investors can create their 

own "homemade dividends" by selling shares if they desire cash, making the firm's dividend 

policy immaterial to shareholder wealth. This view assumes that any dividend payout will result 

in a corresponding drop in share price, leaving investors indifferent between dividends and capital 

gains 

The Bird-in-the-Hand Theory, by Lintner (1965) and Gordon (1959), asserts that dividends are 

relevant to a firm's value because shareholders prefer the confidence of current dividends over the 

doubt of future capital gains. According to this theory, since current dividends are seen as less 

risky than possible future gains, investors place a higher value on companies that pay dividends. 

As a result, firms with higher dividend payouts may experience higher market valuations, since 

investors are willing to pay a premium for the perceived reduction in risk 

Signaling Theory addresses the information asymmetry between company management and 

outside investors (Miller & Rock, 1985). It argues that dividend announcements serve as signals 

to the market about a firm's future prospects. When a company increases its dividend, it signals 

management's confidence in the firm's future earnings and financial health, often leading to a 
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positive market reaction. Conversely, a reduction or omission of dividends may be interpreted as 

a sign of potential trouble. Thus, dividends are used as a communication tool to reduce 

information gaps and influence investor perceptions(Lotfi, T., 2019) 

The Agency problem arises when there is information asymmetry and conflict of interest between 

managers (agents) and stakeholders (principals). The Agency Problem is the main focus of the 

Agency Cost Theory. It makes the assumption that managers might not always act in the best 

interests of shareholders and could invest in low-return projects or use extra money for personal 

gain. By paying dividends, businesses restrict managers' access to free cash flow, which limits 

their ability to perform such duties. Dividend payments thus serve as a mechanism to align 

management's actions with shareholder interests and reduce agency costs, potentially increasing 

firm value. and hence, supporting Dividend Payout (Jensen & Meckling, 1976) 

Tax Preference Theory, introduced by Litzenberger and Ramaswamy (1979), implies that 

investors may favor capital gains over dividends because they have a more favorable tax treatment 

in many jurisdictions. Investors may favor businesses that retain earnings and offer returns in the 

form of capital appreciation because dividends are frequently taxed at a higher rate and may be 

subject to double taxation. As investors look to optimize after-tax returns, this preference may 

result in a higher valuation for companies with lower dividend payout ratios. 

According to Graham and Dodd (1934), Traditional Theory, shareholders value current 

dividends more than they do uncertain future capital gains. This perspective holds that since the 

stock market strongly supports liberal dividend policies, businesses that pay out large dividends 

are probably worth more on the market. According to this theory, dividend policies are important 

in determining a company's market value, particularly in situations where investors are risk-averse 

and seek quick returns(Lotfi, T, 2019). 

Walter's Model is a dividend relevance theory that examines the connection between a 

company's cost of capital and return on investment (ROI) in order to determine how valuable a 

company's dividend policy is. According to the model, a company should hold onto its earnings 

for reinvestment rather than distributing them as dividends if its return on investment (ROI) is 

higher than its cost of capital. On the other hand, the company ought to pay dividends if the return 

on investment is less than the cost of capital. Any payout ratio is ideal for businesses where return 

on investment (ROI) is equal to the cost of capital. Therefore, the model offers a framework for 

choosing the best dividend policy depending on the profitability and investment opportunities of 

the company. (Walter J. E., 1963) 



7 
 

Gordon's Model, also called the Dividend Growth Model, emphasizes the importance of dividend 

policy by asserting that a company's value is determined by the present value of its projected 

future dividends, which are assumed to grow at a constant rate. The model makes the case that 

higher dividend payouts result in higher share prices by taking into account both the growth rate 

of retained earnings and the investor's preference for current dividends. The idea that investors 

favor the certainty of dividends over the uncertainty of future capital gains is supported by 

Gordon's Model (Gordon, 1959), just like the Bird-in-the-Hand Theory. 

According to the Life Cycle Theory of dividends, a company's dividend policy is directly related 

to where it is in the corporate life cycle. According to this theory, young businesses in their early 

stages of development usually keep their earnings and pay little to no dividends because they have 

a lot of investment opportunities and need a lot of money to expand. A companies accumulate 

more free cash flow and encounters fewer Profitable investment opportunities as it grows older 

and its growth prospects decrease. Businesses are more likely to give shareholders larger 

dividends at this stage of maturity. This theory is supported by empirical research, which 

demonstrates that while younger, high-growth companies prefer to reinvest profits, more 

stabilized, profitable companies with steady earnings typically pay dividends(Mueller, 1972). 

The Clientele Effect Theory states that different groups of investors, or "clienteles," have varying 

preferences for dividend policies based on their personal financial needs, tax situations, and 

investment purpose. For instance, younger investors or those in higher tax brackets might favor 

companies that reinvest earnings for growth, preferring lower or no dividends, whereas retirees 

or income-focused investors might favor companies with high, consistent dividend payouts. 

Certain customers are attracted to a company by its dividend policy, and major adjustments to 

this policy may cause changes in the investor base, which could have an impact on the stock price 

of the company. The clientele effect features the importance for firms to maintain consistency in 

their dividend policies to retain their preferred investor base and avoid volatility in share prices 

resulting from abrupt changes in dividend distributions (Elton and Gruber 1970b). 

Even though these theories offer thorough insights, they frequently contradict one another, and 

no single theory can conclusively say whether or not a company should pay dividends. In the end, 

the choice is based on the particular financial situation of the company, expansion prospects, 

shareholder preferences, and outside variables like tax laws and market conditions. Furthermore, 

it is clear that dividend policy is a complex topic impacted by both quantitative measurements 

and qualitative factors like agency conflicts and signaling effects. Businesses need to carefully 

consider these factors because a bad policy could not only fail to maximize shareholder value but 

also have unforeseen effects on investor relations and market perception. 
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Although these theories provide comprehensive information, they are contradictory to each other, 

and no theory can definitely state whether a company should or should not pay dividends. 

Ultimately, the decision depends on the specific financial condition of the company, growth 

opportunities, shareholder attitudes, and external factors such as tax policies and market 

conditions. In addition, it is evident that dividend policy is a multifaceted issue influenced by both 

quantitative measures and qualitative considerations such as agency conflicts and signaling 

effects. Companies must think very hard about these because a poor policy may not only not 

maximize shareholder value but also have unintended consequences for investor relations and 

market perception as well. 

 

 

 

2.2 Impact of Key Features on Dividend Payout 

 
Size: 

Larger companies can raise money more easily compared to smaller ones, at a lower cost, and 

with fewer restrictions than small businesses. From this, it can be concluded that as a company 

grows, it does not have to rely solely on internal financing. As a result, large companies can afford 

to pay higher dividends to their shareholders. According to studies (Lloyd et al., 1985; Barclay et 

al., 1995; Reeding, 1997; Holder et al., 1998; Fama and French, 2001), the size of a company is 

positively correlated with payout levels and is one of the most important factors in determining a 

company’s dividend policy. Even during financial crises, large companies tend to maintain higher 

dividend payments. Due to dispersed ownership in larger firms, including banks, they may face 

higher monitoring costs. Dividends can help mitigate agency conflicts. Additionally, large 

companies generally have better access to capital markets, which enables them to maintain stable 

payouts. 

Profitability: 

One of the crucial factors that influences a business’s dividend decisions is its level of 

profitability. Dividends are paid based on the annual profits of the company; therefore, companies 

that are running at a loss generally do not pay dividends. The company’s earnings influence 

changes in dividend payments(Lintner, 1956). Jensen et al. (1992), Han et al. (1999), and Fama 

and French (2002) highlighted a positive relationship between profitability and dividend payouts. 

Similarly, Adaoglu (2000), Pandey (2001), and Aivazian et al. (2003) supported these findings. 

These studies are logical, as companies with profitable operations typically generate significant 

cash flows, which help sustain dividend payments. Myers (1984) and Myers and Majluf (1984) 

mentioned that when a firm wants to invest, it prefers internal financing first. If additional funds 
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are needed, the firm then considers external financing, starting with debt, followed by equity, to 

minimize transaction costs and the effects of information asymmetry. 

Growth and Investment Opportunities: 

Organizations focused on growth opportunities typically reinvest their profits into new projects 

rather than allocating them for dividend payments. Distributing dividends limits the funds 

available for expansion efforts. Companies often rely on internal financing, which is more cost- 

effective and flexible than raising funds through debt or equity, particularly in markets influenced 

by taxes, agency issues, or issuance costs. According to the pecking order theory, firms prioritize 

using internal resources to fund their projects. When firms have numerous investment 

opportunities, they are more likely to retain earnings rather than distribute them as dividends. The 

decision to allocate profits for shareholder payouts or reinvest them for growth creates a complex 

interplay between shareholder returns and business expansion. Elston (1996) observed that in 

imperfect markets, dividends significantly influence corporate investment decisions. Rapidly 

growing companies generally maintain lower dividend payout ratios, as noted by Myers and 

Majluf (1984). However, D’Souza (1999) found a positive but statistically insignificant 

correlation between growth and dividend distribution. 

Age: 

Companies aged beyond the set point need less funding for big capital deals because their core 

operations mature to stability. Mature firms generally lack several expansion projects, thus 

accumulating surplus cash that becomes available for shareholder dividend distribution. 

According to the “maturity hypothesis” explained by Grullon et al. (2002), established firms 

during their low-growth period maintain stable operations while needing less money for 

investments, so they tend to distribute excess profits. Older enterprises tend to pay dividends since 

they demonstrate greater willingness, together with the capability to do so. Economic research 

conducted by Barclay et al. (1995), Grullon et al. (2002), and Deshmukh (2003 presents evidence 

that business lifespan connects in positively correlated with dividend distribution practices. 

Younger enterprises retain their profits mainly to finance upcoming growth initiatives and future 

financial needs because they currently exist in their expansion phases. Researchers use firm age 

as a substitute variable that indicates company growth prospects. Older companies tend more 

frequently to have liberal dividend policies compared to other firms with equal conditions, as long 

as other variables remain consistent. It's accepted that this connection may present exceptions 

because different mature firms show different payment choices, yet this connection continues to 

stand. 
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Cash: 

Companies with large cash reserves often benefit from paying dividends in several ways. By 

distributing cash to shareholders, the funds available for management are reduced, encouraging 

companies to seek external financing more often. This process increases transparency since 

capital markets require companies to disclose more information. Dividends also make it easier to 

monitor management decisions, reducing the risk of funds being misused. Studies by Easterbrook 

(1984) and Moh'd et al. (1995) highlight that monitoring payments can lower agency costs. 

Holding on to excess cash can lead managers to invest in projects that reduce company value, as 

Jensen (1986) pointed out. Paying dividends helps solve this issue by limiting the control 

managers have over surplus funds, discouraging poor financial decisions. This approach fosters 

trust between managers and shareholders. Jensen also suggested that debt financing is an effective 

way to manage surplus cash, especially in bank-dependent financial systems. For example, 

Jordanian companies often rely on short-term bank loans, which require frequent fundraising. 

This creates pressure on managers to maintain transparency and ensures regular monitoring to 

prevent conflicts between managers and shareholders. 

Ownership (percentage held by insiders) : 

Managers as well as directors, as well as key executives' roles become directly impacted by firm 

performance as their ownership stake increases significantly. High executive ownership creates 

goal compatibility between senior leaders and shareholders, thus minimizing managerial 

conflicts. The authors Jensen and Meckling (1976) established that rising insider ownership 

reduces the necessity for dividends because it improves managerial oversight without any need 

to reassure shareholders. Insiders maintain company value as their priority because they share 

ownership with the business. Higher levels of insider ownership reduce the need for dividend 

payments because insider ownership works as an alternative method to control agency costs. 

Leverage: 

Financial leverage refers to the extent to which a firm relies on debt financing. Using debt 

enhances equity returns but introduces financial risks, notably from fixed fiscal obligations, which 

include interest payments. A business that fails to fulfill its debt obligations will face potential 

financial collapse, up to the point of being dissolved. Organizations that handle substantial debt 

prefer to conserve operational funds to fulfill debt requirements instead of sharing income with 

stockholders. Organizations with higher financial leverage need to keep cash reserves to fulfill 

debts, which reduces the resources available for dividend payments. When firms have high 

leverage, they normally minimize dividend distributions because it reduces their costs of external 

financing according to Rozeff (1982). In debt agreements, financial institutions frequently add 

agreements that forbid distributions to shareholders. A negative association exists between the 
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utilization of leverage and corporate dividend distribution activities. Multiple studies, such as 

Jensen et al. (1992) and Agrawal and Jayaraman (1994), and Gugler and Yurtoglu (2003) 

demonstrate that debt and dividends exist in an inverse relationship. 

Multiple assessment methods of leverage may produce different correlation outcomes. The 

research by Hariem Abdullah (2022) about Turkish financial companies demonstrates how the 

debt-to-equity ratio produces a positive statistical effect on dividend payout, besides its negative 

impact from total debt ratio measurements. However, the results were statistically insignificant. 

Market to book value: 

D’Souza (1999), shows a negative but insignificant relationship in the case of market-to-book 

value. The market-to-book value ratio impacts dividend policy by signaling a firm’s growth 

prospects and financial health. High ratios generally lead to lower dividends as firms reinvest 

earnings, while low ratios often result in higher dividends to reward shareholders and maintain 

confidence. 

Free cash flow: 

The decision about dividend policy depends heavily on free cash flow according to agency theory. 

Firms with all profitable investment opportunities utilized face agency problems because of their 

excess free cash flow between managers and shareholders. Managers frequently invest excess 

funds into unprofitable and negative NPV projects, because of which shareholders become 

dissatisfied and capital allocation becomes inefficient (Jensen, 1986). Dividend payments 

function well as a solution to limit this issue because they take money out of the manager's 

discretion. Managed cash distribution to shareholders reduces the tendency of excessive control 

by managers and helps financial choices better serve shareholder needs. These payments facilitate 

agency conflict management by reducing decision-making freedom for managers. 

The agency costs between principals and managers can be effectively reduced through debt 

financing, according to Jensen (1986). Debt incurs steadfast financial responsibilities on 

managers that require them to fulfill interest and principal payments while enforcing financial 

restraint. The financial environment of Jordan functions mainly through banks because this debt- 

based oversight functions effectively. The extensive use of short-term debt by Jordanian firms 

leads to bank scrutiny that causes regular monitoring of their operations. Frequent monitoring 

activities performed by financial institutions limit managerial freedom while potentially reducing 

the firm's requirement for dividend distributions as an agency control method. 
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Ownership: 

The costs related to agency problems decrease when insider personnel (managers, directors, and 

executive officers) boost their ownership levels in the firm, thus creating shareholder-alignment 

(Jensen and Meckling 1976). Firms that are partially controlled by their insiders require less 

dividend distributions because these stakeholders share ownership risks with shareholders. The 

presence of insider ownership (INSD) is expected to show negative effects on dividend payments 

(Rozeff, 1982; Jensen et al., 1992; Holder et al., 1998). 

P/E Ratio: 

The price-to-earnings ratio (PER) serves as a standard valuation measure to demonstrate possible 

future company growth according to Ang and Peterson (1984) and Glen et al. (1995). The market 

determines a company's worth through its evaluation of upcoming profit projections. 

Organizations with elevated PER status exhibit promising expansion potential, which drives them 

to hold back their earnings instead of distributing dividends. The preference of these companies 

to invest profit growth for business expansion creates a negative relationship between PER and 

dividend payout. Higher PER values lead to decreased possibilities of dividend payout increases. 

Risk: 

According to Pruitt and Gitman (1991), a company’s dividend policy can also be influenced by 

the risk it faces, especially the unpredictability of its yearly earnings. Companies with consistent 

earnings are generally in a better position to estimate future profits and, as a result, are more 

comfortable distributing a larger share of those profits as dividends. In contrast, firms with 

unstable earnings tend to be more conservative with payouts. Additionally, research by Rozeff 

(1982), Lloyd et al. (1985), and Collins et al. (1996) used the beta value as a measure of market 

risk and reported a significant negative link between beta and dividend payout. This means 

companies with higher market risk (higher beta) are less likely to pay substantial dividends. 

D’Souza (1999) supported this view with similar findings showing a negative and significant 

correlation between beta and dividend payments. 

Earnings: 

Given these considerations, this study proposes that earnings positively impact the dividend 

payouts of Australian companies. In line with the work of DeAngelo et al. (1992), a loss dummy 

variable is also introduced to assess how current losses affect dividend distribution. When a 

company reports a loss, it is generally expected to reduce dividend payouts, as this serves as a 

signal to investors that the firm’s long-term earnings potential may have weakened (DeAngelo et 

al., 1992). 
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Privately held companies: 

Private companies choose dividends infrequently, while their payouts mostly remain at lower 

amounts compared to public corporations. The distribution of ownership capital in private 

enterprises is highly concentrated thus minimizing agency concerns that would otherwise prompt 

managers to use dividends as signals of quality performance or control mechanisms. tờ La Porta 

et al., 2000; Michaely & Roberts, 2007) Public firms face higher pressure from separate 

ownership and management positions to distribute dividends to reassure shareholders of their 

financial stability. Private business owners can minimize dividend taxation by using tax-friendly 

methods to reward themselves, such as deducting payments from their income, which reduces 

dividends as an attractive distribution method (Enis & Ke, 2003). 

