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A Moments-Based Approach to Anomaly Forecasts and Statistical 

Limits to Arbitrage 

ABSTRACT 

Adopting a top-down approach to statistical limits to arbitrage, we form an anomaly-percentile 

distribution of 140 anomalies and estimate the first four moments to forecast mispricing. We 

interpret the mean and skewness of mispricing as proxies for potential abnormal profits, and 

the variance and kurtosis as measures for uncertainty and downside risk in mispricing. The 

empirical analysis shows that the mean and skewness (variance and kurtosis) are positively 

(negatively) associated with future abnormal returns. The negative effects of variance and 

kurtosis have intensified in recent decades. The negative relation between variance and kurtosis 

and realized returns increases with positive sentiment, high market volatility, high liquidity, 

and positive past returns. Our method is not confined to specific anomaly clusters and 

substantially  improves the performance of anomaly-based portfolios. The results provide 

insights into the ways that uncertainty and opportunity in arbitrage profits influence market 

behavior.  
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1. Introduction 

Market anomalies refer to situations in which prices deviate from their true values, 

sometimes for extended periods. The coexistence of anomalies with the widely accepted 

Efficient Market Hypothesis (Fama, 1970) is primarily reconciled through the framework of 

the limits to arbitrage (Shleifer & Vishny, 1997): the constraints and limitations that prevent 

traders from fully exploiting potential mispricing. Recently, Da, Nagel, and Xiu (2024) 

introduce a theoretical framework known as statistical limits to arbitrage. They argue that the 

assumption that investors possess full knowledge of the functional form and parameters of the 

data-generating process does not hold in practice, partly because of the prevalence of high-

dimensional environments with many factors. Consequently, investors do not fully exploit 

arbitrage opportunities, as they aim to mitigate the risk arising from this incomplete knowledge.  

In this paper, we adopt a top-down approach to statistical limits to arbitrage, by 

identifying and quantifying the potential and uncertainty in anomaly forecasts. The statistical 

limits to arbitrages are embedded in signals derived from large dimensions of anomalies. In 

our analysis, we use 140 well-known anomalies, rank them by percentiles, and estimate the 

first four moments of the anomaly-percentile distribution for each stock-month. Our proposed 

method is analogous to constructing portfolios based on the distribution of price returns. 

However, we emphasize that in our case the moments refer to the anomaly-percentile 

distribution as indication of potential mispricing and therefore serves as a future forecast. 

Accordingly, the association we examine is between these moments and realized future 

abnormal returns, which arise from arbitrage trading and the correction of mispricing. 

Specifically, we posit that the mean and skewness of the anomaly-percentile 

distribution indicates potential mispricing and may generate future abnormal profits. In 

contrast, the variance and kurtosis of anomaly forecasts serve as proxies for uncertainty 

surrounding potential mispricing and arbitrage profits. We interpret these moments of 
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anomaly-percentile distribution as key contributors to limits to arbitrage. All else equal, a 

higher average of anomaly-percentile distribution serves as a forecast for larger mispricing, 

which would generate higher future abnormal returns when the arbitrage pricing gap is closed. 

By similar reasoning, greater right (left) skewness in the anomaly-percentile distribution is a 

forecast for increased likelihood of larger (smaller) mispricing, which would offer higher 

(lower) arbitrage returns when the arbitrage mispricing gap is closed. In contrast, greater 

discrepancies across anomaly-percentile distribution increase the risk associated with 

exploiting potential arbitrage. This discourages arbitrage trading, allowing the mispricing to 

persist and maintain the pricing gap.  Notably, while previous literature provides evidence that 

anomaly profitability diminishes over time, we find that the effects of variance and kurtosis 

have increased over time, consistent with the emergence of large-scale factor models. Such 

models have become more prevalent in investors’ trading decisions because they improve the 

accuracy of modeling the behavior of asset returns (Didisheim, Ke, Kelly & Malamud, 2024).  

Our empirical analysis spans more than 50 years, starting in 1971, when U.S. data for 

most anomalies first became available. For each stock-month, we calculate 140 anomalies (see 

Appendix A for details) and assign a percentile rank to each anomaly across all stocks. This 

process results in a distribution of 140 scores for each stock-month. Next, we compute the four 

moments of this anomaly-percentile distribution for each stock-month: mean, variance, 

skewness, and kurtosis. The empirical results support our main hypothesis regarding these 

moments. First, higher mean and positive skewness in anomaly-percentile distribution are 

significantly associated with higher future returns. This is because both indicate a higher 

likelihood of larger mispricing, which translates to higher abnormal returns in the future once 

the pricing gap is closed. In contrast, higher variance and kurtosis, and more negative skewness 

in anomaly-percentile distribution, are linked to lower future abnormal returns. These moments 

reflect increased risks in arbitrage trading, which discourages investors from exploiting 
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mispricing signals.  In other words, when variance and kurtosis are high, arbitrage profits are 

not realized despite mispricing being indicated by the mean anomaly forecast.  

The effects of variance and kurtosis are economically large, with first-month average 

returns of about −0.46% and −0.82%, respectively. These effects persist over the 6-month 

future horizon before diminishing. Conditional on market states, we find that the negative 

relation between variance and kurtosis and future returns becomes stronger with positive 

sentiment, high market volatility, high liquidity, and positive past returns. These market 

conditions are often associated with greater anomaly profitability (e.g., Cooper, Gutierrez, and 

Hameed, 2004; Stambaugh, Yu, and Yuan, 2012; Constantinos, Doukas, and Subrahmanyam, 

2013; Wang & Xu, 2015; and Avramov, Cheng, and Hameed, 2016). An exception is skewness, 

which shows a greater positive impact during periods of negative sentiment, probably because 

traders rely more heavily on skewness as a supportive signal in less optimistic market 

conditions. 

An important aspect of our proposed statistical limits to arbitrage is that it does not stem 

from technical or mechanical market characteristics. Rather, its nontechnical nature suggests it 

is unlikely to disappear in the near term. Chordia, Subrahmanyam, and Tong (2014) show that 

anomaly returns have declined in recent years, coinciding with reductions in market frictions, 

such as transaction costs (see also Jacobs and Müller, 2020; Chu, Hirshleifer, and Ma, 2020; 

and Kaplanski, 2023). Consistent with these findings, we observe a significant weakening in 

the effects of the mean and skewness of the anomaly-percentile distribution in recent years. In 

contrast, the variance and kurtosis effects have intensified during the sample period. A similar 

pattern is observed when the sample is restricted to previously discovered anomalies, following 

McLean and Pontiff’s (2016) definition. While the impact of the mean and skewness of the 

anomaly-percentile distribution diminishes after discovery, the relative influence of variance 

and kurtosis increases. This divergence aligns with the notion that limits to arbitrage that arise 
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from uncertainty in anomaly signals do not diminish over time. The likely reason is that as 

arbitrageurs become more sophisticated, they place greater emphasis on aggregating and 

integrating information from various sources, including numerous anomaly signals. 

Next, we examine whether the information regarding statistical limits to arbitrage is 

concentrated in a subset of anomalies. We test this prediction in two ways. First, we repeat the 

main analysis using a subsample of anomalies that have shown profitability in the past, as 

measured by their past positive alpha. According to Da, Nagel, and Xiu (2024), arbitrageurs 

statistically learn about anomalies alphas and therefore focus on anomalies with a proven track 

record of profitability. The results show that the impact of mispricing moments persists within 

this subset of positive-alpha anomalies, further supporting their relevance in explaining the 

statistical limits to arbitrage. Moreover, the analysis demonstrates that our proposed source of 

limits to arbitrage is a distinct case of statistical learning that exists independently of the process 

of anomaly alpha learning.  

In the second test, we analyze the mispricing moments within each of the 13 clusters of 

anomalies proposed by Jensen, Kelly, and Pedersen (2023) and assess their impact relative to 

the effects of the all-anomaly moments. Notably, the impact of the moments across anomalies 

is not confined to specific clusters, although the contribution of within-cluster effects varies 

substantially across clusters. 

Lastly, we perform portfolio analysis based on the information from the anomaly-

percentile distribution to construct long, short, and zero-cost (long-minus-short) portfolios. 

Specifically, stocks are ranked according to the mean of the anomaly-percentile distribution, 

with adjustments for anomaly forecast variance, kurtosis, and skewness. As customary, the 

long and short portfolios include stocks within the top and bottom deciles of the rankings, 

respectively. This analysis reveals that integrating variance, kurtosis, and skewness of anomaly 
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forecasts into the portfolio construction process enhances anomaly investment strategies based 

on mean forecasts. Penalizing stocks for variance and kurtosis risks while rewarding them for 

skewness leads to significant improvements in the mean returns, alphas, and Sharpe ratios of 

portfolios. We provide an illustration of investment performance to demonstrate the impact of 

the anomaly-percentile distribution moments on returns. The stronger impact of kurtosis 

suggests that arbitrageurs are more concerned with the risk of negative fat tails in assessing 

mispricing and arbitrage opportunity than with volatility. In addition, an analysis of those 

portfolios confirms that the effect of anomaly uncertainty on performance has increased over 

time. 

Our study contributes to the literature on limits to arbitrage by identifying and 

quantifying a unique source: uncertainty in mispricing signals. De Long, Shleifer, Summers, 

and Waldmann (1991), and Shleifer and Vishny (1997) emphasize noise trader risk—the risk 

that mispricing could worsen in the short term—as a key source of limits to arbitrage. 

Behavioral biases, such as overconfidence (e.g., Daniel, Hirshleifer, and Subrahmanyam, 

1998) and loss aversion, are important drivers of noise trader risk (e.g., Barberis & Thaler, 

2003; D'Avolio, 2002; Gromb & Vayanos, 2002; Lamont & Thaler, 2003; Jones & Lamont, 

2002; Nagel, 2005).1 Hansen and Sargent (2001) demonstrate that concerns about model 

misspecification can lead to more conservative trading strategies that fail to fully exploit 

arbitrage opportunities. Building on this perspective, we examine the effects of uncertainty in 

mispricing signals on the exploitation of mispricing. By measuring limits to arbitrage using 

 
1 Additional sources of limits to arbitrage arise from market frictions, which include the costs of identifying 
mispricing and the resources required to exploit it. Examples of these frictions include transaction costs, such as 
commissions, bid–ask spreads, and price impact (Pontiff, 1996; Acharya and Pedersen, 2005; Jacoby, Fowler & 
Gottesman, 2000), as well as holding costs and mark-to-market pressures caused by temporary market trends 
(Shleifer and Vishny, 1997). Limits to arbitrage also arise from capital constraints (Madhavan and Cheng, 1997), 
liquidity shocks (Brunnermeier and Pedersen, 2009), and short-selling constraints (Miller, 1977; Chaboud, 
Chiquoine, Hjalmarsson, and Vega, 2014). Moreover, institutional constraints and regulations (Tufano, 1996) and 
financial constraints that force arbitrageurs to liquidate positions may contribute to the persistence of mispricing 
(Gromb and Vayanos, 2002). 
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statistical inferences drawn from numerous anomaly signals, we quantify risk and reward 

measures associated with potential arbitrage opportunities. These measures provide valuable 

insights into the ways that uncertainty in arbitrage opportunities influences investor behavior. 

Our study also contributes to the growing body of literature on large-factor models. 

Studies such as Martin and Nagel (2022), Da, Nagel, and Xiu (2024), Kelly, Malamud, and 

Zhou (2024), and Didisheim, Ke, Kelly, and Malamud (2024) examine statistical learning in 

high-dimensional asset pricing models. They provide a theoretical foundation for statistical 

learning, which is typically rooted in machine learning methodologies. We employ a related 

perspective, taking a top-down approach to the subject, enabling us to address the black-box 

nature of such models. Rather than utilizing all the data to infer statistical patterns, sometimes 

without a priori motivation, we focus on statistics formed by prior knowledge about their 

expected impact on arbitrage trading. This approach allows us to directly test the economic 

reasoning underlying our empirical analysis while offering deeper insights into how statistical 

learning influences market dynamics. 

