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1 Introduction

Short selling plays a critical role in market efficiency while also posing distinct frictions

and risks. Unlike buying, shorting is impeded by locate fees, borrowing constraints, and

potentially unlimited downside risks. These frictions have inspired extensive literature ex-

amining whether and how short selling impacts price discovery and asset pricing.1 However,

relatively little is known about how short-selling constraints shape institutional investors’

decisions around information acquisition.

A particularly important class of institutional investors in this context is active mutual

fund managers, who control a large share of public equity capital and often operate under

strict portfolio constraints, including limitations on short selling. Despite their importance

in capital markets, how mutual funds approach short selling—how they choose which stocks

to short, how much information they gather beforehand, and what returns those decisions

produce—has not been widely researched. These open questions make mutual funds a natural

setting for studying how information acquisition interacts with short-selling behavior.

This paper asks how active mutual fund managers learn when short selling is costly

and how that learning shapes their trades and payoffs. Empirically, we accomplish this

by linking two complementary data sets: (i) position-level holdings for U.S. equity mutual

fund families, and (ii) the time-stamped request logs from the SEC’s EDGAR filing system.

Merging the two lets us observe—at the fund family-stock-quarter level—the exact public

filings a manager downloads before a position appears in their portfolio. This linkage gives

us an unusually granular view of the information-production process inside a major class of

institutional investors.

Data in hand, we document two significant facts. First, before a new position is estab-

1E.g., Jones and Lamont (2002), Boehmer et al. (2008), and Engelberg et al. (2018).
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lished, mutual fund managers ramp up their EDGAR requests significantly in the quarters

prior, retrieving roughly 5% more EDGAR filings for stocks they will short than for those

they will hold long—a gap that persists after controlling for a host of confounding factors.

Second, these very shorts subsequently deliver larger absolute risk-adjusted returns, aver-

aging 125 basis points (bps) per quarter versus 30 bps for comparable new long positions.

Together, these facts raise a natural question: what makes it optimal for managers to devote

the most research effort to trades (e.g., shorts) that end up delivering the best returns?

To explain these patterns we introduce a tractable model, nested in the Grossman and

Stiglitz (1980) framework, that puts a single twist on the classic setup: short positions carry

extra, side-specific costs. A mutual fund manager chooses how much noisy public information

to buy before deciding whether to take a fixed-size long or short position. The usual convex

cost of precision applies to both longs and shorts, and both also face a fixed monitoring

charge, but only shorting requires an additional locate fee and a size-dependent surcharge

that captures fee-volatility and recall risk. These frictions raise the precision threshold the

manager must clear before it is worthwhile to short.

Echoing the Grossman and Stiglitz (1980) intuition, the manager collects information

until the expected benefit of additional information exactly matches its marginal cost. Be-

cause the threshold is higher for shorts, the optimal precision—and hence observable research

effort—is greater on the short side. At the same time, shorts are executed only when the

signal implies a larger mispricing, mechanically leading to higher absolute abnormal returns.

Taken together, the model accounts for Fact 1 (more research for shorts than longs) and

Fact 2 (larger absolute returns for shorts than longs).

Importantly, this model is transparent enough to yield additional testable predictions

when we extend it to let managers acquire information sequentially, following the logic for-
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malized by Banerjee and Breon-Drish (2020). In this setting the manager samples signals

until the expected mispricing—and posterior precision—is large enough to justify a short.

When the very first signal is extreme, the position looks like a clear winner and little ad-

ditional research is required; when early signals are more equivocal, the manager purchases

further precision and the trade becomes a borderline short. The framework therefore predicts

an inverse relation inside the short portfolio: positions preceded by more requests should

realize smaller absolute abnormal returns, whereas longs—unburdened by the short-side cost

threshold—should display no such pattern.

Putting this prediction to the data confirms the clear-winner-versus-borderline-short

logic. Among shorts, a one-standard-deviation increase in filing requests corresponds with

roughly a 40-basis-point decline in absolute returns. For long positions, by comparison, the

same increase in requests has no consistently discernible effect. This asymmetric slope—

more specifically the inverse slope among shorts—is precisely what the sequential-sampling

model implies, yet would be difficult to anticipate without the formal model and can be de-

tected only because our data link mutual fund EDGAR downloads to mutual fund positions.

Together, the evidence offers a clean, out-of-sample validation of the model’s most nuanced

economic insight.

Furthermore, complementary evidence underscores the broader economic logic of in-

formed trading. Mutual fund families that engage more intensively in information acquisition

realize consistently higher benchmark-adjusted returns. This finding strongly suggests that

mutual fund managers’ overall information-gathering efforts are productive, reinforcing the

rational choice interpretation of information acquisition. Therefore, the negative slope ob-

served among short positions is not evidence of inefficient information acquisition. Instead,

it highlights that greater research effort is rationally allocated to less obvious opportuni-
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ties, which still contribute positively to overall performance. Additionally, we validate the

economic intuition of our model by demonstrating that an independent measure of ex ante

mispricing reliably predicts future stock returns—specifically, stocks identified as overpriced

indeed exhibit low subsequent returns. This predictive validity provides further external

confirmation of the “clear winner” logic driving managers’ differential information strategies.