Standalone company and group company: 

Companies inside groups show higher preference for dividend distributions than independent 

entities do. The tax-free dividend transfer rules in Belgium enable effective surplus funding 

moves between affiliated entities resulting in this preferred method of moving funds between 

group companies. Group companies can utilize their internal financial systems because they allow 

sufficient movement of capital between subsidiaries so they can alleviate funding issues while 

supporting weaker units (Deloof, 2001). Within a group the nature of owner-ship arrangements 

between entities plays an essential role. Companies with minority shareholders distribute higher 

dividends to their shareholders as compared to fully owned subsidiaries. Rolling minority 

shareholders receive less protection because they struggle to exchange their shares in the public 

market thus increasing the chance of exploitation from controlling owners. To protect themselves 

against exploitation controlling owners usually want higher dividend distributions according to 

Faccio et al. (2001). 

Block holder: 

Blockholder ownership affects dividend payments in two possible ways. Shareholders with large 

ownership assets often eliminate the need for generous dividend distributions since their 

substantial shareholding makes management respect shareholder interests—this phenomenon is 

known as the substitution effect. Firms that have substantial blockholders tend to provide reduced 

dividend payments under this perspective. When blockholders possess substantial ownership 

shares smaller shareholders could ask for higher dividend payments to ensure their confidence 

and cultivate trust within the company structure. The outcome model proposed by La Porta et al. 

(2000a) supports the hypothesis that shareholders intensify pressure on companies to distribute 

profits. Blockholder ownership creates pressure on firms but this pressure intensifies until a 

specified threshold is reached. Past a specific threshold dominant shareholders tend to stay 

entrenched inside the firm since they choose to leave profits within the business rather than pay 
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dividends for their personal gain. As the ownership percentage rises to extremely high numbers 

blockholders eventually start paying dividends because they personally experience consequences 

from corporate financial misuse (Morck et al., 1988). 

Board: 

Through effective oversight of management, the board directors, along with their sub-committees, 

reduce agency-related issues by controlling company performance. Features of the board 

membership directly influence the dividend payout ratio (DPR) scale. Organizations using 

staggered boards have proven effective in generating higher dividend payout ratios according to 

Jiraporn and Chintrakarn (2009). Borokhovich et al. (2005) discovered in their study of 177 

Nigerian firms that the external director proportion generated a negative impact on dividend 

distributions. According to Al-Najjar and Hussainey (2009), outside directors in 400 non- 

financial companies were linked to reduced dividend payments. 

Board Gender Diversity: 

Through effective oversight of management, the board directors, along with their sub-committees, 

reduce agency-related issues by controlling company performance. Features of the board 

membership directly influence the dividend payout ratio (DPR) scale. Organizations using 

staggered boards have proven effective in generating higher dividend payout ratios according to 

Jiraporn and Chintrakarn (2009). Borokhovich et al. (2005) discovered in their study of 177 

Nigerian firms that the external director proportion generated a negative impact on dividend 

distributions. According to Al-Najjar and Hussainey (2009), outside directors in 400 non- 

financial companies were linked to reduced dividend payments. 

Board Meeting Frequency: 

Board organizations demonstrate diverse viewpoints regarding their meeting intervals to maintain 

corporate governance. The argument exists that regular board meetings improve operational 

transparency and diminish agency conflicts which produces more effective administration 

(Allegrini & Greco, 2011). The frequency of board sessions grows independence within the board 

and enhances directors' ability to evaluate managerial performance (Conger, Finegold, & Lawler, 

1998). Regular board oversight activities correlate to superior business results that yield increased 

dividend payments according to Ntim and Osei (2011). 

CEO, Board Chair’s Duality: 

Studies about the connection between the dual roles of CEOs as board chairs and corporate 

dividend policies yield conflicting results. According to Abor and Fiador (2013), researchers 

provide diverse findings regarding this subject. CEO dual leadership proved to negatively impact 

dividend payments in the analyzed Chinese companies, according to Zhang (2008). Research 
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conducted in Iran along with the U.S. and Malaysia did not establish any meaningful connection 

between these variables. 

Board Size: 

A board of appropriate size will enable successful business operations according to FRC (2012). 

The research by Ntim and Osei (2011) concludes that bigger boards enhance management 

monitoring which reduces agency problems and improves dividend levels. According to the 

substitution theory the addition of directors beyond optimal quantity results in defective 

coordination and communication which weakens oversight (Lipton & Lorsch, 1992). Research 

findings about the link between board size and dividends display conflicting outcomes because 

Mansourinia et al. (2013) and Kiel and Nicholson (2003) discovered a positive association 

between these variables. 

Audit Committee Size: 

According to Razaee (2008) independent audit committees need to be formed by companies to 

make financial reports presented to shareholders more reliable. The experience and expertise of 

multiple committee members allow larger audit committees to provide better oversight according 

to Kyereboah-Coleman and Biekpe (2006). According to Chen (2010) dividends serve as an anti- 

agency tool in organizations showing poor governance structures. 

Gross Domestic Product (GDP): 

The expansion of GDP shows a typical positive impact on business distributions to stockholders. 

The rise in Indonesia's property and real estate sector economic activity delivered better firm 

performance through higher return on assets (ROA) values which triggered businesses to raise 

their dividend payments. The better consumer demand along with improved corporate 

profitability enabled companies to make larger earnings distributions to shareholders (Romus et 

al., 2020). Enhanced corporate earnings in Ghana operated through GDP growth to enable 

businesses to give larger dividend distributions to shareholders (Mahama, 2023). 

Statistical significance between GDP growth and dividend payments does not exist constantly. 

Although GDP growth influences dividend decisions in certain circumstances, its effects do not 

necessarily extend equally to all business sectors throughout the world. 

Interest Rates: 

The payment of dividends tends to decrease when interest rates rise. Higher interest rates increase 

borrowing costs and diminish available company profits so shareholders receive less dividend 

payments. The rate hikes instituted by Bank Indonesia caused detrimental effects to company 

operational performance, which resulted in diminished dividend payouts according to Romus et 

al. (2020). Bangladeshi businesses increased their dividend distribution while interest rates 



16 
 

remained at lower levels because lower borrowing expenses benefited them. The debt-to-equity 

ratio provided the basis for Turkish researchers to establish that firms paid higher dividends at 

high interest rates perhaps because of financial or tax-related advantages (Abdullah, 2022). 

Inflation: 

Inflation affects dividend payments differently depending on the situation. In Ghana, companies 

were able to increase their dividends even during inflation because they raised their prices to keep 

profits steady despite higher costs (Mahama, 2023). However, in Kenya, high inflation reduced 

the actual value of company earnings, which led to lower dividend payouts (Mundati, 2013). 

These differences show how important it is for firms to manage inflation well and how much a 

company’s industry flexibility can influence its dividend policy. 

Market Capitalization: 

Market capitalization shows an association which typically works against dividend payments. The 

payout ratios in Ghana's market remained low because large corporations preferred to invest their 

earnings into business growth rather than distribute dividends (Mahama, 2023). Under the 

lifecycle theory companies grow more mature and tend to keep earnings for future development 

instead of sharing them with their stockholders. 

Exchange Rates: 

The way in which exchange rates fluctuate produces dissimilar impacts on companies' payment 

of dividends. The alterations of exchange rates in Ghana demonstrated no relevant or statistical 

correlation with corporate dividend payments (Mahama, 2023). Real estate companies in 

Indonesia experienced reduced profitability when their industry costs rose after the rupiah 

depreciated because import materials became more expensive (Romus et al., 2020). 

Industry: 

Each sector of business maintains its own dividend payment practice due to specific requirements 

like stable cash flow and investment requirements, and future growth potential. Utilities, together 

with consumer staples sectors, maintain steady income from mature markets thus tend to 

distribute higher dividends to shareholders through regular payments. Indian utility firms reduced 

their dividend payouts due to their high capital investment requirements, yet manufacturers who 

had excess cash gave larger distributions (Labhane & Das, 2015). Property and real estate 

organizations in Indonesia distribute moderate dividend payments through influences from 

economic conditions and market demand patterns (Romus et al., 2020). The way businesses 

distribute dividends depends on specific policies and tax regulations, which vary between 

different industries. The financial institutions of Turkey leveraged high individual dividends 

through tax shield benefits but the manufacturing organizations preferred debt repayment to 
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dividend distribution according to Abdullah (2022). The Belgian business groups employed tax- 

free intercompany dividends to optimize capital distribution between their group entities 

according to Michel (1979). 

 

 

 

2.3 Related Machine Learning Studies on Dividend Payout Policies 

 
Kumar and Sinha (2024) analyzed dividend payout determinants using data from 3,162 non- 

financial firms listed on the Bombay Stock Exchange (BSE) over the period 2006–2022. The 

study incorporated firm-level characteristics, macroeconomic indicators, and the effects of major 

crises, including the 2007–2008 financial crisis and the 2019–2020 COVID-19 pandemic. They 

used Various machine learning techniques, including Support Vector Machines (SVM), K- 

Nearest Neighbors (KNN), Logistic Regression, Random Forest, Linear Discriminant Analysis 

(LDA), and Decision Trees. The highest accuracy of 90.77% was achieved by Random Forest 

Classifier, 

Won et al. (2012) analyzed dividend policy prediction by utilizing companies' data listed in the 

Korea Exchange (KRX) market for the years between 1980 and 2000. A total of 137 firms with 

more than 15 years of dividend history were targeted to avoid any incompleteness or 

inconsistency in the data. Current dividend, historical and current stock price were some key 

predictor variables used. They used Classification and Regression Trees (CART), Chi-square 

Automatic Interaction Detector (CHAID), Quick, Unbiased, Efficient Statistical Tree (QUEST), 

and Genetic Algorithm Knowledge Refinement (GAKR) in their study. They obtained the best 

mean accuracy of 76.16% based on five-fold cross-validation. 

Longinidis and Symeonidis (2013) examined information for 246 companies traded on the Athens 

Exchange (ATHEX) from 2007 to 2009. Corporate governance matrices and financial ratios were 

employed as predictors. The techniques used were Logistic Regression, Neural Networks, and 

Decision Trees. They obtained the best accuracy of 93% on the whole dataset using Decision 

Trees, which was better than that of Neural Networks (82.52%). Net profit after tax emerged as 

the most powerful predictor in their work. 

McMillan (2014) examined dividend growth forecasting with panel data regression over 15 

nations from 1973 to 2023. The research emphasized the importance and influence of different 

microeconomic variables on dividend growth forecasting. 
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Ivașcu (2023) studied 2,059 listed firms from 56 nations. The techniques used were Logistic 

Regression, CART, Random Forest, XGBoost, and Random Forest with cost-sensitive learning. 

The research attained an accuracy of 82.7% with a recall of 55.4% and 94.1% for non-payers and 

payers, respectively. The results identified firm size and beta as the most significant determinants. 

Vodwal and Negi (2023) examined the determinants of dividend decisions by analyzing data from 

919 listed Indian non-financial firms over the period 1999 to 2019. Using Lasso regression, the 

study identified key predictors of dividend payouts, achieving an accuracy of 75.87%. They 

consider features included firm-specific factors such as profitability, size, free cash flows, 

liquidity, Tobin's Q, Altman’s Z-score, and minority interest, along with Macroeconomic features. 

Konak et al. (2024) investigated the factors influencing dividend decisions by analyzing data from 

37 companies listed on the Borsa Istanbul Stock Exchange (BIST) over the period 2011 to 2021. 

The study considered 26 features, encompassing both company-specific and macroeconomic 

determinants, to identify internal and external factors affecting dividend rates. They employed a 

hybrid Genetic Algorithm and Artificial Neural Network (GA-ANN) model, achieving an R- 

squared value of 0.88 and the lowest Mean Squared Error of 0.075. 

X. Wang et al. (n.d.) explored dividend forecasting using machine learning models by leveraging 

data from all US-listed firms between January 2002 and December 2022. They employed three 

nonlinear and non-parametric tree-based models: Random Forest (RF), Gradient Boosted Trees 

(GB), and Extreme Gradient Boosting Trees (XGB). Monthly analyst forecasts of Dividend Per 

Share (DPS) were obtained from the I/B/E/S summary file, alongside actual DPS values. 

Additionally, they included quarterly firm fundamentals, monthly stock prices and, and 

macroeconomic indicators. The study compared the forecast accuracy of machine learning models 

and analyst predictions for DPS across various forecasting horizons, including 1 month, 3 months, 

6 months, 12 months, and 2 years. Performance was evaluated using Mean Squared Error (MSE), 

demonstrating the effectiveness of machine learning approaches in dividend prediction. 

Elyasiani et al. (2019) conducted a study on dividend payout prediction using data from 314 

companies listed on the Tehran Stock Exchange (TSE), encompassing 1,725 firm-year 

observations during the period 2009–2016. The analysis incorporated predictors at the country, 

industry, and firm levels to assess their influence on dividend decisions. Using logistic regression, 

the study achieved a maximum R-squared value of 0.54 for predicting Dividend Per Share (DPS) 

and an accuracy of 89% for Dividend Propensity. 

Yaseen and Dragotă (2021) investigated the factors influencing dividend payout ratios by 

analyzing a dataset of 11,248 companies from 70 countries for the period 2008–2014. The study 

encompassed firm-level, macroeconomic, and sociocultural variables to identify key determinants 
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of dividend decisions. Various predictive models were developed, achieving a highest accuracy 

of 81.3% using Decision Tree classifier. 

Bhat (2022) examined dividend omission and its determinants using financial data comprising 

12,942 firm-year observations from 2013 to 2018. The study revealed that 55% of firms omitted 

dividends during this period. They used dimensions such as size, growth, efficiency, profitability, 

liquidity, and financial; employed, including Logistic Regression, Naïve-Bayes, Decision Tree 

Ensembles (Decision Tree, Random Forest, Gradient Boosting Trees), Support Vector Machines, 

and Artificial Neural Networks (Probabilistic Neural Network with RNSprop). Among these, the 

Artificial Neural Network achieved the highest accuracy of 82.36%, offering a robust framework 

for understanding the dynamics of dividend omission. 

In comparison to the existing literature, our study uses a much larger dataset than previous studies 

and excludes market-related variables to generalize the results for unlisted firms as well. 

Furthermore, our accuracy is significantly higher compared to these studies. Additionally, we 

predicted special dividend payouts and equity dividend growth. 
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3 Data 

 
For our study, we have collected firm-level, industry-level, and country-level data from various 

online sources. The majority of data is collected from Prowess Dx, which has a collection of data 

of a large number of Indian firms. From Prowess Dx we have collected firm-level data like 

standalone financial data, Equity Ownership Pattern, Board Meeting data, Board of Directors, 

BSE & NSE Stock Trading Data. We have collected some country-level variables from the World 

Bank and the IMF. 

Financial data of firm contains features like revenue, R&D expense, net property plant and 

equipment, Gross property plant and equipment, depreciation, interest expense, COGS, Tax 

expense, non-current liability, current liability, PAT, EBITDA, total capital, paid-up capital, long 

term and short-term borrowings, total dividend, equity dividend, interim dividend, final plus 

special dividend. Among the dividend-related variables are our primary target variables. 

Equity ownership data contains the percentage of promoters and institutional investors. Board 

meeting data includes the date, purpose, announcement date, etc., from which we have created a 

useful variable: the number of board meetings in a year from the board meeting date. The board 

of directors’ data contains the directors' names, the committee name, executive directors, 

independent directors, and the number of other owners. From that, we extracted data on the 

proportion of independent and executive directors and the total other ownership for a company in 

a particular year. Stock trading data contains information on market capital, P/E ratio (profit by 

earnings), EPS (earnings per share), etc. From this data, we have taken the mean of market capital, 

P/E, and EPS for a particular company and year. Additionally, we have extracted data that 

indicates whether the company is listed on the BSE or not. 

In the country level variables we have collected data from the World Bank and the IMF of the 

Indian economy. The data contains exchange rate, Final consumption expenditure as percentage 

of GDP, Gross Capital formation as percentage of GDP, Domestic credit to private sector (% of 

GDP), Market capitalization of listed domestic companies (% of GDP), Government expenditure 

percent of GDP (% of GDP), Real GDP growth (Annual percent change), GDP per capita, 

Inflation rate, end of period consumer prices (Annual percent change), Unemployment, total (% 

of total labour force). 

The data contains 55708 unique companies, out of which only 9460 companies are listed on the 

BSE. And out of that, 5534 companies are listed currently. So, the stock trading data, market 

capitalization, P/E, and EPS, the equity ownership data, and the board meeting data have very 
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limited information, so we did not consider the data of Stock, board meetings, and equity 

ownership. 