An additional contribution of our study relates to anomalies in general and their 

association with statistical limits to arbitrage. For instance, Jensen, Kelly, and Pedersen (2023) 

provide compelling evidence of numerous anomalies across 93 countries that consistently yield 

excess returns on risk. They also demonstrate that some anomalies have strengthened rather 

than weakened over time. Moreover, the improvement in market efficiency over the past 

decades shows that the information in many market anomalies is, at least partly, priced (e.g., 

Chordia, Subrahmanyam and Tong, 2014). However, uncertainty regarding anomaly signals 

remains a source of limits to arbitrage. Our findings show that while market efficiency 

increases over time, there are still gaps in the process of information inflow and its 

incorporation in prices. 
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2. Data and methodology 

The empirical analysis includes all U.S. firms listed on the NYSE, AMEX, and 

NASDAQ with share codes 10 and 11 from the CRSP database. The sample includes returns 

of delisting stocks. If delisting return data are missing and the delisting is performance-based, 

we follow Shumway (1997) by setting the delisting return to −30%. To mitigate backfilling 

biases (Fama and French, 1993), a firm must have been listed on Compustat for at least two 

years to be included in the sample. Microcap stocks that fall below the NYSE benchmark for 

the bottom 20% of stocks by market capitalization are excluded from the sample. This 

exclusion reduces microcap biases and eliminates stocks less relevant for trading due to severe 

trading frictions, significant liquidity issues, or lack of information. 

The financial statement data are from the Compustat database. The figures for the 

previous fiscal year are updated annually at the end of June, ensuring that real-time information 

is available for predicting future stock returns. Quarterly financial statements are updated 

monthly, provided the release date is known. If the release date is not specified, the data are 

assumed to be public by the end of the fourth month following the reporting period.  As many 

anomalies require several years of historical data, we use data dating back to 1960. However, 

due to the absence of many Compustat variables in the early years, our empirical analysis starts 

in 1971, when data for most anomalies are available, and ends in 2022. In total, we have 

1,601,774 firm-month observations across 13,039 firms. 

We explore 140 anomalies (see Appendix A) proposed in the literature as being 

correlated with future stock returns. In calculating anomalies, we adhere strictly to the 

methodological guidelines of Jensen, Kelly, and Pedersen (2023), who offer a comprehensive 

framework for their computation. The calculation is as follows: first, we calculate the 
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anomalies each stock-month. Then, we assign a percentile rank to each anomaly across all 

stocks, obtaining 140 percentile ranks across all stocks each month. We denote the percentile 

rank for each anomaly i for stock j in month t as xi,j,t. This standardization using percentage 

ranking facilitates comparisons across anomalies and reduces the impact of outliers. In 

addition, it allows us to align the direction of all anomalies by taking one minus the percentile 

rank (1 − xi,j,t) for anomalies known to be negatively correlated with future returns.  

Next, for each stock-month observation, we calculate the first four moments of the 

anomaly distribution to measure stock mispricing and potential arbitrage opportunities. As 

mispricing is expected to be positively associated with future abnormal returns, we interpret 

the four moments of mispricing as proxies for the corresponding moments of future abnormal 

returns. The first moment of stock price distribution represents the expected abnormal return 

on that stock. Similarly, we hypothesize that the first moment of the anomaly forecast 

distribution represents the average aggregate mispricing across all anomalies. Denoted as 

E(xi)j,t, it represents a stock’s relative strength in generating future abnormal returns. This 

mispricing is expected to be positively correlated with future abnormal returns on that stock 

when the mispricing is corrected. Thus, a higher mean forecast indicates a greater likelihood 

of higher future abnormal returns.  

Continuing with this analogy, just as the variance of a stock’s price returns reflects the 

volatility of expected future returns around the mean, the variance of a stock’s anomaly 

forecasts, 2(xi)j,t, represents the uncertainty in mispricing surrounding the mean of expected 

abnormal returns. For risk-averse arbitrageurs, we hypothesize that, all else being equal, a 

higher variance in anomaly forecasts leads to a discount on potential abnormal returns, as 

volatility discourages the exploitation of arbitrage opportunities. This reduced willingness to 

exploit arbitrage opportunities is expected to result in persistent mispricing and an absence of 

realized abnormal returns in the near future. As a result, we anticipate that stocks with higher 
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anomaly forecast volatility will yield lower future abnormal returns compared to stocks with 

the same mean forecast but lower volatility.  

Similarly, the fourth moment (kurtosis), denoted as Kurt(xi)j,t, indicates fatter tails and 

higher downside risk in anomaly forecasts and implied mispricing. If arbitrageurs are averse to 

downside risk, they are likely to discount potential mispricing with higher tail risk, as measured 

by kurtosis. We hypothesize that greater downside risk discourages investors from fully 

exploiting mispricing, producing an effect similar to that of volatility. Consequently, we expect 

lower future realized returns for stocks with higher kurtosis compared with stocks that have the 

same average forecasts but lower kurtosis.  

To complete the analysis, we also examine the skewness of the distribution of forecasts, 

Skew(xi)j,t. Harvey and Siddique (2000) show that, all else being equal, investors prefer right-

skewed portfolios to left-skewed ones. Analogously, we hypothesize that positive skewness of 

anomaly distribution increases the likelihood of large mispricing. This is because positive 

skewness implies a longer right tail in anomaly forecast distribution. As arbitrageurs are 

attracted to higher likelihood of large mispricing, they may inflate their expectations of 

obtaining abnormal returns in response to greater positive skewness. This, in turn, encourages 

trading on potential mispricing, thereby increasing future realized abnormal returns. 

Conversely, if the anomaly distribution is left-skewed (i.e., a negative skewness), it implies a 

longer tail on the left, increasing the risk associated with exploiting arbitrage opportunities and 

imposing limit on arbitrage.  

We analyze two sample sets. In the main analysis, we use the four moments on all 140 

anomalies. In a separate analysis, we consider anomaly clusters classified according to Jensen, 

Kelly, and Pedersen (2023) (see Appendix A). For each month-stock, in addition to the four 

moments obtained from all anomalies, we also compute the four moments from anomalies 
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belonging to each cluster separately. This approach allows us to distinguish the distinct 

contribution of anomalies within each cluster from the overall effect. 

Table 1 presents descriptive statistics for the four moments of the distribution of 

anomalies’ forecasts for the entire sample period. The average anomaly forecast is 0.5,  

resulting from the percentile ranking procedure. The standard deviation is 0.27, the skewness 

is 0.03, and the kurtosis is 1.94. For the analysis of the anomaly clusters, we present the four 

moments for each cluster. The average forecast for each cluster is also close to 0.5. However, 

the other moments vary across the clusters. The average standard deviation ranges from 0.13 

for momentum anomalies to 0.26 for seasonality anomalies. The skewness also varies 

significantly, ranging from −0.06 for low leverage to 0.12 for quality anomalies, and the 

kurtosis ranges from 1.73 for skewness  to 3.21 for low-risk anomalies. 

 

3. Cross-sectional regressions 

In this section, we employ the Fama and MacBeth (1973) cross-sectional regression 

framework. Each month, we regress stock returns on the mean, variance, skewness, and 

kurtosis of anomaly forecasts. Formally, the monthly regression equation at time t is: 

��,���:��� = 
� + ���
(��)�,� + ���
�(��)�,�+�������(��)�,�+�������(��)�,� +

                    �� ���!"�,� + #�,�,          (1) 

where ��,���:��� is the return on stock j from time t + 1 to time t + m; m represents 1, 3, 6 or 

12 months; E(xi)j,t is the average of 140 anomalies’ percentile-ranked forecasts of firm j at time 

t; and 2(xi)j,t, Skew(xi)j,t, and Kurt(xi)j,t are their variance, skewness and kurtosis, respectively. 

The firm’s control variables include the log of market equity value, the book-to-market ratio 

for firms with a positive book value (0 otherwise), idiosyncratic risk measured as the 60-month 
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volatility of residuals from the CAPM model, and the average turnover (traded shares scaled 

by total number of shares) over the past 126 trading days. 

Table 2 presents the slope coefficients of the regressions. The dependent variable in the 

first column is the next month’s return. The mean of anomaly forecasts has a highly significant 

slope coefficient of 0.0551 (t-statistic = 6.67), indicating that the stock’s average anomaly 

strongly predicts next month’s return. Since the mean percentile-ranked is 0.5 (see Table 1), 

this coefficient implies an average monthly return forecast on anomalies of 

0.0551 × 0.5 = 0.0275 or about 2.75%.2 The variance and kurtosis slope coefficients are 

−0.0625 and −0.0042, both highly significant (t-statistic = −3.22 and −5.00, respectively). 

These results support our main hypothesis that higher arbitrage risk, as implied from the 

volatility and fat tails of the anomaly forecast distribution, is associated with lower future 

realized abnormal returns. Considering the mean of the variance and kurtosis to be 

0.272 = 0.0729 and 0.031, respectively, the size of the coefficients implies a decrease in the 

average monthly return forecast of −0.0625 × 0.0729 = −0.0046, or −0.46%, for the variance 

and −0.0042 × 1.94 = −0.0082, or  −0.82%, for the kurtosis of anomalies. The skewness slope 

coefficient of 0.0040 is also significant (t-statistic = 3.10), suggesting that positive skewness 

in anomaly forecasts is followed by higher future realized returns. This finding aligns with the 

hypothesis that positive skewness encourages the exploitation of arbitrage which, in turn, 

inflates future realized abnormal returns. The size of the coefficient implies an average monthly 

return forecast of 0.004 × 0.003 = 0.00012, or 0.012%, due to skewness in anomalies’ 

distribution. 

The dependent variable in the regressions reported in the other columns is the stock’s 

 
2 Note that this large value is based on the mean of all the firms without accounting for their size (apart from the 
preliminary elimination of the 20% smallest firms). In the portfolio analysis, we adhere to value-weighted 
portfolios to also account for firm size.  
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future returns over 3, 6, and 12 months. The results are consistent with those for next month’s 

returns and support our main hypotheses. The coefficients initially increase in absolute terms 

with the horizon and then decline for the 12-month returns. The mean slope coefficient rises to 

0.1383 for the 3-month returns and 0.2482 for the 6-month returns, before decreasing to 0.1523 

for the 12-month returns (t-statistic = 6.62, 7.06, and 4.57, respectively). The skewness slope 

coefficients follow a similar pattern at 0.0092, 0.0165, and 0.001 (t-statistic = 2.77, 2.88, and 

0.03, respectively). The variance slope coefficients are −0.1920, −0.3301, and −0.2882 (t-

statistic = −3.77, −3.96, and −2.37), whereas the kurtosis slope coefficients are −0.0118, 

−0.0208, and −0.0162 (t-statistic = −5.41, −5.37, and −4.68) for the 3-, 6-, and 12-month 

returns, respectively 

To sum up, according to Table 2, the mean and skewness are positively associated with 

future realized returns, while the variance and kurtosis are negatively associated. The effects 

of the variance and kurtosis are economically large, at an average monthly rate of about −0.5% 

and −0.82%, respectively. The positive correlation of the mean is expected, given that 

anomalies are, by definition, correlated with abnormal returns. The positive association of 

skewness suggests that a higher potential for future abnormal returns encourages arbitrage 

trading. In contrast, higher variance and kurtosis indicate that higher arbitrage risks discourage 

arbitrage trading.  

  

3.1 Limit to arbitrage over time  

Trading on arbitrage opportunities has substantially expanded over time because of 

declining market frictions, such as transaction costs, and the increased flow of information, as 

suggested by Chordia, Subrahmanyam, and Tong (2014) and further demonstrated by Jacobs 

and Müller (2020), Chu, Hirshleifer, and Ma (2020), and Kaplanski (2023). Building on this 
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evidence, we argue that the growing intensity and sophistication of arbitrage trading involves 

a broader set of anomalies and greater reliance on comparing and integrating their underlying 

information. Consequently, discrepancies across anomalies are expected to play an 

increasingly important role in traders’ decision-making and the underlying realized returns, 

despite the general decline in abnormal returns over time. To confirm this prediction, we first 

compare the early and more recent years, and then perform a second analysis that each period 

relate only to anomalies that previously identified, as suggested by McLean and Pontiff (2016). 