Our analysis makes several important contributions to the literature on short selling,

information acquisition, and mutual fund behavior. First, we provide direct, position-level

evidence linking information acquisition to short selling, addressing a critical gap left by

earlier work that relies on aggregate proxies. Unlike studies utilizing aggregate search data

(Da et al. (2011), Ben-Rephael et al. (2017)) or aggregated short-interest measures (Seneca

(1967), Hong and Stein (2003), Asquith et al. (2005), Boehmer et al. (2008)), our data

uniquely reveal mutual fund manager actions, allowing us to better observe the relationship

between information gathering and subsequent portfolio decisions. Our focus on longs versus

shorts within mutual fund families differs fundamentally from early evidence that aggregates

short positions across investors.

Second, our findings deepen the understanding of short-selling constraints by pinpointing

their influence directly at the information-acquisition stage, uncovering a crucial but under-

explored channel through which short-selling frictions affect market outcomes. Prior studies

such as Engelberg et al. (2018) and An et al. (2021) have documented the broad effects of

borrowing constraints and institutional limits; however, our work distinctively identifies the

endogenous information acquisition process, shaped by marginal costs and benefits, as the

key mechanism underlying these constraints’ impact on institutional investor behavior and

asset prices.

Third, we contribute to a small but growing literature on mutual fund shorting behavior.
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Building on Almazan et al. (2004), who document widespread self-imposed prohibitions, and

Chen et al. (2013), who provide an early look at mutual fund shorting skill, we show that

48% of the mutual fund families in our study engage in short selling. We further demonstrate

that those short positions are preceded by more information acquisition and deliver higher

abnormal returns than corresponding long positions within the same portfolios. Our findings

complement recent work by An et al. (2021), who examine the growth and underperformance

of long-short mutual funds, by showing that shorting activity is more common and more

skillfully executed within the broader mutual fund universe than previously assumed.

Fourth, we add new evidence to the empirical literature on institutional information ac-

quisition. Our position-level approach complements recent EDGAR studies of hedge funds

and other institutions (Chen et al. (2020a), Chen et al. (2020b), Crane et al. (2022), Gibbons

et al. (2021), Gibbons (2023)) by linking downloads to both sides of the same mutual fund

portfolios. Also, to our knowledge, we are the first to document a negative link between

pre-trade information acquisition and subsequent abnormal returns for shorts—a pattern

predicted by our model and unseen in prior work and a finding that overturns the con-

ventional expectation that more research should lead to better performance and reveals a

previously hidden aspect of how skilled investors allocate their attention across investment

opportunities.

Fifth, we extend the theoretical literature by explicitly incorporating sequential infor-

mation acquisition into the classical Grossman-Stiglitz (1980) framework. By doing so, our

model bridges insights from sequential search theory (Banerjee and Breon-Drish (2020))

and earlier foundational work on costly information acquisition (Hellwig (1980), Verrecchia

(1982)). This theoretical advancement yields tractable and novel predictions regarding man-

agerial behavior under costly short selling, predictions we empirically validate using our
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mutual fund setting.

The remainder of the paper proceeds as follows. Section 2 details the data sources and

construction of key variables. Section 3 presents our two core empirical facts about the

short-versus-long differences in information acquisition and returns. Section 4 introduces

and develops our theoretical framework, deriving predictions consistent with our empirical

findings. Section 5 tests the model’s novel prediction regarding the within-short relationship

between information acquisition and returns, and explores additional implications about

holding durations. Section 6 provides additional tests and Section 7 concludes. A full

description of the data and a detailed theoretical derivation are provided in the Online

Appendix.

2 Data

This study draws on two primary data sources. First, we obtain quarterly mutual fund

holdings from the Center for Research in Security Prices Survivor-Bias-Free U.S. Mutual

Fund Database (CRSP Mutual Funds). For each mutual fund family i, stock j, and quarter

t we record the number of shares reported (nbr_sharesijt). A long position,(Longijt) equals

one when nbr_sharesijt > 0, while a short position, (Shortijt) is one when nbr_sharesijt <

0. We also flag the first quarter in which a family initiates a position as NewLongijt or

NewShortijt, respectively.