As the data was collected from different sources and different data frames, I have merged them 

based on year and company code on the firm’s financial data. Initially data has 6,84,806 data 

instances, which contain 54,871 different Indian companies. We have processed the raw data 

thoroughly and removed all kinds of ambiguities from the data, filtered it. The final merged data, 

which contains all the discussed variables than contains 4,21,300 rows in it. Still, the data has 

many null values in it. 

We analyzed panel data containing 54,871 firms, with data availability ranging from a maximum 

of 37 years to a minimum of 1 year. Since firms with only 1 year of data are not useful for our 

study, we excluded those firms from the dataset. The bar chart in Figure 1 visually represents the 

availability of firms' data. The height of each bar indicates the frequency of firms, while the X- 

axis represents the total number of years for which data is available. This visualization highlights 

the distribution of data availability across firms. 

 

Figure 1: Cumulative frequency of firm data availability 

 

 

The financial dataset has a raw feature that was not directly usable for analysis, so we created 

several derived features to enhance their utility. These included Leverage, Profitability, Asset and 

Investment, Liquidity, Dividend, and Expense-related Variables, which are mentioned in Table 1 

below. These derived features allowed for a more structured and comprehensive analysis tailored 

to the study's objectives. 
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Table 1: Aggregated Variables and Formula 
 

Sr. 

No. 
Variable Name 

 
Formula 

 Leverage   

1 TOTALDEBT = ST_BORR + LT_BORR 

2 LEV1 = TOTALDEBT / TA 

3 LEV2 = NCL / TA 

4 STLEV = ST_BORR / TA 

5 LTLEV = LT_BORR / TA 

6 MAT = LT_BORR / TOTALDEBT 

7 DELTATOTALDEBTRAT = (TOTALDEBT - LAG_TOTALDEBT) / TA 

8 DEBTISSUANCE = 1 if DELTATOTALDEBTRAT > 0.05, else 0 

9 DELTAPAIDUPCAP = PAIDUP_CAP - LAG_PAIDUPCAP 

10 MEDLEV1_IND = MEDIAN(LEV1) by NIC2DIG and FYEAR 

11 MEDLEV2_IND = MEDIAN(LEV2) by NIC2DIG and FYEAR 

12 OVERLEV1 = 1 if LEV1 > MEDLEV1_IND, else 0 

13 OVERLEV2 = 1 if LEV2 > MEDLEV2_IND, else 0 

 Profitability   

14 ROA = PAT / TA 

15 ROE = PAT / TOT_CAP 

16 EBITDAMARGIN = EBITDA / REV 

17 EBITMARGIN = (EBITDA - DEP) / REV 

18 PATMARGIN = PAT / REV 

19 EBITBYTA = (EBITDA - DEP) / TA 

20 ROCE = (EBITDA - DEP) / (TA – CL) 

21 PATGROWTH = (PAT - LAG_PAT) / LAG_PAT 

22 REVGROWTH = (REV - LAG_REV) / LAG_REV 

23 DUMMY_REVGROWTH = 1 if REVGROWTH > 0, else 0 

24 DUMMY_PATGROWTH = 1 if PATGROWTH > 0, else 0 

25 EARNINGVOL = Rolling standard deviation of ROA by CODE 

26 REVVOL = Rolling standard deviation of REV by CODE 

 Asset and Investment:   

27 SIZE = LOG(TA) 

28 TANG = NPPE / TA 

29 DEPRATIO = DEP / TA 

30 ASSETMAT = 
(NPPE / DEP) * (NPPE / TA) + (CA / COGS) * (CA 

/ TA) 

31 CAPEX = (GPPE - LAG_GPPE) / TA 

32 DELTACAPEX = (CAPEX - LAG_CAPEX) / TA 

33 LOG_CAPEX = LOG(CAPEX), if CAPEX > 0, else NaN 

34 MEDTANG_IND = MEDIAN(TANG) by NIC2DIG and YEAR 

35 MEDCAPEX_IND = MEDIAN(CAPEX) by NIC2DIG and YEAR 

36 OVERTANG = 1 if TANG > MEDTANG_IND, else 0 

37 OVERCAPEX = 1 if CAPEX > MEDCAPEX_IND, else 0 

38 LOGASSGR = SIZE - LAG_SIZE 

39 MEDLOGASSGR_IND = MEDIAN(LOGASSGR) BY NIC2DIG AND FYEAR 

 Liquidity:   

40 CASHRAT = TOTALCASH / TA 

41 TOTALCASHEQURAT = (TOTALCASH + ST_INV)/TA 
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42 CASHFLOWRAT = (PAT + DEP) / TA 

43 CR = CA / CL 

44 NWCBYTA = (CA - CL) / TA 

45 CFVOL_IND = 
Standard deviation of CASHFLOWRAT by 

NIC2DIG and YEAR 

46 CASHFLOWVOL = 
Rolling standard deviation of CASHFLOWRAT by 

CODE 

47 MEDCASHFLOWRAT_IND = 
MEDIAN(CASHFLOWRAT) by NIC2DIG and 

YEAR 

48 
MEDTOTAL- 

CASHEQURAT_IND 
= 

MEDIAN(TOTALCASHEQRAT) by NIC2DIG and 

YEAR 

49 OVERCASHFLOWRAT = 
1 if CASHFLOWRAT > MEDCASH- 

FLOWRAT_IND, else 0 

50 OVERTOTALCASHEQURAT = 
1 if TOTALCASHEQRAT > MEDTOTAL- 

CASHEQRAT_IND, else 0 

51 DELTACASHEQURAT = (CASHEQU - LAG_CASHEQU) / TA 

52 FCF = 
PAT + DEP + (CA - LAG_CA) - (CL - LAG_CL) - 

(GPPE - LAG_GPPE) 

 Dividend   

53 EQUITY_DIVDUMMY = 1 if EQUITY_DIV ≠ 0, else 0 

54 SPE_DIVDUMMY = 1 if SPE_DIV ≠ 0, else 0 

55 EQUITY_PAYOUTRAT = EQUITY_DIV / PAT 

56 EQUITY_DIVBYTA = EQUITY_DIV / TA 

57 EQUITY_DIVBYOP = EQUITY_DIV / (EBITDA - INT) 

58 SPE_PAYOUTRAT = SPE_DIV / PAT 

59 SPE_DIVBYTA = SPE_DIV / TA 

60 SPE_DIVBYOP = SPE_DIV / (EBITDA - INT) 

61 
EQUI- 

TYDIVGROWTH_DUMMY 
= 1 if EQUITY_DIV > LAG_EQUITYDIV, else 0 

62 DIVIN5YEAR = 
Sum of EQUITY_DIVDUMMY within a 5-year roll- 

ing window 

 Expense:   

63 TAXRATE  TAX / (PAT + TAX) 

64 SGABYTA = (REV - COGS - EBITDA) / TA 

65 RNDBYREV = RND / REV 

66 RNDBYTA = RND / TA 

67 RND_DUMMY = 1 if RND ≠ 0, else 0 

68 LIFECYCLE = RNS / TOT_CAP 

69 INTRATE = INT / TOTALDEBT 

Note: LAG is used for taking the previous year's value of the particular feature. 

 

3.1 Descriptive statistics 

 
We carefully selected the features after performing exploratory data analysis. Missing values were 

imputed using KNN imputation, as discussed in the following section. The final dataset includes 

both numerical and binary features, for which we have provided descriptive statistics in Table 2. 

The table shows the descriptive statistics of the dataset in the form of measures of central tendency 

and variability. The mean gives the average value, while the median gives the middle point of the 
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data distribution. Quartile 1 (Q1) and Quartile 3 (Q3) represent the 25th and 75th percentiles, 

giving the spread of the middle 50% of the data. The standard deviation also captures the variation 

in the dataset, indicating how much the data varies from the mean, and the range gives the 

difference between the minimum and maximum values. 

Table 2: Summary statistics for Numerical features 
 

Variable name mean std_dev Q1 median Q3 range 

Leverage: 

LOG_STLEV 0.1900 0.1990 0.0714 0.1557 0.2534 6.5145 

LOG_LTLEV 0.2086 0.2395 0.0602 0.1493 0.2968 10.7038 

MAT 0.6152 0.3223 0.3642 0.6499 0.9183 35.6667 

MEDLEV1_IND 0.3201 0.1107 0.2574 0.3128 0.3663 1.3071 

DELTATOTALDEBTRAT -0.0229 5.1851 -0.0282 0.0094 0.0726 3152.3077 

LOG_DELTAPAIDUPCAP 0.0105 0.1003 0.0000 0.0000 0.0000 39.1791 

Profitability: 

ROCE 0.1428 9.1353 0.0335 0.1163 0.2170 4740.2500 

ROE 16.0883 882.642 -0.0098 0.1936 1.5291 448727.00 

ROA -0.0403 25.5459 -0.0022 0.0177 0.0599 15158.781 

EBITBYTA 0.0723 3.6497 0.0171 0.0643 0.1145 1760.8670 

EBITMARGIN -0.1351 135.461 0.0173 0.0627 0.1396 75721.500 

EBITDAMARGIN 0.1114 142.661 0.0330 0.0943 0.2012 90862.000 

PATMARGIN -2.0548 141.026 -0.0058 0.0169 0.0664 54321.125 

PATGROWTH 1.8457 860.378 -0.7103 -0.0348 0.5526 469882.00 

LOG_EARNINGVOL 0.0578 0.1531 0.0090 0.0226 0.0526 8.9549 

REVGROWTH 15.7117 816.697 -0.0862 0.0995 0.3711 264139.00 

LOG_REVVOL 4.4264 2.1756 2.9129 4.4919 5.9202 14.5350 

Asset and Investment: 

SIZE 6.2812 2.2530 4.8621 6.3297 7.7465 18.3924 

TANG 0.2537 0.2363 0.0590 0.1926 0.3859 13.7617 

MEDTANG_IND 0.2003 0.1433 0.0726 0.1820 0.2904 0.8901 

LOG_CAPEX -4.1522 1.6380 -4.9967 -4.0147 -3.1039 20.4262 

MEDCAPEX_IND 0.0107 0.0110 0.0016 0.0080 0.0164 0.5420 

DELTACAPEX -0.0478 4.6586 -0.0001 0.0000 0.0000 1796.1771 

LOGASSGR 0.1183 0.4676 -0.0303 0.0643 0.2065 22.5419 

MEDLOGASSGR_IND 0.0608 0.0404 0.0353 0.0592 0.0825 1.6902 

LOG_DEPRATIO 0.0302 0.0386 0.0099 0.0222 0.0397 6.5993 

ASSETMAT 22.3388 753.173 1.4445 3.2640 7.2036 346109.11 

Liquidity: 

CASHFLOWRAT 0.0352 1.9630 0.0102 0.0446 0.0924 1391.9405 

LOG_CASHFLOWVOL 0.0527 0.1137 0.0111 0.0249 0.0530 6.2415 

MEDCASHFLOWRAT_IND 0.0481 0.0246 0.0303 0.0442 0.0615 0.3790 

LOG_CFVOL_IND 0.3453 0.4083 0.1305 0.2180 0.3743 3.8388 

TOTALCASHEQURAT 0.0965 0.1534 0.0089 0.0326 0.1111 2.0990 
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MEDTOTAL- 

CASHEQURAT_IND 
0.0413 0.0336 0.0219 0.0357 0.0465 0.4817 

NWCBYTA 0.0775 3.2040 0.0168 0.1618 0.3477 609.0000 

CR 8.0556 141.231 1.0611 1.4737 2.5728 27500.000 

Corporate Governance: 

AGE 22.0812 16.9581 11.0000 19.0000 28.0000 174.0000 

LIFECYCLE 146.751 5249.46 0.0850 2.6948 14.2141 2014634.0 

OWNER_PRIVATE 0.7611 0.4264 1.0000 1.0000 1.0000 1.0000 

OWNER_GOV 0.0241 0.1533 0.0000 0.0000 0.0000 1.0000 

Expense:       

RNDBYTA 0.0014 0.1955 0.0000 0.0000 0.0000 103.0002 

SGABYTA 0.2256 2.7059 0.0227 0.0909 0.2177 1029.0000 

INTRATE 0.4276 22.3713 0.0658 0.0962 0.1332 8355.9810 

TAXRATE 0.3481 11.1231 0.0767 0.2922 0.4621 5803.5000 

Dividend: 

DIVIN5YEAR 0.6636 1.4823 0.0000 0.0000 0.0000 5.0000 

EQUITY_PAYOUTRAT 0.0640 1.1659 0.0000 0.0000 0.0000 401.0000 

EQUITY_DIVBYTA 0.0050 0.0441 0.0000 0.0000 0.0000 7.1739 

TOTAL_OTH_OWN 2.9702 10.0837 0.0000 0.0000 0.0000 204.0000 

PROPO_INDEP 60.0693 40.7788 11.1111 66.6667 
100.000 

0 
100.0000 

PROPO_EXECU 30.4109 36.6573 0.0000 0.0000 66.6667 100.0000 

Macroeconomic: 

GDP 1819.9 354.007 1559.8640 1915.552 2050.16 1786.6760 

GDP_GR 5.8458 3.9314 5.5000 6.8000 8.0000 15.5000 

INF_CPI 5.8499 2.0522 4.6000 5.3000 6.7000 10.1000 

REPORATE 6.1006 1.2426 5.0833 6.2500 7.3125 4.0000 
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Table 3 presents the binary features of the data in terms of 1s and 0s counts per feature. The 

mean is the fraction of 1s, indicating how frequently the positive class is present. The standard 

deviation provides a measure of how much the fraction of 1s can change across the dataset. The 

median is indicative  of the  majority  class, which indicates whether  1s  or  0s  are 

more predominant in general. 

Table 3: Summary Statistics for the Binary feature of the data 
 

Variable Name count_0 count_1 mean median mode std_dev 

Leverage:       

OVERLEV1 174562 108600 0.3835 0 0 0.4862 

DEBTISSUANCE 227776 55386 0.1956 0 0 0.3967 

Profitability:      

DUMMY_PATGROWTH 158392 124770 0.4406 0 0 0.4965 

DUMMY_REVGROWTH 115814 167348 0.5910 1 1 0.4917 

Asset and Investment:    

OVERCAPEX 158199 124963 0.4413 0 0 0.4965 

OVERTANG 149020 134142 0.4737 0 0 0.4993 

Liquidity/Cash:      

OVERCASHFLOWRAT 154256 128906 0.4552 0 0 0.4980 

OVERTOTALCASHEQURAT 146648 136514 0.4821 0 0 0.4997 

Corporate Governance:    

LISTED 232021 51141 0.1806 0 0 0.3847 

OWNER_PRIVATE 67650 215512 0.7611 1 1 0.4264 

OWNER_GOV 276346 6816 0.0241 0 0 0.1533 

Expense:       

RND_DUMMY 260822 22340 0.0789 0 0 0.2696 

Industry:       

INDUSTRY_46.0 223587 59575 0.2104 0 0 0.4076 

INDUSTRY_77.0 270305 12857 0.0454 0 0 0.2082 

INDUSTRY_20.0 270633 12529 0.0442 0 0 0.2056 

Dividend:       

EQUITY_DIVDUMMY 244666 38496 0.1360 0 0 0.3427 

SPE_DIVDUMMY 282311 851 0.0030 0 0 0.0547 

EQUITYDIVGROWTH_DUMMY 262306 20856 0.0737 0 0 0.2612 
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𝑖 

𝑖 

4 Methodology 

 

4.1 Data Processing 

 
For our task to become accurate and dependable, data processing is essential. 

Removing unnecessary features that introduce noise or redundancy it helps make sure the model 

only includes relevant predictors. Transforming features enhances their predictive power and 

aligns them with the specific requirements of the model. Proper data processing subsequently 

enhances accuracy and model performance. 

4.1.1 Exploratory Data Analysis and Feature Selection 

 

For data analysis and feature selection, exploratory data analysis (EDA) proved to be the most 

useful technique. During this process, we examined box plots, correlation matrices, and VIF 

scores. Due to the large number of features, visualizing all of them individually was impractical. 

So, we performed EDA by grouping the variables into categories. We classified all variables into 

the following groups: Leverage, Profitability, Liquidity/Cash, Miscellaneous, Dividend, Industry 

Dummies, Country-Level Variables, and Other Variables. 

VIF Score: 

In regression analysis, the Variance Inflation Factor (VIF) is a statistic used to detect 

multicollinearity. It gauges how much the correlation with other model predictors inflates the 

variance of a regression coefficient. Severe multicollinearity is indicated by a high VIF value 

(typically >10), which may affect the model coefficients' validity. 