In Panel A of Table 3, the sample period is divided into two: an earlier period, 1971–1999, on 

the left side of the table; and a recent period, 2000–2022, on the right sides of the table. For 

each period, we run Fama–MacBeth regressions, similar to the analysis in Table 2. Consistent 

with the findings from prior studies regarding the increase in arbitrage trading over the years, 

the coefficients for the mean anomaly forecast exhibit a noticeable decline across all future 

horizons. For the 1971–1999 period, the slope coefficients for the 1-, 3-, 6-, and 12-month 

returns are 0.0775, 0.1953, 0.3607, and 0.1814, respectively, all of which are highly significant 

(t-statistic = 8.02, 8.14, 9.17, and 4.45). In contrast, the coefficients for the years 2000–2022 

are substantially smaller, with coefficient estimates of 0.0265, 0.0653, 0.1026, and 0.1132, for 

the 1-, 3-, 6-, and 12-month returns, respectively, and lower significance levels (t-

statistic = 1.97, 1.76, 1.76, and 2.04, respectively). These findings indicate that the profitability 

of anomaly forecasts has weakened over time, aligning with the hypothesis that the increasing 

market efficiency due to more arbitrage activity and lower market frictions has compressed 

abnormal returns over time. 

The skewness coefficients in the third line reflects a similar decline. For the 1971–1999 

period, the slope coefficients are 0.0080, 0.0193, 0.0345, and 0.0074, for the 1-, 3-, 6-, and 12-

month returns, respectively, and the first three coefficients are highly significant (t-

statistic = 4.95, 4.43, 4.69, and 1.06, respectively). However, during the 2000–2022 period, the 
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coefficients became insignificant. This shift suggests that the influence of skewness on future 

realized returns has diminished in the recent period. 

In sharp contrast, the variance and kurtosis coefficients became more negative with 

higher significance levels in recent years. For 1971–1999, the variance coefficients are 

−0.0401, −0.1294, −0.2385, and −0.1795 for the 1-, 3-, 6-, and 12-month returns, respectively 

(t-statistic = −1.98, −2.55, −2.71, and −1.84, respectively), but for 2000–2022, these 

coefficients are considerably more negative, with values of –0.0910, −0.2720, −0.4485, and 

−0.4344, respectively (t-statistic = −2.54, −2.87, −2.98, and −2.90, respectively). Similarly, for 

1971–1999, the kurtosis coefficients for the 1-, 3-, 6-, and 12-month returns, are −0.0025, 

−0.0091, −0.0180, and −0.0122, respectively (t-statistic = −2.95, −4.05, −3.86, and −3.05, 

respectively), and shift to −0.0065, −0.152, −0.0239, and −0.0215 (t-statistic = −4.17, −3.96, 

−3.88, and −3.60, respectively) for 2000–2022.  

In Panel B of Table 3, the sample is limited to previously discovered anomalies. To 

estimate the timing of discovery, we adopt the definition of McLean and Pontiff (2016), and 

include an anomaly in our sample starting from the end of the sample period of the first study 

that revealed this anomaly. The underlying assumption is that, once an anomaly is identified, 

information about it becomes publicly available and influences the market.  

The results of the analysis are in line with the results in Panel A and the existing 

literature. The coefficient for the mean anomaly forecast for next month’s return of 0.0267 (t-

statistic = 3.40) is nearly half the size of the corresponding coefficient when using the entire 

sample period (as in Table 2). The coefficients for longer horizons remain substantial and 

positive but are no longer significant, suggesting that arbitrage profits not only diminish after 

the discovery of anomalies but also materialize more quickly. Additionally, in alignment with 

the results in Panel A, the skewness coefficients become statistically insignificant. 
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In sharp contrast, the variance and kurtosis coefficients remain highly significantly 

negative at −0.0230, −0.0303, −0.0262, and −0.1068 (t-statistics = −2.29, −3.06, −2.77, and 

−2.30), and −0.0029, −0.0031, −0.0029, and −0.0137 (t-statistics = −3.98, −4.05, −4.08, and 

−4.64), respectively. Given the decline in arbitrage profits, as reflected in the reduced 

coefficient of the mean anomaly forecast, the relative impact of variance and kurtosis appears 

substantially more pronounced among discovered anomalies. 

To sum up, similar to the results in Table 2, the findings in Table 3 also show an 

increasingly negative effect of statistical limits to arbitrage, as implied by discrepancies across 

anomalies on future realized returns. This negative effect is more profound in recent years and 

among discovered anomalies. Given the overall decline in mean future returns over time, this 

suggests that variance and kurtosis exert a relatively stronger impact on diminishing realized 

returns. 

 

3.2 Limit to arbitrage under varying market conditions 

In this section, we examine the impact of market conditions on our proposed limits to 

arbitrage. Specifically, we divide the sample according to high and low investor sentiment, 

volatility, liquidity, and market returns, and explore the impact of the distribution of anomaly 

forecasts conditional on these economic states. We conjecture that the impact of our proposed 

limits to arbitrage measures would be more pronounced when market conditions align with 

more profitable anomalies. 

Panel A of Table 4 presents regression results similar to those in Table 2 with the sample 

divided into months of negative and positive sentiment, as defined by the Baker and Wurgler 



18 

(2006) sentiment index.3 The literature shows that the returns on key anomalies are higher 

during periods of higher sentiment. For instance, Stambaugh, Yu, and Yuan (2012) and 

Constantinos, Doukas, and Subrahmanyam (2013) demonstrate that momentum profitability 

increases during high sentiment periods. Consistent with these studies, our results show that 

the mean slope coefficients are substantially larger when the sentiment is positive. Specifically, 

for the 1-, 3-, 6-, and 12-month returns, the coefficients are 0.1523, 0.1673, 0.2862, and 0.1621, 

respectively (t-statistic = 4.57, 5.60, 5.73, and 3.20), compared with 0.0475, 0.1013, 0.1985, 

and 0.1412 (t-statistic = 4.23, 3.82, 4.33, and 3.56) when the sentiment is negative.  

The negative impact of variance and kurtosis also becomes more pronounced with 

positive sentiment. Under negative sentiment, the variance coefficients of −0.0227, −0.0717, 

−0.1622, and −0.2888 for the 1-, 3-, 6-, and 12-month returns, respectively, are mostly 

insignificant (t-statistic = −0.97, −1.21, −1.56, and −2.61, respectively),). However, under 

positive sentiment, the regression coefficients for the 1-, 3-, 6-, and 12-month returns become 

highly significant at −0.2888, −0.3137, −0.5057, and −0.2879, respectively (t-statistic = −3.37, 

−4.13, −4.30, and −2.39, respectively). A similar trend is observed in the kurtosis coefficients, 

which shift from −0.0018, −0.0064, −0.0138, and −0.0177 (t-statistic = −1.82, −2.45, −2.64, 

and −3.91, respectively) for the 1-, 3-, 6-, and 12-month returns, respectively, under negative 

sentiment to −0.0162, −0.0163, −0.0265, and −0.0141 (t-statistic = −4.68, −5.35, −5.52, and 

−2.87, respectively) under positive sentiment. The more negative coefficients during the 

positive sentiment period indicate that arbitrage risk has a stronger negative effect on future 

realized returns. 

Lastly, the skewness coefficients show a diminishing influence with rising sentiment. 

 
3 Baker and Wurgler’s (2006) equity market sentiment that captures variations in six different time series measures 
that proxy investor sentiment. These measures are the discount on close-end funds, turnover, the number of IPOs, 
average first-day returns, the equity share of new issues, and dividend premium.  
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For the 1-, 3-, 6-, and 12-month returns, these decrease from 0.0054, 0.0124, 0.0277, and 

0.0154, respectively (t-statistic = 2.99, 2.67, 3.36, and 2.08, respectively) when sentiment is 

negative to 0.0001, 0.0052, 0.0052, and −0.0135, respectively (t-statistic = 0.03, 1.17, 0.72, 

and −1.62, respectively) when sentiment is positive.  

Panel B of Table 4 presents the impact of market volatility. We divide the sample into 

two subperiods, categorized above and below the historical median of monthly volatility, 

calculated from the daily returns of the total market value-weighted index. For each month t, 

we calculate the median of historical monthly volatilities from the beginning of the sample 

period until month t − 1 and categorize month t accordingly. Wang and Xu (2015) point out 

that high market volatility is linked to a decline in momentum payoffs. However, we find that 

the slope coefficients for the means are notably larger and more significant during low volatility 

periods. For these periods, the coefficients are 0.0594, 0.1525, 0.2825, and 0.1828 for the 1-, 

3-, 6-, and 12-month returns, respectively (t-statistic = 6.07, 6.88, 7.63, and 4.17, respectively) 

compared with 0.0516, 0.1258, 0.2180, and 0.1248, respectively (t-statistic = 3.95, 4.09, 4.16, 

and 2.85, respectively) for high volatility periods. 

The skewness coefficients demonstrate a similar trend. When volatility is low, the 

skewness coefficients are 0.0052, 0.0104, 0.0211, and 0.0077 for the 1-, 3-, 6-, and 12-month 

returns, respectively (t-statistic = 3.19, 2.88, 3.22, and 1.08, respectively), but when volatility 

is high, they decrease to 0.0028, 0.0081, 0.0124, and −0.0066, respectively, and become 

insignificant (t-statistic = 1.53, 1.79, 1.54, and −0.84, respectively). This finding implies that 

traders’ reliance on skewness reduces when market conditions are less stable. 

The findings for variance and kurtosis of anomalies are reversed. Their negative impact 

becomes more pronounced during periods of high market volatility. For the variance, the 

coefficients shift from −0.0227, −0.0717, −0.1622, and −0.2888 for the 1-, 3-, 6-, and 12-month 
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returns, respectively (t-statistic = −0.97, −1.21, −1.56, and −2.61, respectively) during low 

volatility periods to −0.2888, −0.3137, −0.5057, and −0.2879, respectively (t-statistic = −3.37, 

−4.13, −4.30, and −2.39, respectively) during high volatility periods. This indicates that 

arbitrage risk, as measured by variance, has a more significant negative impact on future 

realized returns when market volatility is high, highlighting the increased sensitivity of 

anomaly realized returns to risk in turbulent market conditions. 

A similar trend is observed with kurtosis. The coefficients during low volatility periods 

are −0.0018, −0.0064, −0.0138, and −0.0177 for the 1-, 3-, 6-, and 12-month returns, 

respectively (t-statistic = −1.82, −2.45, −2.64, and −3.91, respectively), and shift to −0.0162, 

−0.0163, −0.0265, and −0.0141, respectively (t-statistic = −4.68, −5.35, −5.52, and −2.87, 

respectively) during high volatility periods. The increased negative influence of kurtosis 

indicates that higher-order moments of arbitrage risk are particularly detrimental in volatile 

markets, as they likely amplify the uncertainty arbitrageurs face. 

Panel C presents the estimation results for different levels of market liquidity. Market 

liquidity is stratified by the historical median of the monthly Amihud (2002) measure. Each 

month t, we calculate the median historical of a monthly Amihud measure from the beginning 

of the sample period until month t − 1, and categorize month t accordingly. Avramov, Cheng, 

and Hameed (2016) find that momentum is stronger in highly liquid markets. In our setting, 

we find that the positive slope coefficients for mean and skewness and the negative coefficients 

for variance and kurtosis are mostly insignificant during high illiquidity periods but become 

significant when illiquidity is low. This finding indicates that the positive effects of mean and 

skewness, and the negative effects of variance and kurtosis, are substantially more pronounced 

in liquid markets. The intuition is that when market liquidity diminishes, arbitrage trading is 

scarce and realized abnormal returns are minimal and difficult to notice. 
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The same phenomenon is observed in Panel D, which presents results for periods of 

positive and negative market returns based on the past 2-year market performance, as defined 

by Cooper, Gutierrez, and Hameed (2004). Here, the slope coefficients, which are largely 

insignificant during periods of negative past returns, become highly significant during periods 

of positive past returns. Thus, the positive effects of mean and skewness, along with the 

negative effects of variance and kurtosis, are concentrated in periods following positive market 

returns. 