Second, we measure information acquisition with the U.S. SEC’s EDGAR Log Files,

which record every electronic request for a public filing. Each observation details the filing

requested, the date and time of the request, and the requester’s IP address.2 Following

2For example, the filing request is for the 2013 annual report (10-K) for IBM. The request was made at
10:14 am on March 1, 2014. The request originated from the IP address 123.123.123.abc.
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the unmasking procedure detailed in Appendix A.1, we link IP addresses to mutual fund

families. For every i–j–t we then count the number of filings family i requests about firm

j during quarter t and label this Requestsijt. Our baseline measure of mutual fund infor-

mation acquisition is MFIAijt = ln(1 + Requestsijt). To capture pre-trade information

acquisition we also compute Requestsijt,t−1, the two-quarter sum of requests, and use the

same transformation.3

We construct our sample beginning with all common stocks and all CRSP mutual fund

families between 2010 and 2017 (30 quarters). We retain an i-j pair only if mutual fund

family i reports a non-zero position in stock j at least once during the sample window. We

further require that (i) the family takes at least one short position during the window, and

(ii) its average quarterly EDGAR activity is ≥ 5 requests. Observations in which a family

simultaneously holds both long and short positions in the same stock are dropped.

The final panel contains 4,937,880 family-stock-quarter observations. Roughly 37% in-

dicate a long position, whereas 2% indicate a short position—half of which occur without a

contemporaneous long. Aggregated to the family-quarter level, the median family submits

1,219 filing requests per quarter—the mean is 7,122—and at least one request appears in

89% of family-quarters. Our inclusion criteria reduce the fund count from the CRSP universe

of 115 families to 55 that actively short. Summary statistics are reported in Table 1, and

Figure 1 plots the time series of aggregate long, short, new-long, and new-short positions.

Overall, the data afford a novel view of both sides of mutual fund portfolios and of the

information-gathering efforts that precede them.

[Table 1 about here.]

3Additional stock-level variables and fund characteristics come from CRSP, Compustat, Thomson
Reuters 13F, RavenPack, and the mispricing scores of Stambaugh and Yuan (2017). A complete variable
dictionary appears in Appendix A.2.
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[Figure 1 about here.]

3 Two Empirical Facts

This section establishes two stylized facts that motivate the remainder of the analysis. First,

mutual fund families devote more information-gathering effort to their short positions than

to their long positions. Second, those short positions, on average, subsequently earn better

(i.e., more negative) risk-adjusted returns than the corresponding long positions within the

same portfolios.

3.1 Fact 1: Research Intensity and Position Type

We proxy for research intensity with number of EDGAR filings downloaded by mutual fund

family i for company j during quarter t. To test whether information acquisition differs

across position types we estimate

MFIAijt = β1Longijt + β2Shortijt + γi + uj + ωt + εijt, (1)

where MFIA (defined earlier) includes either one quarter of requests or two quarters and

the model includes mutual fund family, stock, and quarter fixed effects.

The coefficient estimates for Long and Short capture the intensity of information ac-

quisition for long and short positions relative to non-holdings, within a mutual fund family.

To test whether managers differentially acquire information for shorts and longs we test the

linear combination β2 − β1 = 0. The results from estimating Equation 1 are shown in Panel

A of Table 2.
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[Table 2 about here.]

Two patterns stand out. First, the positive and statistically significant estimates for

both Long and Short indicate that managers gather more information about the stocks

they hold—on either side of their portfolios—compared to the stocks they do not hold. This

is true when information acquisition and positions are measured simultaneously or when

considering lagged information acquisition. In terms of economic significance, mutual fund

managers make approximately 10% more requests for their long positions compared to stocks

they do not hold, and they make roughly 15% more requests for their short positions.

Second, with respect to the difference between longs and shorts, mutual fund managers

acquire roughly 5% more information about their shorts than about their longs, and this

difference is statistically significant and consistent over various model specifications.

One concern is that the differential could be driven by large, legacy positions that require

little incremental analysis. Panel B addresses this possibility by re-estimating Equation 1

with NewLong and NewShort—indicator variables for positions initiated during quarter t.

Here, the differential widens to as much as 7%, and the effect is strongest when information

is aggregated over the current and previous quarter. Thus, in the months leading up to a

new position, managers ramp up research on prospective shorts but not on prospective longs.

Overall, the results in Table 2 establish our first empirical fact.

Fact 1: Mutual fund families allocate disproportionately more research effort to the positions

they hold short.

3.2 Fact 2: Position Type and Returns

Next we ask whether shorts earn better returns than longs within mutual fund families. In

other words, we compare the long side of an investor’s portfolio with the short side of that
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same portfolio. We estimate

Returnijt = α + βShortijt + λZjt + γi + εijt, (2)

where Returnijt is either the excess return of stock j during quarter t (ExRet) or the stock’s

characteristic-adjusted return (DGTW ).4 Vector Z includes the market return and three

risk factors: SMB, HML, and UMD.5 The model also includes a fund family fixed effect.

We estimate the model over three subsamples to compare the differences between longs

and shorts. In the first two subsamples (only longs or only shorts) the intercept α captures

the abnormal return. The third subsample includes both long and short positions, thus α

captures the abnormal return for longs while Short measures the additional return to shorts

and Short+ α is the total abnormal return for shorts. Table 3 shows the results.

[Table 3 about here.]