 

𝑉𝐼𝐹𝑖 = 
1 

 
 

(1 − 𝑅2) 

 
Where 𝑅2Is R-squared value for the ith Predictor 

 

For each category, we began by plotting a boxplot to visualize the distribution, skewness, and 

outliers in the data. For numerical features, we applied Winsorization, a statistical technique used 

to replace outlier values with the nearest non-outlier values. From the boxplots, if a feature 

exhibited a skewed distribution, we considered transforming the variable to potentially improve 

results. For some numerical features, we applied log transformations, ensuring non-negativity 

before applying the log transform. For variables with negative entries, we scaled them by adding 

the minimum value plus 1 to ensure positivity. To avoid taking the log of 0, we used the log1p 

function, which adds 1 to the cell value before transforming it into a logarithmic scale. Finally, 
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we analyzed the correlation matrix of the grouped features, including the log-transformed 

variables. 

Features with a high correlation (greater than 90%) were identified, and one feature from each 

highly correlated pair was removed based on its correlation with the target variable. We assumed 

that a higher correlation with the target variable indicates better predictability, so features with 

lower correlation were excluded. As a result, only the log-transformed version or the original 

version of a feature was retained in the dataset. 

In the subsequent step of feature removal, we calculated the VIF scores for all features and 

removed variables with high multicollinearity (VIF > 15). Multicollinear features were 

systematically eliminated one at a time, ensuring that features with strong self-correlation were 

not inadvertently excluded. 

In the Industry Dummies category, we had 70 different binary variables. Because of the large 

number of variables, it was not feasible to analyze them using boxplots or a correlation matrix. 

Therefore, we built separate logistic regression models for each target variable. Based on feature 

importance and model accuracy, we found that only "INDUSTRY_46.0"(Wholesale trade, except 

of motor vehicles and motorcycles and motorcycles), "INDUSTRY_77.0" (Leasing of 

Nonfinancial Intangible Assets) contributed significantly to predicting and 

"F_EQUITY_DIVDUMMY" "F_EQUITYDIVGROWTH_DUMMY". For predicting 

"F_SPE_DIVDUMMY",  the  dummies  "INDUSTRY_46.0"  and  "INDUSTRY_20.0" 

(Manufacture of Food Products) made the most significant contributions. Consequently, we 

selected these specific industry dummies for their respective target variables. 

For the leverage variables analyzed during exploratory data analysis, we have prepared boxplot 

for each numerical variable to observe distribution of them and from that we have transformed 

some of the highly skewed features to log transform. we removed "LEV1", "LEV2", "STLEV", 

"LTLEV",   "LOG_MAT",   "LOG_MEDLEV1_IND",   "LOG_MEDLEV2_IND"   and 

"DELTAPAIDUPCAP" because their correlation with other features is high. Additionally, 

"LOG_LEV1" and "LOG_DELTATOTALDEBTRAT" were excluded due to their high VIF 

scores. "LOG_LEV2" "OVERLEV2" and "MEDLEV2_IND" were removed to ensure that only 

one measurement of leverage, either "LEV1" or "LEV2," was retained. 
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Figure 2: Box plots of leverage-related variables. 

We have plotted box plots and correlation matrices for the profitability variable, also found some 

of the skewed features, and added a log transform of that feature "LOG_EARNINGVOL", 

"LOG_REVVOL". Removed highly correlated features. 

 

Figure 3: Box plots for profitability-related variables 
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For Asset and Investment variables, we plotted boxplots and introduced log transformations for 

the variables "TANG", "DEPRATIO" and "MEDTANG_IND" After reviewing the correlation 

matrix, we removed "LOG_TANG", "DEPRATIO", "LOG_MEDTANG_IND", and "CAPEX". 

 

Figure 4: Box plots for Asset and Investment Related Variables 

For Liquidity variables, we introduced log transformations for "CFVOL_IND", 

"CASHFLOWVOL",  "MEDTOTALCASHEQURAT_IND",   "NWCBYTA", 

"DELTACASHEQURAT" and "CR" After examining the correlation matrix, we removed 

"LOG_MEDTOTALCASHEQURAT_IND", "CFVOL_IND", "CASHFLOWVOL", 

"LOG_NWCBYTA", "LOG_DELTACASHEQURAT", "LOG_CR", "CASHRAT" and 

"DELTACASHEQURAT". 

 

Figure 5: Boxplots for Liquidity Variables 
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For Dividend-related variables, we removed "SPE_PAYOUTRAT", "SPE_DIVBYTA", 

"SPE_DIVBYOP", and "EQUITY_DIVBYOP" based on the correlation matrix. 
 

Figure 6: Box plots for Dividend-Related Variables 

For Firm-related variables, we removed "OWNER_GROUP" due to its high correlation with 

"OWNER_PRIVATE." Also, we applied log transformations to "RNDBYREV", "RNDBYTA" 

and "INTRATE", Based on the correlation matrix, we removed "LOG_RNDBYREV", 

"LOG_RNDBYTA", "LOG_INTRATE", and "RNDBYREV". 

 

Figure 7: Box plots for firm-related variables 
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For Country-level variables, we checked for correlations among the features and removed 

"CONS_PCT_GDP," "EXC_RATE," "UNEMP_RATE," "CREDIT_PRIVATE_GDP," 

"INV_PCT_GDP," "EXPND_PCT_GDP," and "MRK_CAP_PCT_GDP." 

 

Figure 8: Box plots for Country-level variables 

For expense expense-related variable, we have made a boxplot and added a log transform of 

highly skewed features. Added LOG_RNDBYREV, RNDBYTA, and INTRATE. And by 

observing Correlation matrices and VIF score, we have removed 'LOG_RNDBYREV', 

'LOG_RNDBYTA', 'LOG_INTRATE','RNDBYREV'. 

 

Figure 9: Box plots for expense-related variables 
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We have mansion Correlation among the variables to the target variables in Table 4 below. Along 

with the VIF score of each variable. Which helps us to understand the final data properly. 

Table 4: Correlation with Target variable and VIF score for each Feature 
 

Variable 
Correlation With Dividend Dummies 

VIF Score 
Equity Special equity growth 

Leverage:     

LOG_LTLEV -0.1583 -0.0246 -0.1117 1.7749 

LOG_STLEV -0.1217 -0.0231 -0.0899 1.5508 

MAT -0.0902 -0.0072 -0.0545 1.5630 

MEDLEV1_IND -0.0491 -0.0057 -0.0484 2.4656 

OVERLEV1 -0.1620 -0.0289 -0.1201 1.5717 

DELTATOTALDEBTRAT 0.0024 0.0003 0.0016 1.0327 

DEBTISSUANCE -0.0548 -0.0121 -0.0475 1.2177 

LOG_DELTAPAIDUPCAP -0.0289 -0.0046 -0.0184 1.0409 

Profitability:     

ROCE 0.0029 0.0006 0.0022 1.3744 

ROE 0.0087 0.0000 0.0100 1.0410 

ROA 0.0019 0.0003 0.0014 8.0626 

EBITBYTA 0.0073 0.0016 0.0056 1.7001 

EBITMARGIN 0.0008 0.0001 0.0006 12.4454 

PATMARGIN 0.0059 0.0009 0.0042 2.2252 

PATGROWTH -0.0006 -0.0004 -0.0003 7.2444 

DUMMY_PATGROWTH 0.1223 0.0235 0.1137 1.1801 

LOG_EARNINGVOL -0.0677 -0.0080 -0.0465 2.5281 

REVGROWTH -0.0012 0.0049 0.0008 1.0182 

DUMMY_REVGROWTH 0.1060 0.0205 0.0901 1.2377 

LOG_REVVOL 0.2405 0.0565 0.1918 3.1714 

Asset and Investment:     

SIZE 0.2636 0.0638 0.2046 3.6649 

TANG -0.0208 0.0003 -0.0195 2.5868 

MEDTANG_IND 0.0496 0.0148 0.0246 3.0647 

OVERTANG 0.0161 -0.0003 0.0114 2.0102 

LOG_CAPEX 0.0581 0.0103 0.0394 1.5251 

MEDCAPEX_IND 0.1351 0.0221 0.0845 3.0045 

OVERCAPEX 0.1086 0.0188 0.0799 1.4680 

DELTACAPEX 0.0027 0.0006 0.0012 1.0262 

LOGASSGR 0.0177 0.0005 0.0237 1.1821 

MEDLOGASSGR_IND 0.1181 0.0142 0.0822 2.5658 

LOG_DEPRATIO -0.0353 -0.0024 -0.0217 1.4679 

ASSETMAT -0.0079 -0.0011 -0.0056 1.0035 

Liquidity:     

CASHFLOWRAT 0.0153 0.0030 0.0115 2.0782 

LOG_CASHFLOWVOL -0.0734 -0.0083 -0.0500 2.3492 
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MEDCASHFLOWRAT_IND 0.1191 0.0198 0.1004 3.2591 

OVERCASHFLOWRAT 0.2603 0.0482 0.1933 1.3413 

LOG_CFVOL_IND -0.0377 -0.0093 -0.0221 1.2336 

TOTALCASHEQURAT 0.0810 0.0187 0.0703 1.6625 

MEDTOTALCASHEQURAT_IND -0.0010 0.0003 0.0168 2.5036 

OVERTOTALCASHEQURAT 0.1086 0.0233 0.0828 1.4627 

NWCBYTA 0.0234 0.0033 0.0169 1.2292 

CR -0.0063 -0.0016 -0.0035 1.0789 

Corporate Governance:     

AGE 0.2226 0.0461 0.1348 1.2362 

LISTED 0.2322 0.0532 0.1698 1.4113 

LIFECYCLE 0.0026 -0.0007 0.0042 1.1078 

OWNER_PRIVATE -0.1876 -0.0509 -0.1452 1.3166 

OWNER_GOV 0.0854 0.0431 0.0627 1.1574 

TOTAL_OTH_OWN 0.3009 0.0723 0.2139 1.5378 

PROPO_INDEP 0.0236 0.0005 0.0156 1.1931 

PROPO_EXECU 0.1822 0.0391 0.1288 1.2897 

Expense:     

RND_DUMMY 0.2572 0.0734 0.1916 1.2204 

RNDBYTA 0.0018 0.0006 0.0015 2.6924 

SGABYTA -0.0030 -0.0011 -0.0016 1.7724 

INTRATE 0.0025 -0.0003 0.0029 1.0010 

TAXRATE 0.0025 0.0003 0.0017 1.0003 

Dividend:     

EQUITY_DIVDUMMY 0.7720 0.1242 0.4274 5.1306 

SPE_DIVDUMMY 0.1183 0.2255 0.0689 1.0307 

EQUITYDIVGROWTH_DUMMY 0.5378 0.1092 0.3345 2.1438 

DIVIN5YEAR 0.7396 0.1300 0.4496 3.9669 

EQUITY_PAYOUTRAT 0.0811 0.0157 0.0364 1.0424 

EQUITY_DIVBYTA 0.1839 0.0514 0.0862 1.1587 

Macroeconomic:     

GDP -0.0237 -0.0016 0.0098 3.0414 

GDP_GR 0.0343 0.0051 0.0339 1.3316 

INF_CPI 0.0513 0.0084 0.0308 1.3054 

REPORATE 0.0483 0.0085 0.0112 2.6259 

Industry:     

INDUSTRY_46.0 -0.0745 -0.0165 -0.0522 1.8299 

INDUSTRY_77.0 -0.0577 -0.0098 -0.0422 1.3463 

INDUSTRY_20.0 0.0936 0.0114 0.0663 1.1424 
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4.1.2 Data Imputation 

 

We reduced the dataset to 69 features after addressing multicollinearity and identifying redundant 

features from the exploratory data analysis. However, the dataset still has missing values, which 

need to be addressed. since most machine learning algorithms cannot handle missing data. since 

most machine learning algorithms cannot handle missing data, To solve this, we employed the K- 

Nearest Neighbour (KNN) imputation technique [1]. This method operates row-by-row, 

leveraging the non-missing features in each row to identify the k nearest neighbours based on a 

chosen distance metric, such as Euclidean distance. After finding the nearest neighbours, all 

missing values in a row are filled in at one time by taking either the mean or weighted mean of 

the feature values corresponding to the neighbours. Every missing feature is filled in separately, 

applying the same neighbour set obtained from the full features. This is done to make sure that 

imputation does not create sequential dependency within the same row, which maintains data 

integrity. 

A few tree-based machine learning algorithms, such as Decision Trees, Random Forest, and 

XGBoost, can handle missing values without requiring imputation. However, their performance 

tends to be low when missing values are not treated properly. Thus, imputed data will generally 

provide improved results even for such algorithms, as it helps achieve more accurate and reliable 

model predictions. 

 

 

 

4.1.3 Data Oversampling 

 

The target variables is highly imbalanced. F_EQUITY_DIVDUMMY has 245,070 zeros and 

38,092 ones, indicating that 86.54% of companies do not pay dividends. 

F_EQUITYDIVGROWTH_DUMMY has 262,046 zeros and 21,116 ones, showing that only 

7.46% of companies increase their equity dividends. Similarly, F_SPE_DIVDUMMY has 

282,310 zeros and only 852 ones, highlighting an extremely imbalanced distribution where just 

0.3% of companies issue a special dividend. 

Since the target variables are highly imbalanced, this can bias the machine learning model to 

predict only the majority class, leading to deceptively high accuracy a scenario that is undesirable. 

To address this issue, we employed SMOTE (Synthetic Minority Oversampling Technique). 

SMOTE generates synthetic samples for the minority class, helping to balance the dataset and 

make the model more generalizable. 
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𝑗 

𝑗 

𝑗 

4.1.4 Data Scaling 

 

Algorithms like Logistic Regression and Neural Networks associate weights or coefficients with 

predictors. Hence, scaling is essential before training the model. For this purpose, we have used 

standard scaling. 

 

 

𝑧𝑖 = 

 
 

(𝑥𝑖 − 𝑥𝑖) 

σ𝑖 

 
 

Where 𝑥𝑖 is the mean value of the ith feature, σ𝑖 is standard deviation and 𝑧𝑖 is standard scaled 

features. 

 

Tree-based algorithms operate on the principle of entropy and do not require feature scaling. 

Therefore, we have used the features directly for models such as Decision Tree, Random Forest, 

and XGBoost. 

 

 

 

4.2 Machine Learning Models 

 
In this study, we have employed several machine learning models to predict 

F_EQUITY_DIVDUMMY", "F_EQUITYDIVGROWTH_DUMMY" and 

"F_SPE_DIVDUMMY", predicting using 69 predictor variables that belong to different 

categories like leverage, Profitability, Liquidity, Asset and Investment Related Variables, 

Industry Level features, Dividend, Macroeconomic Features, and Firm related variables. We have 

used a basic model like logistic regression, incorporating Lasso, Ridge, and Elasticnet 

Regularization with Hyperparameter tuning. We have also used Tree based models like Decision 

Tree, Random Forest, XGBoost, and among them, we hyperparameter tune the model that 

performs best. We have also used a deep learning base model and used Artificial Neural Network 

(ANN) for the task. Each model is described below with its mathematical formulation. 

4.2.1 Traditional Statistical Methods 

 

Traditional Statistical methods is classical approaches used in data analysis and modelling, 

relying on well-established statistical theories. Logistic regression is a very popular statistical 

model widely used for binary class classification. Here in this section, we have used logistic 

regression and different variations of logistic regression, including lasso, ridge, and elasticnet 

regularization, with appropriate hyperparameter tuning. Logistic Regression is a foundational 

classification algorithm widely used for binary classification tasks due to its simplicity and 

interpretability. 
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4.2.1.1 Logistic Regression: 

 

In this section, we applied Logistic Regression on processed data to predict the target variables. 

logistic regression is a basic classification algorithm that is frequently used for binary 

classification tasks. moreover, it is simplistic and interpretable. Logistic Regression stabilized the 

relationship between a dependent binary variable and one or more independent variables by 

estimating probabilities using a sigmoid function. It makes the assumption that the log-odds of 

the dependent variable and the independent variables have a linear relationship. 

The mathematical formula for Logistic Regression is given below: 

 
1 

P( Y = 1 ∣ X ) = 
1 + 𝑒−𝑧 

 
where: 

 

𝑧 = β0 + β1X1 + β2X2 + ⋯ + β𝑛X𝑛 

 
Here, P(Y=1∣X) represents the probability of the target variable Y being 1, Xi are the independent 

variables, β0 is the intercept, and βi are the coefficients for each independent variable. 

4.2.1.2 Lasso Regularization: 

 

Lasso (Least Absolute Shrinkage and Selection Operator) regularization is a technique used for 

Feature selection, reducing overfitting, which leads to enhancing the predictive power of logistic 

regression while performing feature selection as well. It brings in an L1-norm penalty to the loss 

function, which encourages sparsity in the model by shrinking some feature coefficients to zero. 

Lasso is especially helpful in high-dimensional datasets, Lasso is especially useful for nullifying 

many unnecessary or superfluous features in high-dimensional datasets. 