To sum up, the association between anomaly forecasts and future realized returns highly 

depends on market conditions. This dependency is stable across investment horizons ranging 

from a month to a year. The correlation between forecasts’ means and future realized returns 

is stronger in the early years of the sample. It is also higher during periods of positive sentiment, 

low volatility, high liquidity, and positive past returns. These findings align with the empirical 

evidence in the literature, particularly regarding well-known anomalies such as momentum. 

Skewness follows a similar pattern, with a notable exception: it shows a higher positive 

impact when sentiment is negative. Thus, the positive correlation with future returns becomes 

particularly significant during periods of low sentiment. Plausibly, traders place more emphasis 

on skewness as a supportive signal in less optimistic market conditions. 

Variance and kurtosis exhibit a similar pattern in their effects on future realized returns. 

They are significantly negative under most conditions and periods, except when markets are 

illiquid. However, the main takeaway is that their negative impact has been more pronounced 

in recent years, aligning with the evidence for intensified sophisticated arbitrage trading and 

lower realized returns on anomalies. Moreover, their negative effects are more substantial when 

sentiment is positive, volatility is high, markets are liquid, and past returns are positive. 

Altogether, their influence intensifies when the association between anomaly means and 
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realized returns is stronger. 

 

3.3 Limit to arbitrage within and across anomaly clusters 

Jensen, Kelly, and Pedersen (2023) argue that anomalies can be clustered into a small 

number of clusters of highly correlated anomalies. They propose a classification of 13 clusters 

that possess a high degree of within-return correlation and economic concept similarity, while 

the degree of correlation across the clusters is low. In this section, we examine whether the 

within-return correlation in anomaly clusters adds to the information content of the four 

moments on all anomalies. A specific interest is whether the arbitrage risk implied by volatility 

and kurtosis stems from uncertainty within anomaly clusters. That is, do investors decrease 

their arbitrage trading when there is higher discrepancy among similar anomalies within the 

same cluster? 

To address this research question, we regress Equation (1) for each cluster separately. 

That is, for each cluster k, we assign a percentile rank to the anomalies in the cluster, calculate 

the four moments for each cluster, and use these moments as additional explanatory variables 

for future returns. Formally, the regression is as follows: 

��,���:��� = 
� + ���
(��)�,� + ���
�(��)��+�������(��)�,�+�������(��)�,� + +�$�
(�%&)�,� +

�'�
�(�%&)�,�+�(�����(�%&)�,�+�)�����(�%&)�,� + �� ���!"�,� + #�,� ,       (2) 

where ��,���:��� is the return on firm j from time t + 1 to time t + m; m represents 1, 3, 6, or 

12 months; E(xi)j,t, 2(xi), Skew(xi), and Kurt(xi) are the distribution moments of the forecasts 

of all 140 anomalies for firm j at time t as in Equation (1), and E(xcl)j,t, �(�%&)�,� 

����(�%&)�,�, and ����(�%&)�,� are the distribution moments of the within-cluster anomaly of 

firm j at time t. The control variables are the same as in Equation (1). 
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Table 5 presents the slope coefficients from the regressions in Equation (2) when 

realized returns are for the next month. The results of 3-, 6-, and 12-month returns are presented 

in Appendix B. The first four columns correspond to all 140 anomalies. Consistent with 

previous findings, the slope coefficients for the moments of all 140 anomalies are significantly 

positive for mean and skewness. For variance and kurtosis, the coefficients are negative and 

most of them are significant. 

Columns (4) – (8) reflect the moments of anomalies within clusters. The slope 

coefficients for the mean are insignificant except for positive skewness and negative 

seasonality coefficients, indicating that no single cluster significantly dominates the 

information from all the anomalies in forecasting future returns. The coefficients for variance 

are significantly positive for investment, low leverage, profit growth, profitability, seasonality,  

and value, but are significantly negative for low risk and skewness, which indicates that the 

negative effect of volatility and skewness on realized returns is particularly strong within these 

cluster. The coefficients for skewness are largely insignificant. The coefficients for kurtosis are 

significantly negative for debt issuance, low risk, quality, and skewness, but significantly 

positive for low leverage, momentum, profit growth, profitability, seasonality, and value. This 

highlights that the effect of kurtosis within clusters varies substantially across clusters. 

The results in Table 5 show that the impact of moments across anomalies is not limited 

to specific clusters. All the moment effects are more pronounced across the entire sample than 

within clusters. Moreover, the contribution of within-cluster variance and kurtosis effects 

varies substantially across clusters. Last, the results with realized returns for longer horizons in 

Appendix B are similar, except that the contribution of specific clusters is generally more 

pronounced.  
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3.4  Limit to arbitrage in positive-alpha anomalies 

We repeat the analysis, focusing only on anomalies that previously yielded abnormal 

profits. This approach aligns with the investor statistical learning process proposed by Da, 

Nagel, and Xiu (2024). We use this approach to test the robustness of our results, assuming 

that investors prioritize anomalies with a proven track record of profitability. Furthermore, this 

approach demonstrates that our proposed source of limits to arbitrage represents a distinct form 

of statistical learning that persists even after accounting for the process of anomaly alpha 

learning. To identify the set of profitable anomalies at month t, we follow this procedure: for 

each month-anomaly, we construct a zero-cost, decile-based spread portfolio, which consists 

of equal amounts of long and short value-weighted portfolios. The long portfolio includes 

stocks in the most extreme decile, which predict positive future returns, while the short 

portfolio includes stocks predicting negative future returns. Then, we regress the future returns 

of the spread portfolio on the Fama–French (2015) five factors. An anomaly is included in the 

four-moment calculations only if its alpha at time t − 1 is positive, thus focusing the analysis 

on positive-alpha anomalies that have already demonstrated abnormal returns. 

Table 6 presents the slope coefficients of the regressions in Equation (1), where the 

moments are calculated from the percentile ranks of positive-alpha anomalies. The results are 

similar to the analysis with all anomalies, as shown in Table 2. The mean and skewness slope 

coefficients are positive and significant for horizons up to 6 months, while the variance and 

kurtosis slope coefficients are significantly negative for all horizons. Overall, the conclusions 

remain unchanged when we confine the analysis to positive-alpha anomalies. Thus, our 

proposed source of limits to arbitrage is a separate case of statistical learning that exists 

independently of the process of anomaly alpha learning shown by Da, Nagel, and Xiu (2024).  
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4. Portfolio analysis 

In this section, we use portfolio analysis to investigate strategies to exploit uncertainty 

in anomaly forecasts. As customary in cross-sectional portfolio analysis, the investment 

strategy is based on calculating an all-anomaly percentile-rank forecast, in which the exact 

calculation method varies depending on the aspect of the anomaly distribution being explored. 

The investment strategy is performed as follows: First, we define the anomaly forecast method, 

denoted as AFj,t (xi), and calculate its value for each month-stock. Then, we sort all stocks each 

month according to AFj,t (xi), and form long and short portfolios by selecting stocks from the 

top and bottom deciles. We denote these portfolios as TOP_AFt and BOTTOM_AFt, 

respectively. The stocks in each portfolio are value-weighted according to their market value, 

and an equal amount is invested in both the long and short portfolios to create a zero-cost 

portfolio. The return for the next month on this zero-cost portfolio represents the realized return 

on the all-anomaly forecast portfolio. In each of the following analyses, we report the 

performance across the entire sample period on the long, short, and zero-cost spread (long-

minus-short) portfolios.  

We begin by exploring the impact of the variance across anomalies on realized returns. 

In this respect, we use the percentile-rank monthly means of all 140 anomalies per month-

stock, E(xi)j,t and the percentile-rank variance across anomalies, 2(xi)j,t, as the features of the 

anomaly distribution. Assuming arbitrage traders are risk-averse to forecast volatility, they 

discount potential abnormal profits in response to higher volatility, depending on their degree 

of volatility aversion. This, in turn, reduces their arbitrage trading and the corresponding 

realized abnormal returns. Therefore, we investigate the existence of this discounting factor by 

penalizing the stock’s mean forecast for volatility.  

Formally, let A represent a volatility-aversion coefficient, which reflects the market 

degree of forecast’s volatility aversion. The all-anomaly forecast per stock-month with 
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volatility discounting is defined as  

AF(xi)j,t  = E(xi)j,t − A × 2(xi)j,t       (3) 

For each month, we sort the stocks according to AF(xi)j,t  and construct long and short portfolios 

consisting of stocks in the top and bottom deciles, respectively. By changing the volatility-

aversion coefficient, we assess how volatility aversion affects the value of anomaly forecasts 

and their associated realized returns.  

Figure 1 presents the performance of an all-anomaly portfolio, based on Equation (3). 

It plots investment characteristics across the entire sample period (1971 to 2022) for the 

following portfolios: a long position in the top decile portfolio TOP_AFt, a short position in 

the bottom decile portfolio BOTTOM_AFt, and the zero-cost spread portfolio. The figure plots 

these estimates for different values of the volatility-aversion coefficient A, ranging from 0 

(indicating no penalty for volatility) to 0.8. Panel A displays the next month’s average returns 

across the entire sample period for the three portfolios. The long portfolio’s mean return of 

1.13% for A = 0 (no penalty) peaks at 1.20% for A = 0.44 and then decreases with a higher 

volatility-aversion coefficient. Conversely, the short portfolio shows an opposite pattern, with 

a mean return of 0.30% for A = 0, reaching a minimum of 0.23% at A = 0.42 before increasing 

again. Consequently, the mean return on the zero-cost spread portfolio exhibits a distinct local 

maximum, rising from 0.83% for A = 0 to 0.96% for A = 0.42 and then declining. 

Panel B presents the alphas obtained from regressing the portfolios’ monthly returns on 

the Fama–French (2015) five factors. The long portfolio’s alpha peaks at A = 0.44, while the 

short portfolio’s alpha reaches a trough at A = 0.21. The spread portfolio alpha increases from 

0.33 at A = 0 to 0.42 at A = 0.39, and then declines. Panel C shows the Sharpe ratios of the 

portfolios, which follow similar patterns. The Sharpe ratio for the long portfolio—calculated 

as the average monthly return minus the contemporaneous risk-free rate, scaled by the standard 
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deviation of monthly returns—peaks at 1.35 for A = 0.44. The short portfolio’s Sharpe ratio, 

which is calculated in the same way, hits a low at A = 0.27. The spread portfolio’s Sharpe 

ratio—calculated as the average monthly return scaled by the standard deviation of monthly 

returns—increases from 0.74 for A = 0 to 0.76 for A = 0.42, and then declines. 

Figure 1 demonstrates that penalizing stocks for the high volatility of anomalies’ 

forecasts improves mean returns, the alpha corresponding to the Fama–French (2015) five 

factors, and the Sharpe ratio. The performance of the spread portfolio improves with the 

increase of the volatility-aversion coefficient up to 0.42 and declines beyond that point. 

Next, to examine the presence of a discount factor for kurtosis, we define an all-

anomaly forecast that incorporates kurtosis discounting as follows: 

AF(xi)j,t  = E(xi)j,t − A × Kurt(xi)j,t       (4) 

Figure 2 displays performance measures of the all-anomaly portfolio, where the mean 

forecast is penalized for kurtosis as described in Equation (4). The long portfolio’s mean return 

in Panel A peaks at 1.41% (A = 1.06), while the short portfolio bottoms at 0.27% (A = 0.08). 

The zero-cost spread portfolio’s mean return rises from 0.83% at A = 0 to 1.02% at A = 1.06 

and declines afterwards. The alphas and Sharpe ratios in Panels B and C follow similar patterns. 

The spread portfolio’s alpha in Panel B increases from 0.33 at A = 0 to 0.89 at A = 1.10. The 

corresponding Sharpe ratio rises from 0.72 at A = 0 to 1.54 at A = 1.10, and then declines.  