The evidence for longs is mixed: abnormal returns using the risk-factor model average 29

bps per quarter, but characteristic-adjusted returns average only 8 bps and are statistically

insignificant. Shorts are different: across all specifications they deliver sizable negative

abnormal returns—between 118 and 132 bps per quarter—implying that shorts outperform

longs by more than 100 bps. Formally, the absolute long-short gap of 117 bps (Column 7)

is significant at the 1% level.6

To address the confounding effects of timing, we also estimate Equation 2 on new positions

only and consider both contemporaneous returns and next quarter returns. Table 4 reports

4Daniel et al. (1997).
5Fama and French (1993) and Carhart (1997).
6Since negative returns are earned by short positions, the absolute return differential is defined as the

total return earned by shorts less the total return earned by longs. Based on Equation 2, this is −(Short+2α).
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the results and shows a clear pattern when timing is accounted for (Columns 4-7): new

shorts deliver gains of up to 145 bps per quarter while new longs do not earn large abnormal

returns. Indeed, the long-short gap widens to almost 200 bps in this setting and remains

statistically significant.

[Table 4 about here.]

The histograms of characteristic-adjusted returns in Figure 2 visualizes and reinforce

these findings: long-position returns cluster tightly around zero, whereas short-position re-

turns exhibit a pronounced left tail. Together, the results in Table 3, Table 4, and Figure 2

establish our second empirical fact.

Fact 2: Mutual funds’ short positions consistently outperform their long positions.7

[Figure 2 about here.]

4 Model

Our empirical analysis establishes two new facts. First, mutual fund families undertake more

information acquisition before initiating short positions than before comparable long posi-

tions. Second, those shorts subsequently earn substantially larger abnormal returns than the

longs. In this section we develop a theoretical framework that contains these two facts while

clarifying why managers concentrate their research effort on short positions that also gener-

ate the higher average payoffs. Accordingly, we introduce a concise analytical framework—

a variant of the Grossman and Stiglitz (1980) costly-information model augmented with
7This outperformance—over 100 bps per quarter (≈ 4% per year)—remains economically meaningful

even after accounting for plausible lending fees: 91% of stocks have lending fees under 1% per year (value-
weighted the mean ≈ 0.25%), and excluding the 5% most expensive issues yields a mean fee of only 85 bps
(D’avolio (2002); Blocher and Whaley (2015)).
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short-selling frictions—that rationalizes both empirical findings. Then, extending the base-

line framework to incorporate sequential signal acquisition, the model generates additional

cross-sectional predictions, which we test empirically in the sections that follow.

4.1 Baseline Model

The model has two periods t ∈ {0, 1} and a risky asset with equally likely binary fundamental

values V ∈ {νH , νL}: the value gap is ∆ ≡ νH − νL > 0. Competitive noise traders pin down

the pre-trade price at the unconditional mean, P0 = νH+νL
2

. Before trading, a risk-neutral

investor may purchase a costly binary noisy signal (x ∈ {νH , νL}) that coincides with the

true state with probability P (x = V ) = 1
2
+ π

2
, where π ∈ [0, 1] is the chosen precision.

Precision is costly: c(π) = κπ2, κ > 0. After observing the signal, the investor selects

position side s ∈ {L (long), S (short), 0} and position size q.

Opening any position incurs fixed monitoring costs F > 0, leading the investor to trade

a minimal optimal block qmin > 0 or abstain.8 Long positions incur no additional costs

(CL = F ) while short positions incur a locate fee ϕ > 0 and a borrow surcharge ηqmin > 0.

(CS = F + ϕ+ ηqmin.)

At t = 0 the investor chooses precision π, observes the private signal x, updates beliefs

via Bayes’ rule, and chooses a trade side (s). At t = 1 the fundamental V is revealed and

the investors payoff is Π ≡ qmin(V − P0)− Cs − c(π).

Equilibrium is characterized by a single optimal research intensity, π∗; side-specific pre-

cision thresholds {πthr
L , πthr

S } where πthr
s = 2Cs

qmin∆
; and an initial price P0, such that (i) π∗

maximizes expected profit ex ante; (ii) the investor can trade side s ∈ {L, S} only if π∗ ≥ πthr
s ;

and (iii) the uninformed market makers break even: P0 =
(νH+νL)

2
. This model yields three

8See Appendix A.3.1 for further details on the minimum tranche.
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propositions:9

Proposition 1. Shorts require higher precision thresholds than longs: πthr
S > πthr

L .

Intuition. Extra short-side fees (CS > CL) and the minimum-tranche requirement qmin > 0

jointly raise the break-even hurdle. Put differently, a short bet must be backed by a more

accurate signal before it is worthwhile.

Proposition 2. Conditional on a trade, the average precision for shorts is larger than for

longs: E[π∗ | s = S] > E[π∗ | s = L].

Intuition. Shorts only occur in the high-precision equilibrium, whereas long positions are

observed in both the high-precision equilibrium (π∗ ≥ πthr
S ) and the long-only equilibrium

(π∗ < πthr
S ).