The objective function for logistic regression with Lasso regularization is: 

 

𝑛 𝑝 
1 

𝐿(β) = − 
𝑁 
∑[𝑦𝑖 log(𝑦𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖)] + λ ∑ |β𝑗| 
𝑖=1 𝑗=1 

 
Where, 𝐿(β) is the loss function. 𝑦𝑖 is the actual label for the ith sample. 𝑦 𝑖 is the predicted 

probability. 𝑁 is the number of samples. β𝑗 represents the model coefficients for the jth feature. λ 

is the regularization parameter, and 𝑝 is the total number of features. 
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The regularization parameter λ controls the trade-off between fitting the data and penalizing large 

coefficients. A higher value of λ results in more coefficients being reduced to zero, simplifying 

the model. 

Lasso regularization not only prevents overfitting but also improves model interpretability by 

identifying the most relevant features, making it a valuable tool in predictive modelling. 

4.2.1.3 Ridge Regularization: 

 

Ridge regularization, also recognized as L2-norm regularization, is a method used to address 

overfitting in logistic regression by adding a penalty term to the loss function. Contrasting Lasso, 

which promotes sparsity, Ridge regularization shrinks the coefficients towards zero without 

forcing them to become exactly zero, making it suitable for datasets where all features may have 

some predictive power. 

The objective function for logistic regression with Ridge regularization is: 

 

𝑛 𝑝 

𝐿(β) = − 
1 
∑[𝑦 log(𝑦  ) + (1 − 𝑦 ) log(1 − 𝑦  )] + λ ∑ β 2 

 

𝑁 𝑖 𝑖 𝑖 

𝑖=1 

𝑖 𝑗 

𝑗=1 

 
Where, 𝐿(β) is the loss function. 𝑦𝑖 is the actual label for the ith sample. 𝑦 𝑖 is the predicted 

probability. 𝑁 is the number of samples. β𝑗 represents the model coefficients for the jth feature. 

λ is the regularization parameter, and 𝑝 is the total number of features. 

 

The regularization parameter λ controls the strength of the penalty. Greater values of λ cause the 

coefficients to shrink more significantly, which lowers the complexity of the model and avoids 

overfitting. Ridge regularization is particularly effective when multicollinearity is present, as it 

reduces the sensitivity of the model to correlated features, ensuring more stable predictions 

4.2.1.4 Elastic Net Regularization: 

 

Elastic Net regularization is a strong technique that has the advantages of both Lasso (L1) and 

Ridge (L2) regularization. making it a versatile method for addressing overfitting and feature 

selection. it works exceptionally well when the features are highly correlated. Elastic Net 

introduces a combination of L1 and L2 penalties to the model, resulting in a balanced approach 

that makes use of the powers of both methods. 

The objective function for logistic regression with Elastic Net regularization is: 
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𝑛 𝑝 𝑝 

𝐿(β) = − 
1 
∑[𝑦 log(𝑦  ) + (1 − 𝑦 ) log(1 − 𝑦  )] + λ [α ∑ |β | + (1 − α) ∑ β 2] 

 

𝑁 𝑖 𝑖 𝑖 

𝑖=1 

𝑖 𝑗 

𝑗=1 

𝑗 

𝑗=1 

 
Where, 𝐿(β) is the loss function. 𝑦𝑖 is the actual label for the ith sample. 𝑦 𝑖 is the predicted 

probability. 𝑁 is the number of samples. β𝑗 represents the model coefficients for the jth feature. 

λ is the regularization parameter controls the overall strength of the penalty. α is the mixing 

parameter (0 < α < 1) that determines the balance between L1 and L2 penalties, and 𝑝 is the total 

number of features. 

Elastic Net behaves similarly to Lasso and imposes the L1 penalty alone when α=1. It behaves 

similarly to Ridge and imposes the L2 penalty alone when α=0. it behaves similarly to Ridge, 

imposing only the L penalty. Intermediate values of α achieve a balance between them. 

Elastic Net regularization is especially useful when features are correlated or there are more 

features than observations. Not only does it prevent overfitting, but it also automatically selects 

features, resulting in a more stable and interpretable model. 

 

 

 

4.2.2 Classical Machine Learning Models 

 

In this section, we investigate classical machine learning models, including Decision Tree, 

Random Forest, and XGBoost. The Decision Tree algorithm divides the data into subsets 

according to feature values, acting as a rule-based model. It is Simple and interpretable, making 

it a popular choice for classification tasks. Building on the Decision Tree, Random Forest 

combines multiple decision trees to create an ensemble model, improving prediction accuracy and 

robustness. By sequentially optimizing decision trees to reduce errors, the gradient boosting 

algorithm XGBoost advances ensemble learning and achieves excellent performance on 

challenging datasets. Together, these models show adaptability and efficiency in managing 

structured data and a range of classification problems. 

4.2.2.1 Decision Tree: 

 

The Decision Tree algorithm creates a tree model to predict by recursively partitioning the dataset 

into subsets based on the feature thresholds in a tree. Starting with the root node representing the 

entire dataset, the algorithm will evaluate all of the attributes and select the optimum one that 

splits the data most well according to some criteria, say Information Gain or Gini Impurity in case 

of classification tasks or Mean Squared Error (MSE) for regression tasks. This process involves 

the determination of a threshold value in the selected feature and partitioning the set into two 
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subsets based on the feature value being less than or equal to the threshold and the feature value 

being more than the threshold. The algorithm continues this recursive partitioning for each subset, 

creating new nodes and reducing the separation of the target variable with each split. The 

algorithm stops when it encounters a termination criterion, say maximum tree depth, minimum 

node size, or pure class distribution. The final nodes are known as leaf nodes and store the 

predictions, i.e., the majority class in the case of classification problems or the mean value for 

regression problems. This scheme enables Decision Trees to be able to learn non-linear 

relationships of data and form an understandable model that can potentially be represented as a 

series of decision rules.. Each split aims to maximize the purity of the resulting subsets using 

metrics such as Gini Impurity or Information Gain. The predicted class is assigned at a leaf node 

after the tree has been traversed from the root to the leaf node. 

The mathematical criterion for splitting using Gini Impurity is given as: 

 

𝑐 

𝐺 = 1 − ∑ 𝑝𝑖
2 

𝑖=1 

 
Where 

 

G is the Gini Impurity, c is the number of classes, and pi is the proportion of samples belonging 

to class i in the subset. 

Alternatively, Information Gain is calculated as: 

 

 
𝐼𝐺 = 𝐻 

𝐾 

− ∑ 
𝑛𝑘 

𝐻 
𝑝𝑎𝑟𝑒𝑛𝑡 𝑛 𝑘 

𝑘=1 

 
where: 

 

𝐼𝐺 is the Information Gain, 𝐻𝑝𝑎𝑟𝑒𝑛𝑡 is the entropy of the parent node, 𝐻𝑘 is the entropy of the kth 

child node, 𝑛𝑘 is the number of samples in the kth child node, and n is the total number of samples 

in the parent node. 

 

This algorithm is effective for both classification and regression tasks and can handle nonlinear 

relationships in the data. 

4.2.2.2 Random Forest: 

 

Random Forest is an ensemble learning technique that builds multiple decision trees and 

combines their outputs to make more accurate and reliable predictions. Each decision tree is first 
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constructed using a randomly chosen subset of the data—a procedure called bootstrapping—in 

which replacement samples are taken. In addition, for every split in a tree, only a randomly chosen 

subset of the features are used to avoid similarity among the trees. This diversity minimizes the 

danger of overfitting and enhances the capability of the model to generalize from existing data to 

new data. When all the trees have been constructed, the predictions from the trees are combined 

to yield the final output. For regression tasks, the mean of the outputs of the trees is employed, 

and for classification tasks, the most frequent vote of all the trees decides the predicted class. 

Random Forest maintains its accuracy, is noise-resistant, and works well with large datasets and 

high-dimensional features by combining the strength of multiple trees. Its ability to strike a 

balance between simplicity and complexity makes it a popular and adaptable machine learning 

algorithm. 

 

 

Figure 10: Random Forest Visualization Adapted from Codementor (2020). 

 

 

The formula for the aggregated prediction in Random Forest for classification is: 

 

𝑦  = mode{ℎ1(x), ℎ2(x), … , ℎ𝑇(x)} 

 
where: 

 

𝑦  is the final predicted class, ℎ𝑡(x) is the prediction of the tth tree, and T is the total number of 

trees in the forest. 

 

4.2.2.3 XGBoost: 

 

XGBoost, short for eXtreme Gradient Boosting, is a robust ensemble learning algorithm based on 

the gradient boosting architecture. It builds a sequence of decision trees in sequence, each tree 

attempting to decrease the errors of the previous ones. In contrast to Random Forest, where trees 

are constructed separately, XGBoost is concerned with additive corrections and utilizes each tree 

to reduce the residual errors of the model. The algorithm learns to minimize a loss function and 

exploits both first and second-order derivatives to achieve higher split accuracy and stable 

predictions. XGBoost is performance-optimized with advanced features such as regularization to 

prevent overfitting, parallel processing for speed, and memory-friendly usage for processing large 
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data. Its ability to balance performance, speed, and accuracy makes XGBoost a preferred choice 

for many complex machine learning tasks, particularly in structured data problems. 

 

Figure 11: XGboost Visualization Adapted from Abualdenien & Borrmann (2022) 

 

 

 

The formula for updating predictions in XGBoost is: 

 
𝑦(𝑡) = 𝑦(𝑡−1) + η𝑓 (𝑥 ) 
𝑖 𝑖 𝑡 𝑖 

 
where: 

 
𝑦(𝑡) is the updated prediction at iteration t. 𝑦(𝑡−1) Is the prediction from the previous iteration. η 
𝑖 𝑖 

is the learning rate, and 𝑓𝑡(𝑥𝑖) is the tth tree's prediction for input xi. 

 

XGBoost is highly regarded for its predictive power and scalability, making it a preferred choice 

in many machine learning competitions. 

 

 

 

4.2.3 Modern Deep Learning Methods 

 

4.2.3.1 Artificial Neural Networks (ANN): 

 

Artificial Neural Networks (ANN) are computational models that draw inspiration from the 

architecture and operation of the human brain. ANNs are composed of interlinked layers of nodes 

(neurons), where every node receives input data via weighted connections, applies an activation 

function, and sends the result to the next layer. ANNs can learn complex, non-linear associations 

in data and are highly adaptable. ANNs usually consist of an input layer (features), one or more 

hidden layers (learning patterns), and an output layer (prediction). The model's weights are tuned 

by means of algorithms such as backpropagation, where the error between predicted and target 

values is reduced by iteratively changing the weights. 
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Figure 12: ANN Feedforward Neural Network Architecture 

The forward propagation for a single neuron can be represented mathematically as: 

 

𝑛 

𝑧 = ∑ 𝑤𝑖𝑥𝑖 + 𝑏 
𝑖=1 

 

𝑎 = 𝑓(𝑧) 

 
where: 

 

𝑥𝑖 These are the input features. 𝑤𝑖 are the corresponding weights. 𝑏 is the bias term. 𝑧 is the 

weighted sum, and 𝑓(𝑧) is the activation function (e.g., sigmoid, ReLU, tanh). 

 

During training, the model minimizes the error using a loss function, such as Mean Squared Error 

(MSE) for regression or Cross-Entropy Loss for classification, given by: 

 
𝑛 

1 
𝐿 = − 

𝑁 
∑[𝑦𝑖 log(𝑦𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖)] 

𝑖=1 

 

Where, 𝑦𝑖 is the actual value, 𝑦 𝑖 is the predicted value, and 𝑁 is the number of samples. 

 

ANNs are powerful for handling large, complex datasets and have been successfully applied in 

tasks like image recognition, natural language processing, and predictive modelling. 
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4.3 Evaluation Metrics for Model Performance 

 
For evaluating the performance of our models, we have considered various performance metrics. 

Additionally, we have analyzed confusion matrices for all the models, which are discussed in the 

results section. 

 

Considering, 
 

𝑡𝑝 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
 

𝑡𝑛 = 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
 

𝑓𝑝 = 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
 

𝑓𝑛 = 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

Below are the definitions of all the attributes we considered: 

 

Accuracy: 

Accuracy is the measure of true predictions out of total predictions. Measured by taking a ratio of 

both true positive and true negative with total predictions. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑡𝑝 + 𝑡𝑛 

 
 

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛 
 
 

 
Precision: 

 

precision measures the proportion of true positive predictions among all the positive predictions 

made by the model. The higher the precision lower the risk of false positive prediction. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑡𝑝 

 
 

𝑡𝑝 + 𝑓𝑝 

 
Recall: 

 

Recall is the proportion of true positives predicted by the model concerning the actual positives. 

The higher the recall lower the false negatives. 

 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 
𝑡𝑝 

 
 

𝑡𝑝 + 𝑓𝑛 



45 
 

F1score: 

 

Precision and recall are not sufficient to determine a model's performance. F1score is the 

harmonic mean of precision and recall, providing a balanced metric when precision and recall are 

equally important. 

 

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

 
Error Rate: 

 

It is a measurement of false predictions. Error rate is the proportion of incorrect predictions among 

the total predictions. 

 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 = 
𝑓𝑝 + 𝑓𝑛 

 
 

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛 
 
 

 
Specificity: 

 

It is also known as the True Negative Rate. It measures the proportion of actual negative cases 

that we correctly identify by the model. It is similar to recall but for negative classes. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 
𝑡𝑛 

 
 

𝑡𝑛 + 𝑓𝑝 

 
Sensitivity: 

 

It is another name for recall, also known as the True Positive Rate. Which measures how well the 

model identifies actual positives. 

 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 
𝑡𝑝 

 
 

𝑡𝑝 + 𝑓𝑛 

 
AUC-ROC: 

 

AUC-ROC stands for Area Under Receiver Operating Characteristic Curve. It evaluates the 

model’s ability to distinguish between positive and negative classes. The ROC curve plots the 

true positive rate (sensitivity) against the false positive rate (1-specificity). 
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Figure 13: ROC curve Adapted from EvidentlyAI (2025). 

 

 

 

G-Mean (Geometric Mean): 

 

G-Mean evaluates the balance between sensitivity and specificity. It is particularly useful for 

imbalanced datasets. 

 

𝐺𝑀𝑒𝑎𝑛 = √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 
 
 

 
Balanced Accuracy: 

 

It is the average of sensitivity and specificity. Addressing the imbalance in the class distribution. 

 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

2 

 
Youden's Index: 

 

Youden's index evaluates the effectiveness of a diagnostic test by combining sensitivity and 

specificity into a single metric. 

𝑦𝑜𝑢𝑑𝑒𝑛′𝑠 𝑖𝑛𝑑𝑒𝑥 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1 
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4.4 Hyperparameter Tuning 

 
As described in the data processing section, much of the effort was put into prepping the data so 

that it gives the best predictive performance. We did feature selection using in-house exploratory 

data analysis to choose the most useful features and eliminate the non-essential ones. We also 

transformed the chosen features so that it prepare the data properly for the model. To handle 

missing values, we employed advanced imputation techniques, such as KNN imputation, to 

successfully address null values in the dataset. Outliers present in the data were treated using 

Winsorization, which helped to maintain the integrity of the dataset while mitigating the impact 

of extreme values. 

In addition, hyperparameter tuning was recognized as being among the most important steps in 

constructing the model. This step, explained in the next section, was necessary for maximizing 

the performance of the model and obtaining the optimal trade-off between accuracy and 

generalizability. Collectively, these preprocessing and tuning procedures guaranteed the 

construction of a strong and stable predictive model. 

 

 

 

4.4.1 Logistic regression with Elastic Net Regularization 

 

Hyperparameter optimization is important in order to best tune the performance of a logistic 

regression model under Elastic Net regularization. It aims at finding the optimal combination of 

hyperparameters to optimize predictive accuracy with the retention of model interpretability. The 

two important hyperparameters that are optimized during Elastic Net are the penalty mixing ratio 

(α) and the penalty coefficient (λ). The parameter λ controls the overall strength of regularization, 

with higher values enforcing greater shrinkage of coefficients to manage the bias-variance trade- 

off. The parameter ααα determines the balance point between L1 (Lasso) and L2 (Ridge) 

penalties: 0 corresponds to pure Ridge regularization, 1 to pure Lasso, and intermediate values 

draw benefits from both approaches. 

To perform this process, a grid of possible values for λ and α was established to systematically 

evaluate combinations. The grid consisted of 1/λ values of 0.1, 1, and 10 to cover different levels 

of regularization strength, as well as α values of 0.3, 0.5, and 0.7 to cover different mixing ratios 

of L1/L2. A grid search with cross-validation was then performed to evaluate the model's 

performance for each combination. This helped the chosen hyperparameters generalize well to 

unseen data, minimizing the possibility of overfitting. Consequently, the model attained a good 

balance between regularization and feature selection, improving its predictive accuracy and 

stability. 
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4.4.2 Decision Tree 

 

Hyperparameter optimization of a Decision Tree model involves optimizing max depth, min 

samples split, and min samples leaf to get the best trade-off between model complexity and 

predictive power. Maximum depth is the depth at which a decision tree continues to divide. min 

samples split Controls the number of splits. Higher values make the model more conservative. 

min samples leaf, which means the minimum sample at the leaf node. The max depth parameter, 

tested with values None, 10, 30, and 50, determines the maximum depth of the tree, helping to 

prevent overfitting or underfitting. The minimum number of samples required to split an internal 

node is defined by the min samples split, which is experimented with values 2, 10, and 20 to 

balance computational cost and tree growth. The min samples leaf, varied with values 1, 2, 5, and 

10, ensures each leaf node has enough samples to maintain stability and avoid noisy predictions. 