To complete the analysis, Figure 3 displays the performance of the all-anomaly 

portfolio, where the mean forecast is rewarded for anomaly forecast skewness as follows: 

AF(xi)j,t  = E(xi)j,t + A × Skew(xi)j,t     (5) 

In all panels, the long and short portfolios exhibit local maximum and minimum. Consequently, 

the spread portfolio’s mean return peaks at 0.89% (A = 0.38), the alpha at 0.51 (A = 0.44), and 
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the Sharpe ratio at 0.89 (A = 0.44). 

Figures (1)–(3) demonstrate how incorporating the variance, kurtosis, and skewness 

information into the portfolio construction process improves investing according to the mean 

forecast. Penalizing stocks for variance and kurtosis risks and rewarding for skewness improves 

portfolio mean returns, alphas, and Sharpe ratios.  

Figure 4 illustrates the performance effect of the trading strategy based on the moments 

of the anomaly distribution. It illustrates the improvement in cumulative returns when 

considering the optimal portfolios in Figures (1) – (3). It compares the value of $1 invested 

according to the monthly forecast mean (serving as the benchmark) with the portfolios from 

Figures (1) – (3) that yield the highest mean returns: forecast mean minus 0.42 × variance, 

minus 1.06 × kurtosis, or plus 0.38 × skewness. 

Panel A shows the value of the long portfolios compared with the value-weighted 

market portfolio. An initial $1 investment in the market portfolio at the start of the sample 

period grew to $187.4 by the end. The mean forecast portfolio accumulates to $760.1—almost 

four times the market portfolio—demonstrating that investing based on mean anomaly 

significantly enhances profitability. Incorporating skewness in the calculations yields a 

portfolio value of $1,079.07. When variance and kurtosis are considered, the portfolio value 

increases to $1,113.93 and $3,283.73, respectively. These substantial values indicate that 

incorporating one of the three moments boosts profitability by about 50% with skewness and 

variance and more than 300% with kurtosis. 

Panels B and C present the values of the short and long-minus-short portfolios. The 

short portfolio values range from $0.32 for the mean–variance portfolio to $2.54 for the mean–

kurtosis portfolio. For the long-minus-short portfolios, the mean forecast portfolio value of 

$43.43 increases to $67.90, $81.67, and $353.99 for the mean–variance, mean–skewness, and 
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mean–kurtosis portfolios. Overall, incorporating these moments significantly enhances 

profitability in economic terms. Moreover, the stronger impact of kurtosis than the variance 

implies that arbitrage traders are more worried about negative fat tails than volatility.  

 

5. Concluding remarks 

We adopt a top-down approach to analyze a particular source of statistical limits to 

arbitrage: the uncertainty in mispricing implied by anomalies signals. Using 140 well-known 

anomalies, we estimate the first four moments of the distribution of anomaly forecasts. By 

quantifying limits to arbitrage based on statistical inferences drawn from these anomaly 

forecasts, we can measure the risk and reward associated with potential arbitrage opportunities. 

We interpret the mean and skewness in anomaly distribution forecasts as proxies for potential 

mispricing and corresponding future abnormal returns. In contrast, the variance and kurtosis in 

anomaly distribution forecasts represent volatility and downside risk in assessing mispricing, 

which influences the likelihood of arbitrage trading, and the future realized abnormal returns 

that arise from this trading. This framework enables us to directly test the economic rationale 

underlying our proposed statistical limits to arbitrage. Accordingly, we hypothesize that, all 

else being equal, a lower mean and negative skewness, combined with higher volatility and 

downside risk, reduce arbitrage trading in the relevant stocks and lead to lower future realized 

abnormal returns. 

The results of our empirical analysis support this hypothesis: higher realized abnormal 

returns are associated with higher mean forecasts and more positive skewness. In contrast, 

higher volatility, greater kurtosis, and negative skewness are followed by lower realized 

abnormal returns. These findings are robust across varying market conditions and subgroups 

of anomalies with historical profitability. Thus, our proposed source of limits to arbitrage exists 
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independently of pre-investment learning processes, such as identifying anomalies with 

positive alpha. Notably, the effects of variance and kurtosis have intensified in recent decades. 

The significant correlations between our measures and future realized returns offer valuable 

insights into how uncertainty and perceived opportunity in arbitrage profits influence investor 

behavior and market dynamics. 

From a practical perspective, we show that incorporating variance, kurtosis, and 

skewness into anomalies’ portfolio construction improves mean returns, alphas, and Sharpe 

ratios. The most pronounced improvements stem from mitigating downside risk, suggesting 

that arbitrageurs are particularly concerned with this type of risk.  
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Table 1. Descriptive statistics 

The table presents the averages of the first four moments of monthly anomaly forecasts. The sample includes all 

U.S. firms listed on the NYSE, AMEX, and NASDAQ with share codes 10 and 11, including returns of delisting 

stocks and excluding the NYSE benchmark for the bottom 20% of stocks by market capitalization. Anomalies are 

percentile-ranked each month to generate anomaly forecasts. Then, we calculate the monthly mean, standard 

deviation, skewness, and kurtosis of these forecasts for each month-stock. The table displays the averages of these 

four moments over the entire sample period, spanning from 1971 to 2022. The first row shows the averages of the 

four moments across all 140 anomalies. The remainder of the table provides the averages of the moments for the 

13 clusters of Jensen, Kelly, and Pedersen (2023). 

 

     Mean Standard deviation    Skewness     Kurtosis  

All anomalies 0.50 0.27 0.03 1.94 

     

Accruals 0.50 0.16 0.02 1.79 

Debt issuance 0.50 0.23 0.00 2.07 

Investment 0.50 0.21 0.02 2.23 

Low leverage 0.50 0.21 −0.06 2.14 

Low risk 0.50 0.21 0.07 3.21 

Momentum 0.50 0.13 0.05 1.75 

Profit growth 0.50 0.24 −0.01 1.82 

Profitability 0.50 0.19 0.07 2.30 

Quality 0.49 0.20 0.12 3.14 

Seasonality 0.50 0.26 −0.01 1.93 

Size 0.50 0.15 0.05 1.98 

Skewness 0.50 0.17 0.00 1.73 

Value 0.50 0.20 −0.02 2.51 

 

  



35 

Table 2. Cross-sectional regressions with anomaly forecasts’ moments 

The table reports average slopes and their corresponding t-statistics (in parentheses) obtained from Fama and 

MacBeth’s (1973) regressions in Equation (1). The sample and the sample period are defined in Table 1. The 

dependent variable is the stock’s future return over 1, 3, 6, or 12 months. The explanatory variables include the 

mean, variance, skewness, and kurtosis of the stock’s 140 anomaly forecasts and control variables. The control 

variables are the log of the firm’s size, book-to-market ratio, idiosyncratic volatility, and stock turnover. Standard 

errors are based on Bartlett’s kernel, which, in turn, implements the Newey–West covariance estimator. *, **, and 

*** indicate significance at the 10%, 5%, and 1% levels, respectively. 

Anomaly Forecasts’           Rt+1      Rt+1:t+3        Rt+1:t+6      Rt+1:t+12 

Mean 0.0551*** 0.1383*** 0.2482*** 0.1523*** 

 (6.67) (6.62) (7.06) (4.57) 

Variance −0.0625*** −0.1920*** −0.3301** −0.2882*** 

 (−3.22) (−3.77) (−3.96) (−3.37) 

Skewness  0.0040*** 0.0092*** 0.0165*** 0.0001 

 (3.10) (2.77) (2.88) (0.03) 

Kurtosis  −0.0042*** −0.0118*** −0.0205*** −0.0162*** 

 (−5.00) (−5.41) (−5.37) (−4.68) 

     

Size −0.0005 −0.0011 −0.0017 −0.0011 

 (−1.38) (−1.26) (−1.12) (−0.68) 

Book-to-market 0.0009 0.0022 0.0051 0.0168*** 

 (1.07) (1.08) (1.33) (4.03) 

Idiosyncratic volatility −0.0332 −0.0317 −0.1514 −0.0313 

 (−0.51) (−0.19) (−0.55) (−0.11) 

Turnover 0.0001 0.0001 −0.0001 −0.0012** 

 (1.07) (0.27) (−0.55) (−2.04) 
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Table 3. Cross-sectional market regressions across time 

The table reports average slopes and their corresponding t-statistics (in parentheses) obtained from Fama and 

MacBeth’s (1973) regressions, similar to those in Table 1. The sample and the sample period are defined in Table 

1. The dependent variable is the stock’s future return over 1, 3, 6, or 12 months. The explanatory variables include 

the mean, variance, skewness, and kurtosis of the stock’s 140 anomaly forecasts and control variables (not 

tabulated) for the firm’s size, value, idiosyncratic risk, and turnover. In Panel A, the sample is divided into two: 

an early period, that is, 1971–1999; and a recent period, 2000–2022. In Panel B, the sample is limited to anomalies 

observed only after their discovery. Standard errors are based on Bartlett’s kernel, which, in turn, implements the 

Newey–West covariance estimator. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, 

respectively. 

 
Panel A. Early and Recent Periods  

 
 1971–1999  2000–2022 

           Rt+1      Rt+1:t+3        Rt+1:t+6      Rt+1:t+12            Rt+1      Rt+1:t+3        Rt+1:t+6      Rt+1:t+12 

Mean 0.0775*** 0.1953*** 0.3607*** 0.1814*** 0.0265** 0.0653* 0.1026* 0.1132** 

 (8.02) (8.14) (9.17) (4.45) (1.97) (1.90) (1.76) (2.04) 

Variance −0.0401** −0.1294** −0.2385** −0.1795* −0.0910** −0.2720*** −0.4485*** −0.4344*** 

 (−1.98) (−2.55) (−2.71) (−1.84) (−2.54) (−2.87) (−2.98) (−2.90) 

Skewnes
s  

0.0080*** 0.0193*** 0.0345*** 0.0074 −0.0012 −0.0038 −0.0069 −0.0096 

 (4.95) (4.43) (4.69) (1.06) (−0.66) (−0.78) (−0.82) (−1.04) 

Kurtosis  −0.0025*** −0.0091*** −0.0180*** −0.0122*** −0.0065*** −0.0152*** −0.0239*** −0.0215*** 

 (−2.95) (−4.05) (−3.86) (−3.05) (−4.17) (−3.96) (−3.88) (−3.60) 

 
 

Panel B. Post-Discovery Anomalies  

 

           Rt+1      Rt+1:t+3        Rt+1:t+6      Rt+1:t+12 

Mean 0.0267*** 0.0102 0.0064 0.0428 

 (3.40) (1.30) (0.82) (1.35) 

Variance −0.0230** –0.0303*** –0.0262*** –0.1068** 

 (−2.29) (–3.06) (–2.77) (–2.38) 

Skewness  0.0012 −0.0001 −0.0015 −0.0067 

 (1.15) (−0.13) (−1.44) (−1.43) 

Kurtosis  −0.0029*** –0.0031*** −0.0029*** −0.0137*** 

 (−3.98) (–4.05) (−4.08) (−4.64) 
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Table 4. Market conditions 

The table reports average slopes and their corresponding t-statistics (in parentheses) obtained from Fama and 

MacBeth’s (1973) regressions, similar to those in Table 2. The sample and the sample period are defined in Table 

1. The dependent variable is the stock’s future return over 1, 3, 6, or 12 months. The explanatory variables include 

the mean, variance, skewness, and kurtosis of the stock’s 140 anomaly forecasts and control variables (not 

tabulated) for the firm’s size, value, idiosyncratic risk, and turnover. The analysis is implemented as follows. 

Panel (A): positive or negative sentiment per Baker and Wurgler (2006); Panel (B): market volatility is above or 

below the median market volatility in previous months; Panel (C): illiquidity is above or below the median market 

illiquidity in previous months per Amihud (2002); and Panel (D): market 2-year return is positive or negative per 

Cooper, Gutierrez, and Hameed (2004). Standard errors are based on Bartlett’s kernel, which, in turn, implements 

the Newey–West covariance estimator. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, 

respectively. 