Proposition 3. Conditional on a trade, the average absolute abnormal return is larger for

shorts than for longs: E
[
|α|

∣∣ s = S
]
> E

[
|α|

∣∣ s = L
]
.

Intuition. A short is executed only if (i) precision satisfies π∗ ≥ πthr
S and (ii) the posterior

value gap meets the stricter value-gap threshold : τs = Cs

qmin
, with τS > τL. Both forces imply

a larger perceived mispricing—and hence a larger realized abnormal return—than for a long.

Together Propositions 1 and 2 deliver the identical ordering we observe in our first em-

pirical fact: mutual fund managers gather more information before short positions than

before comparable long positions. Proposition 3 mirrors our second empirical fact by imply-

ing that, once a trade is made, shorts should earn systematically larger absolute abnormal

returns than longs.

9Appendix A.3.1 provides proofs and closed-form expressions.
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4.2 Extended Model: Sequential Signals

The baseline model explains why mutual fund managers research shorts more intensively

and why shorts yield larger absolute abnormal returns. These findings—with the underlying

theory and intuition—invite a finer question: within a mutual fund’s short book (or long

book), do trades requiring more research earn systematically different returns than those

requiring less? At first glance the baseline logic implies a positive link between research

effort and returns on either side of the book. But anecdotally, within the set of shorts some

may be clear winners that seem overpriced after minimal analysis, whereas other trades,

borderline positions, require extensive research.

To examine this within-side relation we extend the baseline model by allowing for sequen-

tial signals.10 All primitives remain as in the baseline model except that now the investor

acquires information sequentially (i.e., one filing at a time) rather than in a single initial sig-

nal. Each signal is an independent observation of the fundamental with additive Gaussian

noise: xj = V + εj, εj ∼ N (0, σ2). Each draw has precision π0 =
1
σ2 and costs κπ2

0. By con-

jugacy, after N draws the total precision is Nπ0 and the posterior mean is mN = 1
N

∑N
j=1 xj.

After each draw the investor compares the posterior dollar mispricing |mN | with the

side-specific threshold, τs = Cs

qmin
. The investor can then (i) trade by taking side s ∈ {L, S}

at block size qmin if |mN | ≥ τs; (ii) continue research by paying κπ2
0 for another draw if the

option value of more information is positive; or (iii) stop research and hold no position if the

option value of another draw is negative.11

Equilibrium is defined by precision thresholds {τL, τS} and initial price P0 such that (i)

the stopping rule described above is optimal given τs and P0; (ii) each threshold τs satisfies

10See Banerjee and Breon-Drish (2020).
11Appendix A.3.2 for further details.
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τs = Cs

qmin
, so the investor is indifferent at |mN | = τs; and (iii) uninformed market makers

break even in expectation by setting P0 = (νH+νL)
2

.12 This extended model delivers an

important novel prediction:

Proposition 4. Expected absolute abnormal returns of executed shorts decrease in the num-

ber of signals acquired.

Intuition. More information draws reduce the posterior’s variance such that, in expecta-

tion, the posterior crosses the threshold τS by a smaller margin. Consequently, on average,

requiring more draws yields smaller posterior dollar mispricing and, hence, smaller average

absolute returns.

Proposition 4 provides a sharp, novel prediction distinguishing our sequential-sampling

model from simpler alternatives: a systematic negative relation between information acqui-

sition and subsequent absolute returns within short positions. Intuitively, shorts requiring

extensive research are precisely those where investors acquire just enough conviction to trade,

yielding smaller abnormal returns relative to clear winners identified after minimal analysis.

We test this prediction empirically using our unique dataset in the next section.

In contrast, the model predicts a much weaker relation for longs. While longs share certain

trading costs (F , qmin), they do not face short-side frictions (e.g., locate fees, borrowing

costs). Consequently, the trading threshold τL is lower, making it easier to clear even with

weaker initial signals. Thus, longs requiring multiple signals before execution do not differ

systematically in realized mispricing compared to those identified quickly, implying a flatter

relationship between information acquisition and returns among longs.

12Appendix A.3.2 shows that these three conditions jointly deliver a unique equilibrium and derives
closed-form expressions for the investor’s continuation values and the option value of an additional signal.
All proofs are also shown in the appendix.
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5 Empirical Test of Proposition 4

In this section, we assess the key prediction of the sequential-sampling model: conditional

on executing a short, when mutual fund managers acquire more public filings they should,

on average, realize smaller absolute abnormal returns. We proceed in two steps. First, we

visualize the raw relation between research intensity (Requests) and subsequent abnormal

returns for longs versus shorts—and for new longs and shorts. Second, we estimate a panel

regression that formally tests whether the slope between information acquisition and absolute

returns is indeed negative for shorts but flat for longs.

Figure 3 plots abnormal returns against contemporaneous filing requests separately for all

long positions (Panel A) and all short positions (Panel B). For longs, the scatter cloud shows

no discernible trend, and a fitted line is essentially flat. By contrast, the fitted line slopes

upward for shorts, indicating that positions accompanied by more EDGAR requests tend

to earn less negative returns (i.e., worse returns). Since more information should improve

performance under a naive “more is better” view, this positive slope among shorts is perhaps

counterintuitive; yet it is consistent with the model’s prediction.