Using grid search with cross-validation, these parameters were systematically evaluated to find 

the combination that optimizes model performance while maintaining generalization, leading to 

a robust and interpretable decision tree. 

4.4.3 Random Forest 

 

Hyperparameter tuning of a Random Forest model means setting n estimators, max depth, min 

samples split, and min samples leaf in a way that it balances model accuracy and computational 

complexity. The n estimators parameter, representing the number of trees in the forest, was tested 

with values 50, 100, and 200 to evaluate the trade-off between computational time and ensemble 

stability. The max depth parameter, which was tried with values None, 10, and 20, controls the 

depth of individual trees and helps control overfitting. The min samples split, which was tried 

with values 2, 5, and 10, controls the minimum number of samples needed to split an internal 

node and impacts tree complexity and cost. Lastly, the min samples leaf was varied with values 

1, 2, and 4, ensuring that leaf nodes have a sufficient number of samples to provide predictive 

stability. Using grid search with cross-validation, the parameters were experimented with 

systematically to acquire the optimal configuration that enhances both model generalization and 

predictive accuracy, resulting in a stable Random Forest model. 

4.4.4 XGBoost 

 

Hyperparameter tuning of the XGBoost model includes the tuning of n estimators, max depth, 

and learning rate to balance predictive performance and computational cost. The n estimators, or 

boosting rounds, were changed using values 50, 100, and 200 to study the impact of more 

iterations on model performance. The max depth, having test values 3, 6, and 10, controls the 

depth of each tree, with a balance between generality and complexity. The learning rate, having 

tested values 0.01, 0.1, and 0.2, determines the update step size when performing an update on 



49 
 

weights while boosting, enabling fine control over predictions. Grid search with cross-validation 

was used to systematically try out these combinations of parameters so that the final model 

maximizes on computational efficiency, prediction accuracy, and generalization to new data, 

leading to an appropriately calibrated XGBoost model. 

4.4.5 Artificial Neural Network 

 

We have used an Artificial Neural Network (ANN) model with two hidden layers, 

Hyperparameter tuning involves optimizing learning rate, neurons first layer, neurons second 

layer, and dropout rate to achieve a balance between predictive performance and model 

generalization. To assess the effect on convergence speed and accuracy, the learning rate, which 

establishes the step size during weight updates, was adjusted with values of 0.01 and 0.001. The 

number of neurons in the first hidden layer, neurons first layer, was tested with values 32, 16, and 

8, while the second layer, neurons second layer, was evaluated with values 16, 8, and 4 to identify 

configurations that best capture patterns in the data. To avoid overfitting, the dropout rate, which 

creates regularization by randomly deactivating neurons during training, was adjusted between 

0.2, 0.3, and 0.4. Grid search with cross-validation was employed to systematically explore 

combinations of these parameters, resulting in a fine-tuned ANN model that achieves an optimal 

trade-off between complexity, generalization, and predictive accuracy. 

 

 

 

4.5 Cross-validation 

 
Cross-validation is a resampling technique used to evaluate the performance of a machine learning 

model by dividing the dataset into multiple subsets or "folds." The model is trained on some folds 

and tested on the remaining fold(s), and this process is repeated several times (e.g., in k-fold cross- 

validation, the data is split into k parts). Each fold serves as a test set once, ensuring the model's 

performance is tested on all data points. This helps assess model generalization, reduce 

overfitting, and ensure robustness by providing an averaged performance metric across folds. In 

our project, we used 10-fold cross-validation for all models except Artificial Neural Networks 

(ANN), for which we opted for 5-fold cross-validation due to the computational complexity of 

ANN. Consequently, all performance metrics derived in this study are aggregates across folds, 

minimizing bias and ensuring accuracy. Additionally, cross-validation is particularly valuable in 

projects with limited or imbalanced data, as it ensures the model is exposed to diverse subsets, 

improving reliability and robustness in real-world scenarios 
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5 Results and Discussion 

 
In this section we discuss the results of the machine learning models. To evaluate the contribution 

of non-dividend-related variables to the model's accuracy, we analyzed the predictions under two 

conditions: one using all selected variables (including dividend-related variables) and another 

excluding dividend-related variables. This comparison allowed us to determine whether the 

model's accuracy heavily relies on the inclusion of dividend-related variables or whether other 

collected data also plays a significant role in improving prediction accuracy. 

If the results show that excluding dividend-related variables significantly reduces the model's 

accuracy, it would indicate that these variables have a substantial impact on the model's 

performance. In such a case, we can consider exploring additional methodologies, such as time 

series analysis, to gain deeper insights into the relationship between dividend-related variables 

and the predictive outcomes. This approach will help us better understand the overall contribution 

of different variables to the model's accuracy and guide further improvements. 

 

 

 

5.1 Results of Equity Dividend Dummy 

 
In Table 5, we show the results of the 8 models discussed above. The table shows the accuracy 

and the F1 scores of each model in two specifications: one without dividend history variables and 

one with dividend history variables. All the models are trained with hyperparameter tuning, and 

we have achieved the best-performing models for each category of algorithm. For the equity 

dividend dummy after applying SMOTE, we have 4,90,140 data instances. 

Out of all the models, the tree-based models give the best accuracy and F1 score in both 

specifications. Among these, the random forest method gives the best accuracy and the F1 score 

for both specifications. For the model that includes dividend history variables, the accuracy and 

F1 score are 96.73% and 96.72%, respectively. When we exclude dividend history variables, the 

accuracy and F1 score reduce very slightly to 93.62% and 93.43%, respectively. 
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Table 5: Performance of each model for the equity dividend dummy 
 

 

F_EQUITY_DIVDUMMY 

With Dividend-Related 

Variables 

without Dividend-Related 

Variables 

Accuracy F1 score Accuracy F1 score 

Statistical models     

Simple Logistic Regression 91.81% 91.57% 81.42% 81.75% 

Logistic Regression with Lasso Regu- 

larisation 
91.81% 91.57% 81.42% 81.76% 

Logistic Regression with Ridge 91.81% 91.57% 81.42% 81.76% 

Logistic Regression with Elastic Net 91.81% 91.57% 81.42% 81.76% 

Classical Machine learning models:     

Decision Tree 95.99% 95.96% 89.96% 89.80% 

Random Forest 96.73% 96.72% 93.62% 93.43% 

XGBoost 96.21% 96.19% 92.69% 92.42% 

Deep Learning     

Artificial Neural Network 
93.11% 93.09% 86.45% 86.73% 

After tree-based models, Artificial neural network gives the next best accuracy and F1 score of 

93.11% and 93.09%, respectively. Statistical models perform the worst. There is a negligible 

performance difference between different regularization methods for logistic regression (Lasso, 

Ridge, and Elastic net). Among these, Elastic net performs slightly better compared to the other 

two and the model without regularization. 

Now we present additional performance matrices in Table 6. Here we only report the performance 

of the best models from each category, viz., Logistic Regression with Elastic Net, Random Forest, 

and Artificial Neural Network. We discussed each of these three individually in subsequent 

sections. 

Table 6: Performance summary of the best-performing models for the equity dividend dummy 
 

Equity Dividend 

Dummy 

With Dividend-Related variables Without Dividend-Related Variables 

 
Performance metrics 

Logistic re- 

gression 

Random 

Forest 
ANN Logistic re- 

gression 

Random 

Forest 
ANN 

Accuracy 0.9181 0.9673 0.9311 0.8142 0.9362 0.8645 

Error Rate 0.0819 0.0327 0.0689 0.1858 0.0638 0.1355 

Precision 0.9433 0.9696 0.9330 0.8030 0.9629 0.8500 

Recall 0.8898 0.9649 0.9289 0.8326 0.9073 0.8853 

F1 Score 0.9157 0.9672 0.9309 0.8176 0.9343 0.8673 

Specificity 0.9465 0.9697 0.9333 0.7957 0.9651 0.8437 

G-Mean 0.9177 0.9673 0.9311 0.8140 0.9358 0.8643 

Balanced Accuracy 0.9181 0.9673 0.9311 0.8142 0.9362 0.8645 

Youden's Gamma 0.8363 0.9347 0.8622 0.6284 0.8724 0.7290 
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5.1.1 Logistic Regression with Elastic Net for Equity Dividend Prediction 

 

The best mode was arrived at after hyperparameter tuning. There are two hyperparameters, C and 

L1 Ratio. C represents the regularization strength. A higher value of C corresponds to lower 

regularization strength. The L1 ratio in Elastic Net is the proportion of L1 (Lasso) penalty relative 

to the combined L1 and L2 (Ridge) penalties. For the logistic regression model including 

dividend-history variables, the best parameters identified are C = 10 and L1 ratio = 0.3. For the 

model excluding dividend-related variables, the optimal parameters are C = 0.01 and L1 ratio = 

0.3. This combination effectively prevents overfitting while ensuring good generalization to 

unseen data. 

For logistic regression with elastic net, we achieved an accuracy of 91.81%, including dividend- 

history variables, and 81.42% when it was excluded. This indicates that the dividend-history 

variable significantly influences the prediction performance. 

 

Figure 114: Confusion matrices from the logistic regression model for the equity dividend 

dummy 

To arrive at the performance metrics described in Table 6, we have analysed the confusion 

matrices of the predictions, which directly give an idea about Type 1 and Type 2 errors. The 

confusion matrix is shown in Fig. 14. We now jointly look at the results from Table 6 and Fig. 

14. For the model considering dividend-related variables, we observed that the Type 1 Error 

(False Positive) is 13105 and the precision is 0.9433. Whereas the Type 2 Error (False Negative) 

is 27018, and the recall is 0.8898. This indicates that the model predicts class 0 more accurately 

than class 1, meaning it has higher precision than recall. The overall F1 score of the model is 

0.91118. 



53 
 

-1 0 1 2 3 4 

equity_divdummy 

divin5year 

listed 

overcashflowrat 

size 

patmargin 

industry_46.0 

overlev1 

debtissuance 

spe_divdummy 

-0.5 0 0.5 1 

overcashflowrat 

size 

patmargin 

roa 

listed 

age 

owner_Gov 

ebitbyta 

industry_46.0 

owner_Private 

Opposite results are observed for the model excluding dividend-related variables. It exhibits a 

Type I error of 50,056 (with a precision of 0.8030) and a Type II error of 41,014 (with a recall of 

0.8326). This model performs significantly worse than the previous model in terms of overall 

accuracy. However, given that the dataset is imbalanced with very few observations in the positive 

class, recall is more critical than precision. Since the model without dividend-related variables 

achieves higher recall relative to precision, it is preferable to the model with dividend-related 

variables in this context. 

 

Figure 15: ROC curve from the logistic regression model for the equity dividend dummy 

Further, we plot the ROC curve of the model with dividend-related variables in Fig. 15. The Area 

under the ROC curve is 0.97. This implies that the discriminative power of the model is good. 

We present the feature importance of the top variables can be observed in Figure 16 below. 

Feature importance is determined by the coefficient values of each variable in the trained model. 

 

Figure 16: Feature importance from the logistic regression model for the equity dividend 

dummy 
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To predict F_EQUITY_DIVDUMMY, EQUITY_DIVDUMMY, and DIVIN5YEAR emerge as 

the most important features. Following these, OVERCASHFLOWRAT, LISTED, SIZE, 

PATMARGIN, and INDUSTRY 46.0 are some of the common important features across both 

models. We discuss the theoretical justification of important features of the best model in section 

5.1.4. 

5.1.2 Random Forest for Equity Dividend Prediction 

 

Random forest Model performs best among all the tree-based models. There are four 

hyperparameters we tuned: maximum depth of trees, minimum samples per leaf, minimum 

sample required to split a node, and number of estimators(trees) used in this bagging method. The 

model, including dividend-related variables, gives the best performance at no limit on the 

maximum depth of the trees, a minimum of two samples required per leaf node, a minimum of 

two samples required to split an internal node, and 200 estimators (trees) in the forest. For the 

model excluding dividend-related variables with the 200 estimators(trees) in the algorithm, each 

leaf node requires at least one sample, splitting an internal node requires at least two samples, and 

no restriction for the depth of the trees gives the best accuracy. 

For Random Forest with optimal hyperparameters, we achieved accuracies of 96.73%, including 

dividend-related variables, and 93.62% accuracy excluding them. It indicates a small reduction 

in accuracy when we exclude dividend-related variables. 

 

Figure 17: Confusion matrices from the Random Forest model for the equity dividend dummy 

For the evaluation of all the performance metrics given in Table 6, we have analysed the confusion 

matrices of the predictions. Which also gives us a sight on Type 1 and Type 2 errors. By analysing 

the results in Table 6 and Fig. 17 jointly, for the model considering dividend-related variables, 

we observed that the Type 1 Error (False Positive) is 7,425 with the precision of 0.9696, whereas 
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the Type 2 Error (False Negative) is 8,590 with the recall of 0.9649. This indicates precision is 

slightly better than the recall. We can expect to predict both classes with equal exactness. 

The model excluding dividend-related variables, Type 1 Error is 8,556 with precision 0.9629, and 

Type 2 Error is 22,712 with recall 0.9073. It has higher precision than recall, this indicates the 

model predicts class 0 more accurately than class 1. In the previous model, We observed similar 

precision and recall in the previous model; however, in this model, we found a larger difference 

between precision and recall, with precision being larger than recall, making it unreliable for 

predicting Class 1 compared to Class 0. 

The area under the ROC curve for the model is 0.97, which represents excellent discriminative 

power of the model. show in Figure 18 below. 

 

Figure 18: ROC curve from the Random Forest model for the equity dividend dummy 

We presented feature importance for both models in Figure 19 below. Feature importance is 

determined by the entropy reduction at a split based on any feature. 

 

 

Figure 19: Feature importance from the Random Forest model for the equity dividend dummy 
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For predicting F_EQUITY_DIVDUMMY, EQUITY_DIVDUMMY, DIVIN5YEAR, 

EQUITY_DIVBYTA, EQUITY_PAYOUTRAT, and EQUITYDIVGROWTH_DUMMY are 

the most important dividend-related features. Meanwhile, OVERCASHFLOWRAT, ROE, ROA, 

and PATMARGIN are common valuable features across both models. 

5.1.3 ANN for equity dividend prediction 

 

We implement an ANN model with two hidden layers and tuned the hyperparameters using grid 

search, as discussed in Section 4.4. Additionally, we used 5-fold cross-validation to obtain a 

generalized model. The best model arrived after the model was run for 30 epochs for each set of 

hyperparameters, and the parameters of the ANN were updated every 32 passes, meaning we set 

the batch size to 32 data instances. We also designed the model with the condition that neurons 

in the forward architecture have fewer neurons than the previous layer, which is the suggested 

architecture for any ANN model. We have tuned four hyperparameters: Learning rate, which is 

the rate of updating the weights in ANN; number of neurons in the first layer, number of neurons 

in the second layer, and dropout rate, which is the proportion of neurons dropped at every epoch. 

For the dataset including dividend-related variables, after performing hyperparameter tuning, we 

identified the best hyperparameters for our model as follows: Learning Rate = 0.001, Neurons in 

the first layer = 32, Neurons in the second layer = 8, and Dropout Rate = 0.2. For the case 

excluding dividend-related variables, we determined the best parameters to be as follows: 

Learning Rate = 0.001, Neurons in the first layer = 32, Neurons in the second layer = 16, and 

Dropout Rate = 0.2. 

For the ANN model, including dividend-related variables, we achieved an accuracy of 93.11% 

and an F1 score of 93.09%. The model without dividend-related variables achieved an accuracy 

of 86.45% and an F1 score of 86.83%. This shows the reduction in accuracy after excluding 

dividend-related variables 

The confusion matrices shown in the figure provide insights into Type 1 Error and Type 2 Error. 

Now we are jointly looking at Table 6 and Fig. 20. For the model that includes dividend-related 

variables, the Type 1 Error is found to be 16,347 with precision 0.933, and the Type 2 Error is 

17,430 with recall 0.9289, suggesting the model has slightly lower recall than the precision. In 

contrast, the model that does not consider dividend-related variables has a Type 1 Error of 38,299 

with precision 0.85, and a Type 2 Error of 28,108 with recall 0.8853. This indicates that this model 

has higher recall than precision. In contrast to the previous model, here we got a higher Recall, 

making it more reliable to predict class 1 than class 0. 
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Figure 20: Confusion matrices from the ANN model for the equity dividend dummy 

The area under the ROC curve for the model is 0.9778, which represents excellent discriminative 

power of the model, and it is also the highest among all the models. 

