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Abstract: This paper presents a fully quantum approach to portfolio optimization using Reinforcement
Learning based on Variational Quantum Circuits (VQCs). We reimplement both Deep Deterministic Policy
Gradient (DDPG) and Deep Q-Learning as a quantum circuit. Our quantum RL models outperform classi-
cal baselines at equivalent parameter counts, demonstrating both higher expressivity and more favorable
scaling characteristics. However, due to limitations of current quantum hardware, inference still remains
significantly slower than classical algorithms. Our findings suggest that while a quantum advantage is not
yet realized for reinforcement learning in practice, it is likely to emerge as quantum hardware matures.
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INTRODUCTION

Portfolio optimization requires efficient modeling of high-dimensional asset dynamics under uncertainty.
Classical Reinforcement Learning (RL) algorithms, while powerful, face challenges in terms of scalability
and training efficiency due to large state-action spaces. Variational Quantum Circuits (VQCs), thanks to their
entanglement-induced expressivity and potential for parallelism, offer a novel paradigm for approximating
complex functions in policy and value-based learning.

Prior work on quantum portfolio optimization has focused largely on quantum annealing, often restricted to
low-dimensional cases. Meanwhile, quantum RL remains mostly theoretical. This study implements VQC-
based RL algorithms on actual quantum hardware, applies them to a real-world optimization problem with
15 financial assets, and systematically benchmarks the results against classical baselines under both static
and dynamic portfolio optimization scenarios.

METHODOLOGY

Each quantum policy and critic network is constructed as a parameterized circuit U(θ), whose outputs are
expectation values of observables B̂:

fVQC(x; θ) = ⟨0|U†(θ)B̂U(θ)|0⟩

Classical inputs are encoded via amplitude encoding after transformation through a nonlinear feature map:

ϕ(x) =
[
x̃, x̃⊙2, sin(x̃), cos(x̃)

]
, x̃ =

x− µ

σ

We train on a dataset of 5049 daily observations across 15 assets (equities, fixed income, and real assets).
Actions are portfolio weights (allowing for negative weights, i.e. short selling). States include a 30-day
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window of asset prices and a 7-day Auto-ARIMA forecast. The reward function combines expected return
and volatility-adjusted risk with a tunable risk preference parameter η:

r = Rp + η · σp

where:

Rp =
1

T

T∑
t=1

N∑
i=1

pt,i · wt,i , σp =

√√√√ 1

T

T∑
t=1

(
N∑
i=1

pt,i · wt,i −Rp

)2

Quantum networks are trained on simulators using parameter shift gradients and deployed on IBM Eagle r3
quantum computers for inference.

Figure 1: Example architecture of a quantum RL agent for two assets and two time steps.

FINDINGS

Quantum agents consistently outperform classical counterparts when matched by parameter count. For
instance, the quantum DDPG agent with just 30 trainable parameters achieves a Sharpe ratio of 0.46,
compared to 0.32 for its classical analog. This suggests that even small-scale quantum policies benefit
from enhanced representational capacity.

Table 1: Selected Results for Static and Dynamic Portfolio Optimization
SPO Sharpe SPO Profit DPO Sharpe DPO Profit Execution Time

Equal Weights Portfolio 0.4375 9.25% 0.4375 9.25% –
Mean-Variance Optimization 0.5919 25.42% 0.4950 23.24% 0.3 s

Classical DDPG (30 params) 0.3254 18.79% 0.3600 17.63% 3 s1

Classical Q-Learning (30 params) 0.4131 10.87% 0.4209 10.68% 4 s1

Quantum DDPG (30 params) 0.4586 29.95% 0.4179 22.37% 23 min2

Quantum Q-Learning (30 params) 0.4598 29.69% 0.4776 25.43% 43 min2

Classical DDPG (160k params) 0.7880 21.57% 0.7926 21.76% 13 s1

Classical Q-Learning (160k params) 0.7969 26.85% 0.8237 27.78% 21 s1

1Hardware: Nvidia RTX 8000 GPU.
2Hardware: IBM Eagle r3 QPU.

Quantum models exhibit favorable scaling characteristics, since inference latency is dominated not by cir-
cuit width or depth, but by qubit initialization and measurement. However, on current quantum hardware,
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no speed advantage can be achieved. Classical inference remains several orders of magnitude faster,
especially on GPU.

The main bottleneck lies in hardware latency. On systems like the IBM Eagle r3, each inference call incurs
approximately 12 seconds of delay due primarily to system preparation and state initialization, rather than
gate execution.

Nonetheless, the higher expressivity of quantum models at small sizes coupled with their more favorable
scaling suggests a qualitative advantage that could become practically relevant as hardware improves.

CONCLUSIONS

Our findings suggest that quantum RL agents can offer higher performance than classical agents of similar
size, due to their superior functional expressiveness. However, this advantage does not currently translate
to execution speed, owing to severe latency constraints in present-day QPUs.

While VQCs show promise for reinforcement learning, a quantum advantage in portfolio optimzation will
only emerge with significant improvements in quantum hardware.
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