[Figure 3 about here.]

To ensure this pattern is not driven by stale holdings, Figure 4 repeats the scatterplots

focusing solely on new long and new short positions. The inverse relation for shorts is more

prominent in this setting, whereas the slope for new longs again hovers near zero.results.

[Figure 4 about here.]

To formally test these patterns we estimate

Returnijt = α+ β1MFIAijt + δShortijt + β2ShortijtXMFIAijt + λZjt + γi + uj + ϵijt, (3)
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which is similar to Equation 2 but with the inclusion of MFIA and the interaction of Short

and MFIA. The model also includes mutual fund family and stock fixed effects.

The estimate for MFIA tests the relation between information acquisition and returns for

long positions. The linear combination of MFIA and the interaction term (ShortXMFIA)

tests the relation for shorts. Also, the intercept in this model (α) estimates the abnormal

return to long positions since Long is the omitted category (the table replaces α with Long

for interpretability). Table 5 shows the results.

[Table 5 about here.]

The estimate for MFIA is positive and significant when testing returns and contempo-

raneous information acquisition (Columns 2–3), but is negative or statistically insignificant

when including lagged information acquisition (Columns 4–5). Taken together, these re-

sults suggests a statistically indistinguishable (or flat) relation between research and returns

among longs—as predicted by the model.

Among shorts, however, the evidence is clear that more research reduces absolute returns.

Column 2 of Table 5 reports an estimate of 0.26 shorts, which means that doubling research

for a given short reduces its absolute quarterly abnormal return by 26 bps. This negative

relation holds whether research and returns are measured contemporaneous or with a lag, and

regardless of whether we use the four-factor model or characteristic adjustments. Further,

we obtain similar results focusing on new shorts and new longs (Table 6). In this setting

there is some evidence that information acquisition and returns are positively related for

new longs, but for new shorts the relation is still negative and still large. The total effect

of 0.54 in Column 3 suggests that doubling research for a new short decreases the abnormal

return by 54 bps per quarter.
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[Table 6 about here.]

Overall, these findings confirm Proposition 4: conditional on a short being executed,

more research activity predicts smaller absolute abnormal returns.

6 Alternative Explanation and Additional Evidence

The inverse research-return slope for executed shorts is intuitive following the sequential-

sampling model, but there is a competing interpretation for the empirical finding. Perhaps

managers viewing extra EDGAR filings simply bog themselves down in public information

that holds little incremental value, so the inverse relation reflects wasted effort rather than the

clear-winner-versus-borderline logic of the model. Fortunately, we can test this alternative

empirically by examining whether heavier research correlates with poorer overall performance

at the family level. We can also examine whether managers genuinely scale back research

for potential shorts that are “clear winners,” as the sequential-signal framework predicts.

6.1 Is public-document research wasteful?

Could the inverse relation between research and absolute returns among executed shorts

reflect wasted effort? If so, fund families that generally do more public-document research

should underperform. We test this by aggregating our sample to family-quarter observations

and using the following regression model to explain family-level benchmark-adjusted returns:

Returnit = α + βMFIAit + λXit + ωt + ϵit, (4)
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where Returnit is the average benchmark-adjusted return across the actively managed funds

of family i during quarter t and Xit includes various controls.13 The variable of interest,

MFIAit, measures total requests for all stocks by mutual fund family i during quarter t.14

Table 7 shows the results using contemporaneous and lagged measures of information

acquisition, and finds that the research-return slope is positive: fund families that do more

EDGAR research have better returns. Indeed, the estimates suggest that if a family dou-

bled its research efforts it would improve next-quarter’s benchmark alpha by roughly 1.4

bp—small in percentage terms but $7 million for a median $50 billion family. Thus, public-

document research is productive on average, contradicting the “wasteful research” interpre-

tation.

[Table 7 about here.]

6.2 Evidence with Clear-Winners

The evidence in Section 5 shows that for executed short positions, more research is related

to lower absolute returns. These findings support the intuition in behind Proposition 4: that

shorts requiring extensive research are borderline shorts whereas those requiring less research

are clear winners. This section provides further support of Proposition 4 by showing that

stocks that are clear winner shorts ex ante are the same stocks that require less attention

from managers.

First, we show that overpriced stocks—identified ex ante using indicators based on the

mispricing measure of Stambaugh and Yuan (2017)—earn low returns. Table 8 highlights

13Control variabels include family size (TNAM), total fund flows over the last year (Netflow12), aver-
age portfolio concentration (HHI), average expense ratios (ExpenseRatio), and average portfolio turnover
(Turnover).