 

Figure 21: ROC curve from the ANN model for the equity dividend dummy 

 

 

 

 

5.1.4 Discussion on Feature importance for equity dividend dummy 

 

Among all the models used to predict equity dividends, the Random Forest model 

demonstrates superior performance, excelling across all parameters and providing the 

highest predictive power. Several important features influencing equity dividend 
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decisions were identified. Firms that have consistently paid dividends over the past five 

years are more likely to continue paying dividends in the future. Conversely, firms that 

distributed substantial dividends in the most recent year and increased their dividend 

payouts last year are less likely to give dividend payments in the future. Additionally, 

firms with higher net profit margins, return on equity, return on assets, and higher 

EBITDA are more inclined to pay dividends in the future. The firm that generates 

higher cash flow and has a higher cash balance in the industry is more likely to pay 

dividends in the future. Firms spending money on research and development are more likely 

to pay dividends. Standalone private firms are less likely to pay dividends than government or 

private group firms. 

 

5.2 Results for Special Dividend Dummy 

 
Table 7 presents the performance outcomes for the 8 models mentioned earlier. The accuracy and 

F1 scores for each model are detailed under two configurations: one excluding dividend history 

variables and one including them. Each model underwent hyperparameter tuning to deliver the 

optimal performance for its respective algorithm category. The special dividend dummy, after 

SMOTE application, includes 5,64,620 data instances. 

Among all the models, the tree-based models perform the best in terms of accuracy and F1 score 

for both setups. XGBoost stands out by delivering the highest accuracy and F1 score in both cases. 

With dividend history variables included, the accuracy and F1 score are both 99.90%. When we 

leave out dividend history variables, the results remain nearly identical, with an accuracy of 

99.921% and an F1 score of 99.91%. 

Table 7: Performance of each model for the special dividend dummy 
 

 

F_SPE_DIVDUMMY 

With Dividend-Related 

Variables 

without Dividend-Related 

Variables 
Accuracy F1 score Accuracy F1 score 

Statistical models     

Simple Logistic Regression 91.20% 91.35% 87.22% 87.50% 

Logistic Regression with Lasso Regu- 

larisation 
91.24% 91.42% 87.22% 87.50% 

Logistic Regression with ridge 91.24% 91.42% 87.22% 87.51% 

Logistic Regression with Elastic Net 91.24% 91.42% 87.22% 87.50% 

Classical Machine learning models:     

Decision Tree 99.68% 99.68% 99.55% 99.55% 

Random Forest 99.86% 99.86% 99.86% 99.86% 

XGBoost 99.90% 99.90% 99.91% 99.91% 

Deep Learning     

Artificial Neural Network 99.39% 99.40% 99.13% 99.14% 
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Following the tree-based models, the artificial neural network delivers the second-best accuracy 

and F1 score of 99.39% and 93.40%, respectively. Statistical models lag behind in performance. 

There is only a slight difference in how well the regularization methods for logistic regression 

(Lasso, Ridge, and Elastic Net) perform. Elastic Net shows a slight edge over the other two 

methods and the model without any regularization. 

In Table 8, we provide additional performance matrices. The table focuses on the best-performing 

models from each category: Logistic Regression with Elastic Net, XGBoost, and Artificial Neural 

Network. Each of these three is discussed individually in the sections that follow. 

 

 

Table 8: Performance summary of the best-performing models for the special dividend dummy 
 

Special Dividend 

Dummy 
With Dividend-Related variables Without Dividend-Related Variables 

Performance metrics 
Logistic re- 

gression 
XGBoost ANN 

Logistic re- 

gression 
XGBoost ANN 

Accuracy 0.9125 0.9990 0.9939 0.8722 0.9992 0.9913 

Error Rate 0.0875 0.0010 0.0061 0.1278 0.0008 0.0087 

Precision 0.8960 0.9995 0.9883 0.8560 0.9996 0.9837 

Recall 0.9332 0.9985 0.9997 0.8950 0.9987 0.9992 

F1 Score 0.9142 0.9990 0.9940 0.8750 0.9992 0.9914 

Specificity 0.8917 0.9995 0.9881 0.8494 0.9996 0.9834 

G-Mean 0.9122 0.9990 0.9939 0.8719 0.9992 0.9913 

Balanced Accuracy 0.9125 0.9990 0.9939 0.8722 0.9992 0.9913 

Youden's Gamma 0.8249 0.9980 0.9879 0.7444 0.9983 0.9826 

 

 

5.2.1 Logistic Regression with Elasticnet for Special Dividend Prediction 

 

The best mode is achieved after hyperparameter tuning. There are two hyperparameters, C and 

L1 Ratio. C represents the regularization strength. A higher value of C corresponds to lower 

regularization strength. The L1 ratio in Elastic Net is the proportion of L1 (Lasso) penalty relative 

to the combined L1 and L2 (Ridge) penalties. For the logistic regression model including 

dividend-related variables, the best parameters identified are C is 1 and L1 ratio is 0.5. For the 

model excluding dividend-related variables, the optimal parameters are C is 0.1 and L1 ratio is 

0.7. 
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For logistic regression with elastic net, we achieved an accuracy of 91.25%, including dividend- 

history variables, and 87.22% when it was excluded. This indicates that the dividend-history 

variable significantly influences the prediction performance. 

 

Figure 22: Confusion matrices from the logistic regression model for the special dividend 

dummy 

To arrive at the performance metrics described in Table 8, we have examined the confusion 

matrices of the predictions, which directly give insights into Type 1 and Type 2 errors. The 

confusion matrix is presented in Fig. 22. We now jointly review the results from Table 8 and Fig. 

22. For the model with dividend-related variables, we found that the Type 1 Error (False Positive) 

is 30566, with a precision of 0.896. Whereas the Type 2 Error (False Negative) is 18861, and the 

recall is 0.9332. This shows that the model predicts class 1 more effectively than class 0, with 

recall being higher than precision. The overall F1 score of the model is 0.9142. 

Opposite results are observed for the model excluding dividend-related variables. It shows a Type 

I error of 42,515 (with a precision of 0.8560) and a Type II error of 41,014 (with a recall of 

0.8950). This model performs much worse than the previous one regarding overall accuracy. For 

both logistic regression models, we observed that recall is better than precision, which is a 

desirable result in the case of an imbalanced data set. 

The area under the ROC curve suggests higher discriminative power, and the ROC curve is shown 

in the figure below. The AUC-ROC score of 0.97, showcasing the discriminative power of the 

model. 
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Figure 23: ROC curve from the logistic regression model for the special dividend dummy 

 

 

 

Furthermore, Figure 12 below illustrates the feature relevance of the top factors. The coefficient 

values of every variable in the trained model indicate the significance of a feature. 

 

Figure 24: Feature importance from the logistic regression model for the special dividend 

dummy 

For predicting the F_SPE_DIVDUMMY, our feature SPE_DIVDUMMY plays a significant role, 

and the next important feature is DIVIN5YEAR, suggesting that dividend-related variables have 

a significant contribution to the model's performance. Additionally, SIZE, PATMARGIN, 

OVERCASHFLOWRAT, RND_DUMMY, LOG_LTLEV, and INDUSTRY_77.0 are common 

important features among both models, indicating consistency between these models. 
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5.2.2 XGboost for special Dividend Prediction 

 

XGBoost Model performs best among all the tree-based models. There are three hyperparameters 

we tuned: maximum depth of trees, learning rate, and number of estimators(trees) used in this 

boosting algorithm. Both model, including and excluding dividend-related variables, gives the 

best performance at a maximum depth of the trees is 10, a learning rate of 0.2, and 200 estimators 

(trees) in the forest. 

For XGBoost with optimal hyperparameters, we achieved accuracies of 99.90%, including 

dividend-related variables, and 99.91% accuracy excluding them. It indicates no such 

performance difference for both specifications. 

 

 

Figure 25: Confusion matrices from the XGBoost model for the special dividend dummy 

For the evaluation of all the performance metrics given in Table 8, we have analyzed the confusion 

matrices of the predictions, which also provide insights into Type 1 and Type 2 errors. Looking 

at the results in Table 8 and Fig. 25 jointly, for the model considering dividend-related variables, 

we observed that the Type 1 Error (False Positive) is 143 with a precision of 0.9995, whereas the 

Type 2 Error (False Negative) is 411 with a recall of 0.9985. Both precision and recall are 

extremely high, but from the Type 1 and Type 2 errors, it is evident that the model predicts class 

0 better than class 1. This suggests that, unlike other models for the special dividend dummy, 

precision slightly outweighs recall for both specifications. 

The model excluding dividend-related variables has a Type 1 Error of 108 with a precision of 

0.9996 and a Type 2 Error of 368 with a recall of 0.9987. Compared to the previous model, we 

observe similar precision and recall values; however, the Type 1 Error is notably lower than the 

Type 2 Error. This suggests slightly better precision than recall for this model. 
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The AUC ROC score of the model is extremely close to 1. This suggests excellent discriminative 

power. The curve is shown in the figure below. 

 

Figure 26: ROC curve from the XGBoost model for the special dividend dummy 

We present feature importance for both models in Figure 27 below. Feature importance is 

determined by the entropy reduction at a split based on any feature. 

 

Figure 27: Feature importance from the XGBoost model for the special dividend dummy 

 

 

 

To predict F_SPE_DIVDUMMY, EQUITY_DIVDUMMY, and EQUITY_PAYOUTRAT are 

the most important features. Following these, features like OWNER_PRIVATE, 

RND_DUMMY, OVERTOTALCASHEQRAT, OVERTANG, and OVERCAPEX are consistent 

across both models. 
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5.2.3 ANN for equity dividend prediction 

 

As discussed in Section 4.4, we used grid search to adjust the hyperparameters of an ANN model 

with two hidden layers. In addition, we obtained a generalized model by using 5-fold cross- 

validation. We set the batch size to 32 data instances and trained the model for 30 epochs for each 

set of hyperparameters, updating the ANN's parameters every 32 passes. In addition, as is 

recommended for any ANN model, we built the model with the condition that neurons in the 

forward architecture have fewer neurons than the layer before it. We have tuned four 

hyperparameters: Learning rate, which is the rate of updating the weights in ANN; number of 

neurons in the first layer, number of neurons in the second layer, and dropout rate, which is the 

proportion of neurons dropped at every epoch. 

After performing hyperparameter tuning, for the dataset including dividend-related variables, we 

identified the best hyperparameters for our model as follows: Learning Rate is 0.001, 32 Neurons 

in the first layer, 16 Neurons in the second layer, and Dropout Rate is 0.2. For the case excluding 

dividend-related variables, we determined the best parameters to be as follows: Learning Rate is 

0.001, 32 Neurons in the first layer, 16 Neurons in the second layer, and Dropout Rate is 0.2. 

For the model that includes dividend-related variables, we achieved an accuracy of 99.39% and 

an F1 score of 99.40%. In contrast, the model without dividend-related variables achieved an 

accuracy of 99.13% and an F1 score of 99.14%. These results are lower than those of the previous 

model, highlighting the importance of dividend-related variables in predicting special dividend 

policies using an Artificial Neural Network. 

The confusion matrices shown in Fig. 28 provide insights into Type 1 Error and Type 2 Error. 

Referring to the performance metrics in Table 8, for the model that includes dividend-related 

variables, the Type 1 Error is 3,354 with a precision of 0.9883, and the Type 2 Error is 76 with a 

recall of 0.9997. Conversely, the model that excludes dividend-related variables has a Type 1 

Error of 4,687 with a precision of 0.9837 and a Type 2 Error of 220 with a recall of 0.9992. Both 

models demonstrate very high recall rates compared to precision, indicating strong effectiveness 

in classifying class 1 instances but reduced accuracy in identifying class 0 instances. 
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Figure 28: Confusion matrices from the ANN model for the special dividend dummy 

The area under the AUC ROC curve is also very high for the ANN model. The curve is shown in 

Figure 29 below. 

 

 

Figure 29: ROC curve from the ANN model for the special dividend dummy 

5.2.4 Discussion on Feature importance for equity dividend dummy 

 

Among the various models used to predict special dividends, XGBoost demonstrates superior 

performance, excelling across all parameters and providing the highest predictive power. Insights 

from the XGBoost model reveal several key patterns. Firms that paid dividends in the previous 

year are more likely to distribute special dividends. Similarly, firms that issued special dividends 

in the past year exhibit a higher likelihood of continuing to do so in the future. Conversely, firms 

that distributed exceptionally high dividends in the previous year are less likely to issue special 

dividends moving forward. Furthermore, privately-owned firms exhibit a lower propensity to pay 

special dividends. Firms investing in research and development are likely to issue special 
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dividends. Additionally, firms with cash balances exceeding industry averages and those 

generating extraordinary cash flows relative to their peers are more likely to distribute special 

dividends. Lastly, firms experiencing revenue growth compared to the previous year are more 

likely to issue special dividends in the future. Asset-heavy firms in an industry are more likely to 

pay special dividends. Firms with higher capital expenditures compared to the industry median 

are also more likely to pay special dividends. 

 

 

 

5.3 Results: Equity Dividend Growth Dummy 

 
Table 9 illustrates the results of the 8 models we discussed earlier. It highlights the accuracy and 

F1 scores under two settings: one that excludes dividend history variables and one that 

incorporates them. All models have been fine-tuned with hyperparameter optimization to ensure 

the best results for each algorithm type. After applying SMOTE, the equity dividend growth 

dummy comprises 5,24,092 data instances. 

The tree-based models provide the best accuracy and F1 score across both setups. In particular, 

the random forest method achieves the highest accuracy and F1 score for both cases. With 

dividend history variables included, the accuracy and F1 score are 95.12% and 95.01%. Even 

without dividend history variables, the accuracy and F1 score remain almost the same at 95.52% 

and 95.39%. 

Table 9: Performance of each model for the equity dividend growth dummy 
 

 

F_EQUITYDIVGROWTH_DUMMY 

With Dividend-Related 

Variables 

without Dividend-Related 

Variables 

Accuracy F1 score Accuracy F1 score 

Statistical models     

Simple Logistic Regression 83.94% 83.79% 79.31% 79.85% 

Logistic Regression with Lasso 

Regularisation 
83.92% 83.70% 79.30% 79.85% 

Logistic Regression with Ridge 83.94% 83.79% 79.31% 79.85% 

Logistic Regression with Elastic Net 83.96% 83.80% 79.31% 79.86% 

Classical Machine learning models:     

Decision Tree 93.71% 93.60% 92.67% 92.57% 

Random Forest 95.12% 95.01% 95.52% 95.39% 

XGBoost 94.65% 94.51% 94.91% 94.75% 

Deep Learning     

Artificial Neural Network 87.82% 87.77 85.58% 86.01% 
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The artificial neural network comes next to the tree-based models, providing an accuracy and F1 

score of 87.82% and 87.77%, respectively. Statistical models perform the least effectively. The 

performance difference among the regularization techniques for logistic regression (Lasso, Ridge, 

and Elastic Net) is very small. Elastic Net does slightly better compared to the others and the 

model without regularization. 

Table 10 includes additional performance matrices. It highlights the performance of the top 

models from each category, namely Logistic Regression with Elastic Net, Random Forest, and 

Artificial Neural Network. We discuss these three models separately in the subsequent sections. 

 

 

Table 10: Performance summary of the best-performing models for the equity dividend growth 

dummy 

Dividend Growth 

Dummy 
With Dividend-Related variables Without Dividend-Related Variables 

Performance metrics 
Logistic 

regression 

Random 

Forest 
ANN 

Logistic 

regression 

Random 

Forest 
ANN 

Accuracy 0.8396 0.9512 0.8782 0.7931 0.9552 0.8558 

Error Rate 0.1604 0.0488 0.1218 0.2069 0.0448 0.1442 

Precision 0.8463 0.9728 0.8458 0.7781 0.9817 0.8353 

Recall 0.8298 0.9284 0.9122 0.8202 0.9276 0.8864 

F1 Score 0.8380 0.9501 0.8777 0.7986 0.9539 0.8601 

Specificity 0.8493 0.9740 0.8469 0.7661 0.9827 0.8252 

G-Mean 0.8395 0.9509 0.8789 0.7927 0.9548 0.8553 

Balanced Accuracy 0.8396 0.9512 0.8795 0.7931 0.9552 0.8558 

Youden's Gamma 0.6791 0.9024 0.7591 0.5862 0.9103 0.7116 

 

 

5.3.1 Logistic Regression with Elastic Net for Equity Dividend Growth Prediction 

 

The best mode is to arrive after hyperparameter tuning. There are two hyperparameters, C and L1 

Ratio. C represents the regularization strength. A higher value of C corresponds to lower 

regularization strength. The L1 ratio in Elastic Net is the proportion of L1 (Lasso) penalty relative 

to the combined L1 and L2 (Ridge) penalties. For the logistic regression model including 

dividend-history variables, the best parameters identified are C = 0.01 and L1 ratio = 0.7. For the 

model excluding dividend-related variables, the optimal parameters are C = 10 and L1 ratio = 0.3. 