Panel A. High versus Low Sentiment  
 Low Sentiment High Sentiment 
           Rt+1      Rt+1:t+3        Rt+1:t+6      Rt+1:t+12           Rt+1      Rt+1:t+3        Rt+1:t+6      Rt+1:t+12 

Mean 0.0475*** 0.1013*** 0.1985*** 0.1412*** 0.1523*** 0.1673*** 0.2862**** 0.1621***

 (4.23) (3.82) (4.33) (3.56) (4.57) (5.60) (5.73) (3.20) 

Variance −0.0227 −0.0717 −0.1622 −0.2888*** −0.2882*** −0.3137*** −0.5057*** −0.2879** 

 (−0.97) (−1.21) (−1.56) (−2.61) (−3.37) (−4.13) (−4.30) (−2.39) 

Skewnes
s  

0.0054*** 0.0124*** 0.0277*** 0.0154** 0.0001 0.0052 0.0052 −0.0135 

 (2.99) (2.67) (3.36) (2.18) (0.03) (1.17) (0.72) (−1.62) 

Kurtosis  −0.0018* −0.0064** −0.0138*** −0.0177*** −0.0162*** −0.0163*** −0.0265*** −0.0141***

 (−1.82) (−2.45) (−2.64) (−3.91) (−4.68) (−5.35) (−5.52) (−2.87) 

Panel B. High versus Low Volatility  
 Low Volatility High Volatility 

           Rt+1      Rt+1:t+3        Rt+1:t+6      Rt+1:t+12           Rt+1      Rt+1:t+3        Rt+1:t+6      Rt+1:t+12 

Mean 0.0594*** 0.1525*** 0.2825*** 0.1828*** 0.0516*** 0.1258*** 0.2180**** 0.1248***

 (6.07) (6.88) (7.63) (4.17) (3.95) (4.09) (4.15) (2.85) 

Variance −0.0021 −0.1179** −0.2266*** −0.3026*** −0.1185*** −0.2566*** −0.4212*** −0.2752** 

 (−0.10) (−2.56) (−2.78) (−3.16) (−3.75) (−3.32) (−3.34) (−2.12) 

Skewnes
s  

0.0052*** 0.0104*** 0.0211*** 0.0077 0.0028 0.0081 0.0124 −0.0066 

 (3.19) (2.88) (3.22) (1.08) (1.53) (1.79) (1.54) (−0.84) 

Kurtosis  −0.0015 −0.0093*** −0.0148*** −0.0136*** −0.0067*** −0.0140*** −0.0256*** −0.0185***

 (−1.60) (−4.64) (−4.42) (−3.46) (−4.86) (−4.16) (−4.17) (−3.64) 

Panel C. High versus Low Illiquidity  
 Low Illiquidity High Illiquidity 

           Rt+1      Rt+1:t+3        Rt+1:t+6      Rt+1:t+12           Rt+1      Rt+1:t+3        Rt+1:t+6      Rt+1:t+12 

Mean 0.0555*** 0.1417*** 0.2513*** 0.1653*** 0.0517* 0.1018 0.2151* 0.0164 

 (6.41) (6.55) (76.96 (4.67) (1.80) (1.41) (1.73) (0.19) 

Variance −0.0613*** −0.1915** −0.3360*** −0.2655*** −0.0977* −0.1971 −0.2670 −0.5255** 

 (−2.98) (−3.55) (−3.81) (−2.92) (−1.87) (−1.53) (−1.17) (−2.31) 

Skewness 0.0036*** 0.0092*** 0.0159*** −0.0001 0.0075** 0.0093 0.0227 0.0028 

 (2.69) (2.61) (2.63) (−0.02) (1.97) (1.00) (1.44) (0.24 

Kurtosis  −0.0047*** −0.0130*** −0.0230*** −0.0173*** −0.0005 −0.0005 0.0053 −0.0045 

 (−5.20) (−5.63) (−5.66) (−4.66) (−0.21) (0.10) (0.71) (−0.72) 

Panel D. High versus Low Market  
 Low Market High Market 
           Rt+1      Rt+1:t+3        Rt+1:t+6      Rt+1:t+12           Rt+1      Rt+1:t+3        Rt+1:t+6      Rt+1:t+12 

Mean 0.0530** 0.0982 0.2112** 0.1533** 0.0555*** 0.1443*** 0.2538*** 0.1521*** 

 (2.14) (1.60) (2.10) (1.98) (6.21) (6.49) (6.81) (4.19) 

Variance −0.0669 −0.2101 −0.3124 −0.3272 −0.0640*** −0.1892*** −0.3327*** −0.2822*** 

 (−1.05) (−1.23) (−1.02) (−1.06) (−3.22) (−3.68) (−4.02) (−3.34) 

Skewness 0.0009 −0.0023 0.0138 0.0258*** 0.0044*** 0.0109*** 0.0169*** −0.0038 

 (0.30) (−0.38) (1.61) (2.90) (3.08) (2.94) (2.63) (−0.61) 

Kurtosis  −0.0048* −0.0113 −0.0131 −0.0095 −0.0042*** −0.0119*** −0.0217 −0.0172*** 

 (−1.65) (−1.53) (−1.20) (−0.87) (−4.91) (−5.39) (−5.40) (−4.85) 
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Table 5. Clusters’ contribution to statistical limits to arbitrage 

The table reports average slopes, and their corresponding t-statistics (in parentheses) obtained from Fama and 

MacBeth’s (1973) regressions in Equation (2). The sample and the sample period are defined in Table 1. The 

dependent variable is the stock’s future return over one month. The explanatory variables in each regression 

include the mean, variance, skewness, and kurtosis of all 140 anomalies, along with the moments of anomalies 

within each cluster. Each row represents the results for one of the 13 clusters. The control variables (not tabulated) 

are for the firm’s size, value, idiosyncratic risk, and turnover. Standard errors are based on Bartlett's kernel, which, 

in turn, implements the Newey–West covariance estimator. *, **, and *** indicate significance at the 10%, 5%, 

and 1% levels, respectively. 

 All Anomalies Within Cluster 

Cluster Mean Variance Skewness Kurtosis Mean Variance Skewness Kurtosis 

Accruals 
 

0.0651*** −0.0279 0.0045***−0.0039*** 0.0004 0.0055 −0.0003 −0.0001 
 (5.85) (−0.81) (2.81) (−3.09) (0.27) (0.94) (−1.12) (−0.31) 
Debt 0.0657*** −0.0254 0.0045***−0.0034*** −0.0011 0.0069 −0.0001 −0.0003* 
 (5.41) (−0.88) (2.71) (−2.70) (−0.40) (1.21) (−0.41) (−1.88) 
Investment 0.0596*** −0.0713** 0.0048***−0.0043*** −0.0007 0.0249*** −0.0006* 0.0002 
 (5.92) (−2.41) (3.64) (−4.41) (−0.33) (3.80) (−1.79) (1.37) 
Low 0.0601*** −0.0613*** 0.0050***−0.0042*** −0.0026 0.0260*** −0.0002 0.0007*** 
 (6.09) (−2.63) (3.99) (−4.87) (−0.84) (4.20) (−0.61) (4.02) 
Low risk 0.0731*** −0.0460* 0.0036***−0.0046*** −0.0084 −0.0475*** 0.0005** −0.0002** 
 (9.78) (−1.86) (3.08) (−4.84) (−1.64) (−5.25) (2.13) (−2.06) 
Momentum 0.0589*** −0.0658** 0.0040***−0.0045*** 0.0032 0.0015 −0.0013*** 0.0008** 
 (6.49) (−2.27) (3.21) (−4.74) (1.16) (0.17) (−3.73) (2.18) 
Profit growth 0.0595*** −0.0604** 0.0043***−0.0041*** 0.0031 0.0178*** 0.0001 0.0006*** 
 (6.28) (−2.08) (3.28) (−4.33) (1.46) (2.78) (0.20) (3.11) 
Profitability 0.0629*** −0.0651** 0.0047***−0.0041*** −0.0017 0.0175*** −0.0001 0.0003** 
 (6.39) (−2.08) (3.44) (−4.08) (−1.11) (3.07) (−0.28) (2.05) 
Quality 
 

0.0609*** −0.0253 0.0046***−0.0033*** 0.0048 0.0066 0.0005 −0.0003*** 
 (4.78) (−0.72) (2.83) (−2.62) (1.55) (0.93) (1.45) (−2.58) 
Seasonality 
 

0.065***9 −0.0719** 0.0051***−0.0046***–0.0082*** 0.0374*** −0.0004 0.0009*** 
 (6.69) (−2.35) (3.95) (−4.75) (–3.63) (5.78) (−1.18) (4.14) 
Size 
 

0.0583*** −0.0617*** 0.0044***−0.0046*** 0.0024 –0.0009 0.0006** 0.0009** 
 (5.77) (−2.04) (3.38) (−4. 69) (1.16) (–0.11) (2.00) (2.53) 
Skewness 
 

0.0546*** −0.0559* 0.0041***−0.0045*** 0.0060*** –0.0102** 0.0010****–0.0010*** 
 (5.50) (−1.87) (3.07) (−4.53) (3.61) (–2.13) (4.13) (–3.72) 
Value 
 

0.0582*** −0.0601** 0.0044***−0.0042*** −0.0006 0.0237** −0.0002 0.0005*** 
 (6.08) (−2.20) (3.54) (−4.67) (0.18) (2.29) (−0.59) (4.00) 
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Table 6. Cross-sectional regressions: Positive-alpha anomalies 

The table reports average slopes and t-statistics (in parentheses) obtained from Fama and MacBeth’s (1973) 

regressions in Equation (1). The sample and the sample period are defined in Table 1. The dependent variable is 

the stock’s future return over 1, 3, 6, or 12 months. The explanatory variables include the mean, variance, 

skewness, and kurtosis of the stock’s positive-alpha anomaly forecasts and control variables. Positive-alpha 

anomalies include anomalies that previously yielded abnormal profits. An anomaly is included in the four-moment 

calculations at time t only if regressing the anomaly’s zero-cost portfolio on the five Fama–French (2015) factors 

yield a positive alpha at time t − 1. The control variables are the log of the firm’s size, book-to-market ratio, 

idiosyncratic volatility, and stock turnover. Standard errors are based on Bartlett’s kernel, which, in turn, 

implements the Newey–West covariance estimator. *, **, and *** indicate significance at the 10%, 5%, and 1% 

levels, respectively. 

Anomaly Forecasts’           Rt+1      Rt+1:t+3        Rt+1:t+6      Rt+1:t+12 

Mean 0.0452*** 0.1203*** 0.2095*** 0.1030** 

 (6.24) (6.44) (6.62) (2.43) 

Variance −0.0428*** −0.1331*** −0.2342*** −0.2353*** 

 (−2.62) (−3.13) (−3.36) (−3.08) 

Skewness  0.0030*** 0.0075*** 0.0134*** −0.0019 

 (2.91) (2.89) (3.10) (−0.41) 

Kurtosis  −0.0028*** −0.0077*** −0.0124*** −0.0084*** 

 (−5.92) (−6.05) (−5.60) (−3.78) 

     

Size −0.0009*** −0.0023*** −0.0039** −0.0027* 

 (−2.74) (−2.60) (−2.51) (−1.68) 

Book-to-market 0.0019** 0.0050** 0.0099*** 0.0210*** 

 (2.39) (2.32) (2.66) (5.08) 

Idiosyncratic volatility −0.0721 −0.1250 −0.3187 −0.2327 

 (−1.02) (−0.68) (−1.07) (−0.74) 

Turnover 0.0000 −0.0001 −0.0005 −0.0015*** 

 (0.37) (−0.46) (−0.98) (−2.69) 
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Figure 1. Impact of variance of anomaly forecasts on realized returns 

The figure illustrates the performance of long, short, and zero-cost spread (long-minus-short) portfolios, where 
stocks are sorted based on mean anomaly forecasts and discounted for the variance of these forecasts. The sample 
and the sample period are defined in Table 1. The long and short portfolios consist of stocks from the top and 
bottom deciles sorted by the all-anomaly forecast. The all-anomaly forecast AFj,t (xi) is calculated as E(xi)j,t 

−A × 2(xi)j,t, where E(xi)j,t is the percentile-rank mean forecast across all 140 anomalies per stock, A is a variance-

aversion coefficient, and 2(xi)j,t represents the monthly percentile-ranked variance of anomaly forecasts per stock. 
Panels A, B, and C display the monthly mean returns, monthly alphas from regressing these returns on the Fama–
French five factors, and the corresponding Sharpe ratios for the three portfolios. The numbers in parentheses 
indicate the coordinates of local maxima or minima: the first number is the maximal (minimal) value of A on the 
X-axis, and the second number is the corresponding Y-axis value of the portfolio. The horizontal axis on the right-
hand side corresponds to the short portfolios.  