14MFIAit aggregates MFIAijt across all stocks for family i during quarter t.
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this result, showing the results from testing the following regression model:

Returnjt = α + β1Underpricedjt−1 + β2Overpricedjt−1 + λZjt + ϵjt, (5)

where Returnjt is either the excess return of stock j during quarter t (ExRet) or the

characteristic-adjusted return (DGTW ).15

[Table 8 about here.]

Second, we combine the ex ante overpricing indicator with an indicator for low uncer-

tainty: an overpriced stock with a low level of uncertainty is a clear winner with respect to

shorts.16 Then for new short positions we estimate the following model:17

MFIAijt = β1LowDisagreejt + β2Overpricedjt

+β3LowDisagreeXOverpricedjt+γi + uj + ωt + ϵijt.

(6)

For new short positions, the interaction of LowDisagree and Overpriced indicates a

clear winner since the stock has low uncertainty and the overpricing foreshadows negative

future returns.18 The model always includes mutual fund family and quarter fixed effects

and includes stock fixed effects where noted. Table 9 shows the results.

[Table 9 about here.]

15The variables of interest are Underpriced and Overpriced, which are indicators based on the mispricing
measure of Stambaugh and Yuan (2017).

16To proxy for low uncertainty we define LowDisagree as equal to one for each stock-quarter observation
with Disagreement in the lowest quintile.

17We estimate the analogous model for new long positions.
18Combining LowDisagree with Underpriced indicates clear winners in the case of longs.
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In the case of new long positions, there is a weak relation or no relation between managers’

research and clear winners. This result supports Proposition 4 and findings from Tables 5

and 6.

For new short positions, where LowDisagreeXOverpriced represents the clear winners,

Proposition 4 is also supported: managers do less research for clear winners. Column 5 shows

that mutual fund managers acquire 8% less information about overpriced stocks with low

disagreement compared to other stocks. When including stock-fixed effects, managers acquire

up to 12% less information when stocks are overpriced and have low disagreement. Taken

together, the evidence favours the sequential-sampling logic of Proposition 4: managers do

less research when the first signals already point to an obvious mispricing..

7 Conclusion

This paper links the holdings of U.S. equity mutual funds with observations of their research

behavior from the EDGAR Log Files and, in doing so, observes how portfolio managers

allocate research effort for both long and short positions. Two empirical facts stand out: (i)

funds allocate 5% more research to stocks they will short than to those they will buy, and

(ii) those shorts earn absolute abnormal returns more than 100 bps per quarter higher than

comparable longs.

Then, using a parsimonious endogenous information model with short-specific frictions

we reconcile these facts while generating a novel insight about research, executed trades,

and performance. The model predicts that short positions preceded by more research should

deliver smaller absolute alpha. The data confirm this inverse slope between research and

returns for shorts—and a flat one for longs—validating the model’s clear-winner-versus-
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borderline-trade logic.

By showing that information gathering—not just trade execution—is a primary margin on

which short-selling frictions operate, we sharpen the classic narrative about costly-arbitrage.

We also demonstrate that public filings are a reliable source of alpha when investors optimally

ration attention and research efforts. Further research in this area should seek to better

understand the factors that drive information acquisition decisions for other investor types

and for other types of trades. Investigating the impact of information acquisition on other

aspects of portfolio management and performance could also provide valuable insights for

investors and financial professionals.
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(A) All Long and Short Positions

(B) New Long and New Short Positions

Figure 1: Time Series of Long and Short Positions
These time series plots show the changes in positions held by mutual funds over time. Panel A shows all
long and short positions while Panel B shows the changes in new long and new short positions.
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(A) All Long and Short Positions

(B) New Long and New Short Positions

Figure 2: Histograms of Returns by Position
This figure shows the histogram of abnormal returns, as measured using equally-weighted DGTW returns,
for long and short positions (Panel A) and for new long and new short positions (Panel B).
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(A) All Long Positions

(B) All Short Positions

Figure 3: Scatter Plot of Requests and Abnormal Returns
This figure shows scatter plots of abnormal returns, as measured using equally-weighted DGTW returns,
with requests for both long positions (Panel A) and short positions (Panel B).
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(A) New Long Positions

(B) New Short Positions

Figure 4: Scatter Plot of Requests and Abnormal Returns: New Positions
This figure shows scatter plots of abnormal returns, as measured using equally-weighted DGTW returns,
with requests for both new long positions (Panel A) and new short positions (Panel B).
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Table 1: Summary Statistics
This table provides summary statistics for our sample. The subscripts for each variable refer to mutual fund
family i, stock j, and quarter t. The entire panel includes 4, 937, 880 observations and four variables are
summarized over the entire panel. This table also provides summary statistics after collapsing the panel at
the mutual fund family-by-quarter level (subscripts it) for which there are approximately 1, 500 observations,
and after collapsing the panel at the stock-by-quarter level (subscripts jt) for which there are over 100, 000
observations for most of the variables. The period covers 30 quarters, from January 2010 through June 2017,
and 115 different mutual fund families, of which 55 have at least one short position in our sample.