This combination effectively prevents overfitting while ensuring good generalization to unseen 

data. 
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For logistic regression with elastic net, we achieved an accuracy of 83.96%, including dividend- 

history variables, and 79.31% when it was excluded. This indicates that the dividend-history 

variable significantly influences the prediction performance. 

 

Figure 30: Confusion matrices from the logistic regression model for the equity dividend growth 

dummy 

To arrive at the performance metrics described in Table 10, we analyze the confusion matrices of 

the predictions, which directly reflect Type 1 and Type 2 errors. The confusion matrix appears in 

Fig. 30. We now look at the results from Table 10 and Fig. 30 together. For the model considering 

dividend-related variables, we noted that the Type 1 Error (False Positive) is 39481 and the 

precision is 0.8463. Whereas the Type 2 Error (False Negative) is 44607, and the recall is 0.8298. 

Precision and recall are well balanced, and the overall F1 score of the model is 0.8380. 

Opposite results are observed for the model excluding dividend-related variables. It displays a 

Type I error of 61,301 (with a precision of 0.7781) and a Type II error of 47,125 (with a recall of 

0.8202). This model performs worse than the earlier model in terms of overall accuracy. 

Nevertheless, due to the imbalance in the dataset, where positive class observations are limited, 

recall takes precedence over precision. Given that the model without dividend-related variables 

achieves superior recall in relation to precision, it is deemed more appropriate in this situation 

than the model with dividend-related variables. 
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Further, we plot the ROC curve of the model with dividend-related variables in Fig. 31. The Area 

under the ROC curve is 0.91. This implies a slightly discriminative power of the model 

 

Figure 31: ROC curve from the logistic regression model for the equity dividend growth 

dummy 

Furthermore, we present the feature importance of the top variables in Figure 32 below. Feature 

importance is determined by the coefficient values of each variable in the trained model. 

 

Figure 32: Feature importance from the logistic regression model for the equity dividend growth 

dummy 

To predict a F_EQUITYDIVGROWTH_DUMMY, DIVIN5YEAR, EQUITY_DIVDUMMY, 

EQUITYDIVGROWTH_DUMMY emerges as the most important dividend-related variable. 

Following this, features like OVERCASHFLOWRAT, SIZE, LISTED, PATMARGIN, 

OVERLEV1, and DEBTISSUANCE are commonly important features across both models 
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5.3.2 Random Forest for Equity Dividend Growth Prediction 

 

Random forest Model performs best among all the tree-based models. There are four 

hyperparameters we tuned: maximum depth of trees, minimum samples per leaf, minimum 

sample required to split a node, and number of estimators(trees) used in this bagging method. The 

model, including dividend-related variables, gives the best performance at no limit on the 

maximum depth of the trees, a minimum of one sample required per leaf node, a minimum of two 

samples required to split an internal node, and 200 estimators (trees) in the forest. For the model 

excluding dividend-related variables with the 200 estimators(trees) in the algorithm, each leaf 

node requires at least one sample, splitting an internal node requires at least two samples, and no 

restriction for the depth of the trees gives the best accuracy. 

For Random Forest with optimal hyperparameters, for the model including dividend-related 

variables, we achieved accuracy and F1 score of 95.12% and 95.01%, respectively, while for the 

model excluding dividend-related variables, accuracy and F1 scores are 95.52% and 95.39%, 

respectively. Suggesting no difference in performance due to dividend-related variables. 

 

Figure 33: Confusion matrices from the Random Forest model for the equity dividend growth 

dummy 

For the evaluation of all the performance metrics given in Table 10, we have analysed the 

confusion matrices of the predictions, which also provide insights into Type 1 and Type 2 errors. 

Considering the results in Table 10 and Fig. 33 jointly, for the model considering dividend-related 

variables, we observed that the Type 1 Error (False Positive) is 4,538 with a precision of 0.9728, 



71 
 

0 0.05 0.1 0.15 0.2 

divin5year 

equity_divdummy 

equity_payoutrat 

equity_divbyta 

equitydivgrowth_du… 

overcashflowrat 

dummy_patgrowth 

roe 

roa 

overtotalcashequrat 

0 0.02 0.04 0.06 0.08 0.1 

overcashflowrat 

overlev1 

dummy_patgrowth 

roa 

owner_Private 

overtotalcashequrat 

overcapex 

roe 

patmargin 

rnd_dummy 

whereas the Type 2 Error (False Negative) is 18,960 with a recall of 0.9817. This indicates that 

precision slightly exceeds recall. 

The model excluding dividend-related variables reports a Type 1 Error of 6,814 with a precision 

of 0.9817 and a Type 2 Error of 18,767 with a recall of 0.9276. Precision is higher than recall, 

indicating that the model predicts class 0 more effectively than class 1. Although the previous 

model showed comparable precision and recall, this model highlights a more pronounced 

difference between the two, making it less suitable for accurately predicting Class 1. 

The area under the ROC curve for the model is 0.95, which represents excellent discriminative 

power of the model. show in Figure 34 below. 
 

Figure 34: ROC curve from the Random Forest model for the equity dividend growth dummy 

We presented feature importance for both models in Figure 19 below. Feature importance is 

determined by the entropy reduction at a split based on any feature. 

 

 

Figure 35: Feature importance from the Random Forest model for the equity dividend growth 

dummy 
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For predicting F_EQUITYDIVGROWTH_DUMMY, DIVIN5YEAR, EQUITY_DIVDUMMY, 

EQUITY_DIVBYTA, and EQUITYDIVGROWTH_DUMMY are the most important dividend- 

related features. Additionally, OVERCASHFLOWRAT, ROA, ROE, DUMMY_PATGROWTH, 

and OVERTOTALCASHEQRAT are the common important features across both models. 

5.3.3 ANN for Equity Dividend Growth Prediction 

 

We employe grid search to modify the hyperparameters of a two-layered ANN model. we used 

5-fold cross-validation to develop a generalized model. For each set of hyperparameters, as 

explained in Section 4.4. Additionally, we trained the model for 30 epochs, changing the ANN's 

parameters every 32 passes, with a batch size of 32 data examples. Furthermore, we constructed 

the model with the stipulation that neurons in the forward architecture have fewer neurons than 

the layer preceding it, as is advised for any ANN model. We have tuned four hyperparameters: 

Learning rate, which is the rate of updating the weights in ANN; number of neurons in the first 

layer, number of neurons in the second layer, and dropout rate, which is the proportion of neurons 

dropped at every epoch. 

For the dataset including dividend-related variables, after performing hyperparameter tuning, we 

identified the best hyperparameters for our model as follows: Learning Rate is 0.001,32 Neurons 

in the first layer, 16 Neurons in the second layer, and Dropout Rate is 0.2. For the case excluding 

dividend-related variables, we determined the best parameters to be as follows: Learning Rate is 

0.001, 32 Neurons in the first layer, 16 Neurons in the second layer, and Dropout Rate is 0.2. 

For the ANN model, including dividend-related variables, we achieved an accuracy of 87.82% 

and an F1 score of 87.77%. The model without dividend-related variables achieved an accuracy 

of 85.58% and an F1 score of 86.01%. this shows the reduction in accuracy after excluding 

dividend-related variables 

The confusion matrices in Fig. 36 provide a clear understanding of Type 1 Error and Type 2 Error. 

Analyzing Fig. 36 and Table 10 together, for the model that includes dividend-related variables, 

the Type 1 Error is 16,328 with a precision of 0.8458, and the Type 2 Error is 17,550 with a recall 

of 0.8864. This indicates the model has a higher recall than precision. On the other hand, the 

model that excludes dividend-related variables shows a Type 1 Error of 45,805 with a precision 

of 0.8353 and a Type 2 Error of 29,760 with a recall of 0.8864. Both models exhibit similar trends 

in precision and recall, with recall being higher. This makes recall a more valuable metric for 

evaluating models on imbalanced datasets. 
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Figure 36: Confusion matrices from the ANN model for the equity dividend growth dummy 

 

 

 

The ROC curve is shown in Figure 40 below. Area under ROC curve is also high, 0.9476, 

suggesting good classification power. 

 

Figure 37: ROC curve from the ANN model for the equity dividend growth dummy 

 

 

 

5.3.4 Discussion on feature importance for equity dividend growth dummy 

 

The Random Forest model demonstrates the best performance, allowing us to identify key 

features influencing dividend growth decisions. The model indicates that the frequency of 

dividend payments by a firm over the past five years significantly impacts its likelihood of 

increasing dividends. Specifically, if a firm distributed dividends in the previous year and 

increased its dividend during that period, it is more likely to continue raising dividends in the 
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future. Conversely, firms that paid substantial dividends in the last year are less likely to further 

increase them. Additionally, firms with excess cash balances compared to industry averages are 

more inclined to raise dividends. Similarly, firms generating extraordinary cash flows relative to 

industry standards are more likely to increase their dividends. Firms that have exhibited growth 

in net profits are also more likely to enhance their dividend payments. Lastly, profitable firms 

with higher returns on equity and assets demonstrate a greater propensity for increasing dividends. 
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6 Conclusion 

 
In this paper, we aim to provide solutions for three classification problems: whether a company 

will pay a regular dividend, whether it will offer a special dividend and whether there will be 

growth in the dividends compared to last year. We are able to predict regular dividends, special 

dividends and growth in dividends with accuracies of 96.73%, 99.90% and 95.12% respectively. 

For equity dividends, we have the highest prediction accuracy among all published works. 

Further, as per best of our knowledge, we are the first ones to predict special dividends and 

dividends growth. Further, we do not use any market-related features and hence our models can 

be used for unlisted firms as well. 

We find that tree-based models work best for all three prediction problems. Random Forests were 

the best to predict equity dividends and dividend growth, while XGBoost worked best for 

predicting special dividends. This is primarily due to the working principles of these models, 

which make them well-suited for handling non-linear data. Since many features in the dataset do 

not follow a standard distribution and include numerous binary variables, Logistic Regression, 

which assumes a linear relationship between features and the target variable, tends to perform 

poorly in comparison. Tree-based models, on the other hand, work on the principle of entropy 

reduction. They iteratively split the data to minimize entropy and maximize information gain, 

making them better suited for the non-linear relationships and diverse feature types present in the 

dataset. This approach aligns well with the objectives of the study, as it improves the model's 

predictive accuracy. 

We developed two separate specifications: one including dividend history variables and the other 

excluding them. Theories suggest that dividends are highly autocorrelated and hence simple time 

series models might be suffici9ent to predict them. But we find that other non-dividend history 

features have a significant predictive power. From the results, we observed that if we build models 

with only non-dividend history variables, maximum loss in accuracy is just 10% compared to 

models with dividend history variables. Further, in many cases there was no significant difference 

in performance across the two specifications. This implies that machine learning models are better 

in predicting dividends than time series models even though there is significant autocorrelation. 

Additionally, the consistency in feature importance rankings across all machine learning models 

in both specifications for all target variables highlights the robustness of our findings. 

Our models leverage financial statement data, which is readily available for most Indian 

companies. This accessibility enables seamless deployment by investors. Consequently, the 

models can support more informed decision-making in stock selection and trading. Furthermore, 
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they can assist investment advisors in better addressing client requirements and aid fund managers 

in selecting securities in alignment with their investment mandates. 
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Appendix 

 
A. Definition of all variables used in our study 

 

Variable Description 

Leverage 

TOTALDEBT Total debt 

LEV1 Leverage 1 

LEV2 Leverage 2 

STLEV Short-term leverage 

LTLEV Long-term leverage 

MAT Maturity 

DELTATOTALDEBTRAT Delta total debt ratio 

DEBTISSUANCE Debt issuance 

DELTAPAIDUPCAP Delta paid-up capital 

MEDLEV1_IND Industry median leverage 1 

MEDLEV2_IND Industry median leverage 2 

OVERLEV1 Over leverage 1 

OVERLEV2 Over leverage 2 

Profitability 

ROA Return on assets 

ROE Return on investment 

EBITDAMARGIN Ebitda margin 

EBITMARGIN Ebit margin 

PATMARGIN Pat margin 

EBITBYTA EBIT by total assets 

ROCE Return on capital employed 

PATGROWTH Pat growth 

REVGROWTH Revenue growth 

DUMMY_REVGROWTH Dummy revenue growth 

DUMMY_PATGROWTH Dummy pat growth 

EARNINGVOL Earning volatility 

REVVOL Revenue volatility 

Asset and Investment 

SIZE Log of total assets 

TANG Tangibility 
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DEPRATIO Depreciation ratio 

ASSETMAT Asset maturity 

CAPEX Capital expenditure 

DELTACAPEX Delta capital expenditure 

LOG_CAPEX Log of capex 

MEDTANG_IND Industry median of tangibility 

MEDCAPEX_IND Industry median of capex 

OVERTANG Over tangibility 

OVERCAPEX Over capex 

LOGASSGR Log of asset growth 

MEDLOGASSGR_IND Industry median of log asset growth 

Liquidity 

CASHRAT Cash ratio 

TOTALCASHEQURAT Total cash equivalent ratio 

CASHFLOWRAT Cash flow ratio 

CR Current ratio 

NWCBYTA Net Working Capital by Total Asset 

CFVOL_IND Cash flow volatility at the industry-year level 

CASHFLOWVOL Cash flow Volatility 

MEDCASHFLOWRAT_IND Industry median of cash flow ratio 

MEDTOTALCASHEQURAT_IND Industry median of Total cash equivalent ratio 

OVERCASHFLOWRAT Binary variable: Over cashflow ratio 

OVERTOTALCASHEQURAT Binary variable: Total cash equivalent ratio 

DELTACASHEQURAT Delta Cash equivalent ratio 

FCF Free cash flow 

Dividend 

EQUITY_DIVDUMMY Binary variable: Equity Dividend 

SPE_DIVDUMMY Binary variable: Special Dividend 

EQUITY_PAYOUTRAT Equity dividend payout ratio 

EQUITY_DIVBYTA Equity Dividend by Total Asset 

EQUITY_DIVBYOP Equity Dividend by Operational margin 

SPE_PAYOUTRAT Special dividend Payout ratio 

SPE_DIVBYTA Special dividend by Total Asset 

SPE_DIVBYOP Special dividend by operational margin 

EQUITYDIVGROWTH_DUMMY Binary variable: for growth in equity Dividend 

DIVIN5YEAR Dividend Given In last 5 Years 

Company 

AGE Age of the firm 

LISTED Binary Variable: BSE listing of Firm. 

OWNER_GOV Binary variable: Government owned Firm 
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OWNER_GROUP 
Binary variable: The Firm is owned By Group 

Company 

OWNER_PRIVATE Binary variable: Private owned Firm 

TOTAL_OTH_OWN Total Other Directorship in a Given Year 

PROPO_INDEP Proportion of Independent Directors 

PROPO_EXECU Proportion of Executive Directors 

Expense 

TAXRATE Tax rate 

SGABYTA SA& G Expense by total Asset 

RNDBYREV R&D expenditure by Revenue 

RNDBYTA R&D expenditure by Total Asset 

RND_DUMMY Is company spending for R&D or not 

LIFECYCLE Life cycle 

INTRATE Interest rate 

Macroeconomic 

EXC_RATE Exchange rate 

CONS_PCT_GDP Final consumption expenditure (% of GDP) 

INV_PCT_GDP Gross capital formation (% of GDP) 

CREDIT_PRIVATE_GDP Domestic credit to private sector (% of GDP) 

MRK_CAP_PCT_GDP 
Market capitalization of listed domestic companies 

(% of GDP) 

EXPND_PCT_GDP 
Government expenditure, percent of GDP (% of 

GDP) 

GDP_GR Real GDP growth (Annual percent change) 

GDP 
GDP per capita, current prices (U.S. dollars per 

capita) 

INF_CPI 
Inflation rate, end of period consumer prices (An- 

nual percent change) 

UNEMP_RATE Unemployment, total (% of total labour force) 

REPORATE Exchange rate 

 

INDUSTRY_46.0 
Wholesale trade, except motor vehicles and motor- 

cycles, industry dummy 

INDUSTRY_77.0 
Leasing of non-financial intangible assets, industry 

dummy 

INDUSTRY_20.0 
Manufacture of chemicals and chemical products, 

industry dummy 
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B. Correlation matrices for all set of variables: 

 

i. Leverage related variables: 
 

ii. Profitability variables 
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iii. Asset Investment Retreated Variables: 
 

 

iv. Liquidity-related variables 
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v. Dividend-related variables: 
 

 

vi. Firm-related variables 
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vii. Country-level variables 
 

 

viii. Expense Related Variables 
 