  Panel A. Monthly Mean Returns 

 

Panel B. Portfolio Alpha 

 

Panel C. Sharpe Ratio 
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Figure 2. Impact of kurtosis of anomaly forecasts on realized returns 

The figure illustrates the performance of long, short, and zero-cost spread (long-minus-short) portfolios, where 
stocks are sorted based on mean anomaly forecasts discounted for the kurtosis of these forecasts. The sample and 
the sample period are defined in Table 1. The long and short portfolios consist of stocks from the top and bottom 
deciles sorted by the all-anomaly forecast. The all-anomaly forecast AFj,t (xi) is calculated as E(xi)j,t 

−A × Kurt(xi)j,t, where E(xi)j,t is the monthly percentile-ranked forecast across all 140 anomalies per stock, A is a 

kurtosis-aversion coefficient, and Kurt(xi)j,t represents the monthly percentile-ranked kurtosis of anomaly 
forecasts per stock. Panels A, B, and C display the monthly mean returns, monthly alphas from regressing these 
returns on the Fama–French five factors, and the corresponding Sharpe ratios for the three portfolios. The numbers 
in parentheses indicate the coordinates of local maxima or minima: The first number is the maximal (minimal) 
value of A on the X-axis, and the second number is the corresponding Y-axis value of the portfolio. The horizontal 
axis on the right-hand side corresponds to the short portfolios.  

  Panel A. Monthly Mean Returns 

 

Panel B. Portfolio Alpha 

 

Panel C. Sharpe Ratio 
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Figure 3. Impact of skewness of anomaly forecasts on realized returns 

The figure illustrates the performance of long, short, and zero-cost spread (long-minus-short) portfolios, where 
stocks are sorted based on mean anomaly forecasts and elevated for the skewness of these forecasts. The sample 
and the sample period are defined in Table 1. The long and short portfolios consist of stocks from the top and 
bottom deciles sorted by the all-anomaly forecast. The all-anomaly forecast AFj,t (xi) is calculated as E(xi)j,t + 

A × Skew(xi)j,t, where E(xi)j,t is the monthly percentile-ranked forecast across all 140 anomalies per stock, A is a 

skew-preference coefficient, and Skew(xi)j,t represents the monthly percentile-ranked skewness of anomaly 
forecasts per stock. Panels A, B, and C display the monthly mean returns, monthly alphas from regressing these 
returns on the Fama–French five factors, and the corresponding Sharpe ratios for the three portfolios. The numbers 
in parentheses indicate the coordinates of local maxima or minima: the first number is the maximal (minimal) 
value of A on the X-axis, and the second number is the corresponding Y-axis value of the portfolio. The horizontal 
axis on the right-hand side corresponds to the short portfolios.  

  Panel A. Monthly Mean Returns 

 

Panel B. Portfolio Alpha 

 

Panel C. Sharpe Ratio 
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Figure 4. Comparing performance with moments  

The figure illustrates how forecasts’ moments improve investment performance. The sample and the sample 
period are defined in Table 1. The figure compares the cumulative values from investing $1 at the beginning of 

the sample period according to the monthly forecast mean, forecast mean minus 0.42 × variance, forecast mean 

minus 1.06 × kurtosis, and mean plus 0.38 × skewness. Panel A shows the cumulative value of the long portfolios 

versus the market portfolio. Panel B and C correspond to the short and the long-minus-short portfolios. 

 

  Panel A. Long Portfolios 

 

Panel B. Short Portfolios 

 

Panel C. (long-minus-short) Portfolios 
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Appendix A. List of characteristics 

The table describes the 140 anomalies used in constructing the investment portfolio. Jensen, Kelly, and Pedersen 
(2023) offer a comprehensive framework for anomaly computation. They also classify these anomalies into 13 
clusters.  

Characteristic name Description Cluster 

age Age Low leverage 
aliq_mat Liquidity scaled by lagged Market Assets Low leverage 
aliq_at Liquidity scaled by lagged Assets Investment 
ami_126d Amihud (2002) Measure Size  
at_be Book Leverage Low leverage 
at_gr1 Asset Growth  Investment  
at_me Asset to Market Equity Value  
at_turnover Asset Turnover Quality  
be_gr1a Book Equity Change 1 yr scaled by Assets Investment  
be_me Book Equity scaled by Market Equity Value  
beta_60m 60 Month CAPM Beta Low risk 
beta_capm_21d CAPM Beta 21 days Low risk 
beta_capm_252d CAPM Beta 252 days Low risk 
betabab_1260d Betting Against Beta Low risk 
betadown_252d Downside Beta Low risk 
bev_mev Book Enterprise Value scaled by Market Equity Value  
bidaskhl_21d 21 Day Bid–Ask High–Low Low leverage 
capex_abn Abnormal Corporate Investment Debt issuance 
capx_gr1 CAPX 1-year growth Investment  
capx_gr2 CAPX 2-year growth Investment  
capx_gr3 CAPX 3-year growth Investment  
cash_at Cash and Short-Term Investments scaled by Assets Low leverage 
chcsho_12m Change in Shares – 12 Month Value  
coa_gr1a Inventory Change Investment  
col_gr1a Current Operating Liabilities Change Investment  
cop_at Cash Based Operating Profitability scaled by Assets Quality  
cop_atl1 Cash Based Operating Profitability scaled by lagged Assets Quality  
corr_1260d Correlation to Market Seasonality  
coskew Coskewness Seasonality  
cowc_gr1a Change in current operating working capital Accruals  
dbnetis_at Net Long-Term Debt Issuance scaled by Assets Seasonality  
debt_gr3 Total Debt Growth 3yr Debt issuance 
debt_me Total Debt scaled by Market Equity Value  
dgp_dsale Change Gross Profit minus Change Sales Quality  
div12m_me Dividend to Price – 12 Months Value  
dolvol_126d Dollar Volume Size  
dolvol_var_126d Dollar Volume Volatility Profitability  
dsale_dinv Change Sales minus Change Inventory Profit growth 
dsale_drec Change Sales minus Change Receivables Profit growth 
dsale_dsga Change Sales minus Change SG&A Profit growth 
earnings_variability Earnings Variability low risk 
ebit_bev Operating Profit after Depreciation scaled by Book Enterprise V

alue 
Profitability  

ebit_sale Operating Profit Margin after Depreciation Profitability  
ebitda_mev Operating Profit before Depreciation scaled by MEV Value  
emp_gr1 Employee Growth Investment  
eqnetis_at Equity Net Issuance scaled by Assets Value 
eqnpo_12m Net Equity Payout – 12 Month Value  
eqnpo_me Equity Net Payout scaled by Market Equity Value 
eqpo_me Net Equity Payout scaled by Market Equity Value 
f_score Piotroski F-Score Profitability 
fcf_me Free Cash Flow scaled by Market Equity Value  
fnl_gr1a Financial Liabilities Change Debt issuance 
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gp_at Gross Profit scaled by Assets Quality  
gp_atl1 Gross Profit scaled by lagged Assets Quality  
inv_gr1 Inventory Change Investment  
inv_gr1a Inventory Change 1 yr Investment  
inv_gr1Q Inventory Change 1 qr Investment  
iskew_capm_21d CAPM Skewness 21 days Short-term reversal 
ivol_capm_21d CAPM Idiosyncratic Vol. 21 days Low risk 
ivol_capm_252d CAPM Idiosyncratic Vol. 252 days Low risk 
ivol_capm_60m CAPM Idiosyncratic Vol. 60 months Low risk 
ivol_ff3_21d Fama and French Idiosyncratic Vol. Low risk 
kz_index Kaplan–Zingales Index Seasonality  
lti_gr1a Change in long-term investments Seasonality 
lnoa_gr1a Change in Long-Term NOA scaled by average Assets Investment   
mispricing_mgmt Management-Based Mispricing investment 
mispricing_perf Performance-Based Mispricing Quality  
ncoa_gr1a Noncurrent Operating Assets Change Investment  
ncol_gr1a Noncurrent Operating Liabilities Debt issuance 
netdebt_me Net Debt scaled by Market Equity Low leverage 
netis_at Net total issuance Value 
nfna_gr1a Net Financial Assets Change Debt issuance 
ni_ar1 1 yr lagged Net Income to Assets Debt issuance 
niq_at Quarterly Income scaled by Assets Quality 
ni_be Net Income scaled by  

Book Equity 
Profitability  

ni_inc8q Number of Consecutive Earnings Increases Quality 
ni_me Net Income scaled by Market Equity Value  
niq_be Quarterly Return on Equity Profitability 
niq_su Earnings Surprise Profit growth 
nncoa_gr1a Net Noncurrent Operating Assets Change Investment  
noa_at Net Operating Assets to Assets Debt issuance   
noa_gr1a Net Operating Assets Change Investment  
o_score Ohlson O-Score Profitability  
oaccruals_at Operating Accruals Accruals 
oaccruals_ni Percent Operating Accruals Accruals 
ocf_at Operating Cash Flow scaled by Assets Profitability 
ocf_at_chg1 Change in Operating Cash Flow scaled by Assets Profit growth 
ocf_me Operating Cash Flow to Assets scaled by Market Equity Value  
op_at Ball Operating Profit to Assets Quality  
op_atl1 Ball Operating Profit scaled by lagged Assets Quality  
ope_be Operating Profit to Equity scaled by Book Equity Profitability  
ope_bel1 Operating Profit scaled by lagged Book Equity Profitability  
opex_at Operating Leverage Quality  
pi_nix Earnings before Tax and Extraordinary Items to Net Income Incl

uding Extraordinary Items 
Seasonality  

ppeinv_gr1a Change in Property, Plant and Equipment Less Inventories scale
d by lagged Assets 

Investment  

prc Stock price Size 
prc_highprc_252d Price-to-High 252 days Momentum  
qmj_prof Quality Minus Junk – Profit Quality  
qmj_safety Quality Minus Junk – Safety Quality  
R1 Short-Term Reversal short-term reversal  
R1360 Momentum 13–60 Month Investment  
R16 Momentum 1–6 Months Momentum  
R212 Momentum 2–12 Months Momentum  
R712 Momentum 7–12 Months Profit growth 
rd_me R&D scaled by Market Equity Size 
rd_sale R&D scaled by Sales Low leverage 
rd5_at R&D Capital-to-Assets Low leverage  
rmax1_21d Maximum Return Low risk 
rmax5_21d Mean Maximum Return 21 days Low risk 
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rmax5_rvol_21d Max Return to Volatility Short-term reversal 
rskew_21d Return Skewness Short-term reversal 
rvol_21d Return Volatility 21 days Low risk 
rvol_252d Return Volatility 252 days Low risk 
sale_bev Sales scaled by Book Enterprise Value Quality  
sale_emp_gr1 Sales scaled by Employees Growth Profit growth 
sale_gr1 Sales Growth 1yr Investment  
sale_gr3 Sales Growth 3yr Investment  
sale_me Sales Growth scaled by Market Equity Value  
saleq_su Revenue Surprise Profit growth 
seas_1_1na Year 1-lagged return, non-annual Momentum 
seas_1_1an Year 1-lagged return, annual Profit growth 
seas_11_15an 11–15 Year Annual Seasonality Seasonality  
seas_11_15na 11–15 Year Non-Annual Seasonality Seasonality  
seas_2_5an 2–5 Year Annual Seasonality Seasonality  
seas_2_5na 2–5 Year Non-Annual Seasonality Investment  
seas_6_10an 6–10 Year Annual Seasonality Seasonality  
seas_6_10na 6–10 Year Non-Annual Seasonality low risk  
size Market Equity Size  
sti_gr1a Change in Short-Term Investments scaled by Assets Seasonality 
taccruals_at Total Accruals Accruals  
taccruals_ni Percent Total Accruals Accruals  
tangibility Tangibility low leverage 
tax_gr1a Effective Tax Rate Change Profit growth 
turnover_126d Turnover 126 days Low risk  
turnover_21d Turnover 21 days Low risk 
turnover_var_126d Turnover Volatility Profitability  
z_score Altman Z-Score Low leverage 
zero_trades_126d Zero Trades 126 days Low risk 
zero_trades_21d Zero Trades 21 days Low risk 
zero_trades_252d Zero Trades 252 days Low risk 
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Appendix B. Clusters’ contribution to statistical limits to arbitrage 

The table reports average slopes, and their corresponding t-statistics (in parentheses) obtained from Fama and 
MacBeth’s (1973) regressions in Equation (2). The dependent variable is the stock’s future return over 3, 6, or 12 
months. The explanatory variables in each regression include the mean, variance, skewness, and kurtosis of all 
140 anomalies, along with the moments of anomalies of one of the 13 clusters. The control variables (not 
tabulated) are for the firm’s size, value, idiosyncratic risk, and turnover. Standard errors are based on Bartlett's 
kernel, which, in turn, implements the Newey–West covariance estimator. *, **, and *** indicate significance at 
the 10%, 5%, and 1% levels, respectively. 

 

Panel A. Realized Returns over Months 1–3 

  All Anomalies Within Cluster 

Cluster  Mean Variance Skewness Kurtosis Mean Variance Skewness Kurtosis 

Accruals 
 

0.1647*** −0.0990 0.0111*** −0.0111*** 0.0021 0.0180 −0.0009 0.0001 
 (5.71) (−1.06) (2.66) (−3.34) (0.59) (1.15) (−1.33) (0.10) 
Debt issuance 
 

0.1665*** −0.0940 0.0112** −0.0099*** −0.0028 0.0166 −0.0009 −0.0009* 
 (5.26) (−1.21) (2.56) (−3.00) (−0.35) (1.10) (−1.36) (−1.90) 
Investment 0.1486*** −0.2191*** 0.0110*** −0.0119*** −0.0005 0.0763*** −0.0019 0.0004 
 (5.73) (−2.73) (3.18) (−4.59) (−0.09) (4.74) (−2.09) (1.20) 
Low 0.1504*** −0.1868*** 0.0116*** −0.0117*** −0.0080 0.0740*** −0.0005 0.0022*** 
 (5.98) (−2.94) (3.67) (−5.19) (−0.96) (4.57) (−0.47) (4.41) 
Low risk 0.1896*** −0.1517** 0.0087*** −0.0128*** −0.0261 −0.1261*** 0.0008 −0.0006** 
 (10.03) (−2.33) (2.92) (−5.14) (−1.89) (−5.54) (1.18) (−2.01) 
Momentum 0.1440*** −0.1916** 0.0097*** −0.0126*** 0.0195 0.0015 −0.0034*** 0.0023** 
 (6.09) (−2.45) (2.95) (−5.00) (2.81) (0.07) (−4.43) (2.45) 
Profit growth 0.1496*** −0.1801** 0.0100*** −0.0118*** 0.0053 0.0354** −0.0001 0.0019*** 
 (6.09) (−2.28) (2.90) (−4.71) (1.08) (2.28) (−0.08) (3.52) 
Profitability 0.1591*** −0.2019** 0.0111*** −0.0116*** −0.0036 0.0528*** 0.0000 0.0008** 
 (6.24) (−2.37) (3.03) (−4.31) (−0.95) (3.40) (0.06) (2.00) 
Quality 
 

0.1560*** −0.0958 0.0115*** −0.0096*** 0.0131 0.0184 0.0012 −0.0006** 
 (4.68) (−1.02) (2.72) (−2.85) (1.53) (1.01) (1.45) (−2.31) 
Seasonality 
 

0.1706*** −0.2155*** 0.0128*** −0.0129*** −0.0271 0.0984*** −0.0022*** 0.0025*** 
 (6.72) (−2.61) (3.72) (−5.04) (−4.97) (6.23) (−3.02) (4.95) 
Size 
 

0.1434*** −0.1910** 0.0097*** −0.0128*** 0.0065 −0.0041 0.0009 0.0029*** 
 (5.51) (−2.29) (2.81) (−4.93) (1.18) (−0.21) (1.07) (3.02) 
Skewness 
 

0.1535*** −0.1748** 0.0109*** −0.0125*** −0.0028 −0.0281*** 0.0003 −0.0015*** 
 (6.03) (−2.14) (3.13) (−4.79) (−0.85) (−3.21) (0.67) (−2.99) 
Value 
 

0.1450*** −0.1856** 0.0102*** −0.0115*** 0.0013 0.0727*** 0.0002 0.0015*** 
 (5.81) (−2.52) (3.12) (−5.02) (0.15) (2.70) (0.23) (4.75) 
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Panel B. Realized Returns over Months 1–6 

  All Anomalies Within Cluster 

Cluster  Mean Variance Skewness Kurtosis Mean Variance Skewness Kurtosis 

Accruals 
 

0.2944*** −0.2366 0.0188** −0.0205*** 0.0054 0.0410 −0.0012 0.0007 
 (6.14) (−1.55) (2.56) (−3.57) (0.89) (1.51) (−0.99) (0.77) 
Debt issuance
 

0.2970*** −0.2080 0.0169** −0.0185*** −0.0087 0.0224 −0.0014 −0.0021** 
 (5.61) (−1.63) (2.23) (−3.21) (−0.65) (0.90) (−1.33) (−2.47) 
Investment 0.2671*** −0.4165*** 0.0181*** −0.0221*** 0.0001 0.1265*** −0.0035** 0.0008 
 (6.32) (−3.16) (3.10) (−5.04) (0.01) (4.81) (−2.42) (1.29) 
Low leverage 0.2719*** −0.3583*** 0.0199*** −0.0218*** −0.0158 0.1460*** 0.0004 0.0034***
 (6.58) (−3.39) (3.80) (−5.63) (−1.11) (5.11) (0.21) (3.91) 
Low risk 0.3374*** −0.3083*** 0.0151*** −0.0241*** −0.0404* −0.2276*** 0.0017 −0.0009* 
 (10.54) (−2.90) (3.07) (−5.68) (−1.70) (−5.66) (1.48) (−1.83) 
Momentum 0.2617*** −0.3477*** 0.0173*** −0.0231*** 0.0422*** −0.0456 −0.0036*** 0.0046***
 (6.70) (−2.68) (3.12) (−5.60) (3.45) (−1.28) (−2.91) (3.06) 
Profit growth 0.2731*** −0.3501*** 0.0173*** −0.0220*** −0.0016 0.0563** −0.0003 0.0042***
 (6.70) (−2.68) (2.99) (−5.23) (−0.19) (2.17) (−0.22) (4.58) 
Profitability 0.2896*** −0.3837*** 0.0190*** −0.0216*** −0.0067 0.0847*** 0.0001 0.0011* 
 (6.84) (−2.71) (3.02) (−4.75) (−1.08) (3.42) (0.10) (1.69) 
Quality 
 

0.2813*** −0.2208 0.0187** −0.0181*** 0.0175 0.0263 0.0019 −0.0009** 
 (5.10) (−1.40) (2.51) (−3.15) (1.21) (0.82) (1.32) (−2.05) 
Seasonality 
 

0.3060*** −0.4038*** 0.0215*** −0.0239*** −0.0484*** 0.1445*** −0.0041*** 0.0043***
 (7.37) (−2.99) (3.71) (−5.55) (−5.11) (5.48) (−3.23) (5.11) 
Size 
 

0.2575*** −0.3822*** 0.0156*** −0.0240*** 0.0118 0.0088 0.0016 0.0048***
 (6.13) (−2.73) (2.67) (−5.48) (1.26) (0.28) (1.15) (3.07) 
Skewness 
 

0.2860*** −0.3476*** 0.0191*** −0.0232*** −0.0142*** −0.0394*** −0.0003 −0.0019** 
 (6.89) (−2.58) (3.27) (−5.34) (−2.98) (−2.85) (−0.51) (−2.41) 
Value 
 

0.2502*** −0.3664*** 0.0171*** −0.0214*** 0.0095 0.1601*** 0.0001 0.0026***
 (5.98) (−2.99) (3.05) (−5.60) (0.62) (3.48) (0.05) (5.51) 

Panel C. Realized Returns over Months 1–12 

  All Anomalies Within Cluster 

Cluster  Mean Variance Skewness Kurtosis Mean Variance Skewness Kurtosis 

Accruals 
 

0.1802*** −0.3476** 0.0015 −0.0207*** 0.0109 0.0373* −0.0008 0.0012 
 (3.67) (−2.19) (0.21) (−3.65) (1.61) (1.78) (−0.64) (1.12) 
Debt issuance
 

0.1965*** −0.2926** 0.0003 −0.0198*** −0.0059 −0.0038 −0.0004 −0.0018* 
 (3.57) (−2.19) (0.04) (−3.44) (−0.42) (−0.13) (−0.37) (−1.85) 
Investment 0.1920*** −0.4075*** 0.0042 −0.0222*** 0.0032 0.0836*** −0.0027 0.0016** 
 (4.44) (−3.00) (0.70) (−5.18) (0.31) (3.31) (−1.73) (2.45) 
Low leverage 0.1955*** −0.3574*** 0.0054 −0.0222*** −0.0161 0.1268*** 0.0031 0.0031***
 (4.62) (−3.18) (0.97) (−5.80) (−1.13) (3.92) (1.64) (3.18) 
Low risk 0.2510*** −0.3716*** 0.0042 −0.0245*** −0.0339 −0.1305*** 0.0003 −0.0008 
 (8.20) (−3.23) (0.75) (−5.69) (−1.42) (−3.04) (0.23) (−1.64) 
Momentum 0.1996*** −0.3066** 0.0074 −0.0233*** 0.0114 −0.1650**** 0.0038*** 0.0054***
 (4.97) (−2.36) (1.32) (−5.72) (1.04) (−4.50) (3.14) (3.48) 
Profit growth 0.2023*** −0.3566*** 0.0042 −0.0226*** −0.0220*** 0.0344 0.0008 0.0054***
 (4.87) (−2.57) (0.69) (−5.39) (−2.82) (1.48) (0.56) (5.70) 
Profitability 0.2105*** −0.4035*** 0.0036 −0.0236*** −0.0146** 0.0601** 0.0001 0.0009 
 (4.99) (−2.74) (0.58) (−5.48) (−2.09) (2.56) (0.08) (1.27) 
Quality 
 

0.2217*** −0.3212* 0.0053 −0.0203*** −0.0183 0.0232 −0.0016 −0.0010* 
 (3.96) (−1.95) (0.70) (−3.43) (−1.30) (0.70) (−1.13) (−1.87) 
Seasonality 
 

0.2050*** −0.4079*** 0.0047 −0.0246*** −0.0150 0.0909*** 0.0000 0.0041***
 (4.72) (−2.88) (0.75) (−5.76) (−1.41) (3.05) (0.02) (4.74) 
Size 
 

0.1573*** −0.4481*** −0.0020 −0.0249*** 0.0272*** 0.0708** 0.0047*** 0.0044***
 (3.70) (−3.13) (−0.35) (−5.75) (2.81) (2.27) (3.06) (3.15) 
Skewness 
 

0.2206*** −0.3751*** 0.0065 −0.0243*** −0.0305*** −0.0136 −0.0018*** 0.0010 
 (5.26) (−2.66) (1.09) (−5.58) (−6.43) (−0.82) (−2.78) (1.20) 
Value 
 

0.1300*** −0.3361*** 0.0055 −0.0203*** 0.0352** 0.2067*** −0.0033** 0.0007 
 (3.28) (−2.62) (0.95) (−5.38) (2.40) (4.51) (−2.34) (1.35) 

 