(1) (2) (3) (4) (5)

Variable Mean Std. Dev. Median N

Requestsijt 1.92 21.93 0 4,937,880
1{Requestsijt ≥ 1} 0.13 0.34 0 4,937,880
Longijt 0.37 0.48 0 4,937,880
Shortijt 0.02 0.14 0 4,937,880
NewLongijt 0.04 0.20 0 4,937,880
NewShortijt 0.01 0.09 0 4,937,880
Requestsit 7,122 19,278 1,219 1,650
1{Requestsit ≥ 1} 0.89 0.32 1 1,650
TNAMit (millions) 147,063 341,110 47,510 1,343
Fundsit 69 61 55 1,343
Stocksit 185 177 111 1,179
Turnoverit 60 42 54 1,333
HHIit 81 82 50 1,179
Expense Ratioit 1.2 .33 1.2 1,333
Netflow12it 0.002 0.018 0.001 1,336
MCAPjt (millions) 4,486 18,555 591 163,526
Volumejt (thousands) 1,210 5,608 234 163,526
ShortIntjt 0.05 0.06 0.03 103,422
Mispricingjt 50 13 50 75,907
Disagreementjt 0.56 1.60 0.14 115,566
IdioVoljt 0.02 0.02 0.02 102,946
Newsjt 197 876 71 95,257
InstOwnjt (millions) 98 344 24 79,075
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Table 2: Information Acquisition and Positions
This table shows the results from estimating Equation 1. The dependent variable, MFIAijt, is either one
quarter of requests (Requestsijt) or two quarters of requests (Requestsijt,t−1). In Panel A, the independent
variables indicate whether family i has a long or short position in stock j in quarter t. In Panel B, the
independent variables indicate whether family i has a new long or new short position in stock j in quarter t.
In Columns 3 and 6, MFIA is lagged one quarter while in Columns 4 and 7, MFIA is lagged two quarters.
The model includes family, stock, and quarter fixed effects. Standard errors are clustered by family-stock
and quarter and are shown in parentheses. Indicators ***, **, * denote statistical significance at the 1%,
5%, and 10% level, respectively.

(1) (2) (3) (4) (5) (6) (7)

Panel A. Long or Short Positions.

MFIA = Requestsijt MFIA = (Requestsijt,t−1)

MFIA L1.MFIA L2.MFIA MFIA L1.MFIA L2.MFIA

Long 0.11*** 0.09*** 0.08*** 0.14*** 0.12*** 0.11***
(0.00) (0.00) (0.01) (0.01) (0.01) (0.01)

Short 0.16*** 0.15*** 0.13*** 0.20*** 0.18*** 0.16***
(0.02) (0.02) (0.02) (0.03) (0.03) (0.03)

H0 : Short− Long = 0 0.05** 0.05*** 0.05** 0.05** 0.05** 0.05**
(0.02) (0.02) (0.02) (0.03) (0.03) (0.03)

Obs. 4,880,267 4,715,840 4,552,324 4,715,840 4,552,324 4,389,536
R2 0.37 0.37 0.38 0.42 0.42 0.43
Family FE Yes Yes Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes Yes Yes
Stock FE Yes Yes Yes Yes Yes Yes

Panel B. New Long or New Short Positions.

MFIA = Requestsijt MFIA = (Requestsijt,t−1)

MFIA L1.MFIA L2.MFIA MFIA L1.MFIA L2.MFIA

NewLong 0.06*** 0.01 -0.01 0.06*** 0.00 -0.01
(0.00) (0.01) (0.00) (0.01) (0.01) (0.01)

NewShort 0.08*** 0.06** 0.05** 0.09*** 0.07** 0.05*
(0.02) (0.02) (0.02) (0.03) (0.03) (0.03)

H0 : NewShort−NewLong 0.02 0.05** 0.05** 0.03 0.07** 0.06**
(0.02) (0.02) (0.02) (0.03) (0.03) (0.03)

Obs. 4,880,267 4,715,840 4,552,324 4,715,840 4,552,324 4,389,536
R2 0.37 0.37 0.38 0.42 0.42 0.43
Family FE Yes Yes Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes Yes Yes
Stock FE Yes Yes Yes Yes Yes Yes
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Table 3: Long and Short Positions and Returns
This table shows the results from estimating Equation 2. In the even-numbered columns, the dependent
variable is the excess return of stock j during quarter t (ExRet) and the independent variables include
quarterly risk-factors from the four-factor model (Fama and French (1993) and Carhart (1997)). In the
odd-numbered columns, the dependent variable is the characteristics-adjusted return (DGTW ). Columns
2 through 5 report α as the average abnormal return of the stocks in the sample. In Columns 6 and 7,
α measures the abnormal return to stocks in long positions while Short measures the additional return to
stocks held in short positions. Thus, Short + α measures the total return to stocks in short positions. In
addition to estimating over both long and short positions, the table also reports estimates when restricting
the sample to only long positions and short positions. The model includes a mutual fund family fixed effect.
Standard errors are clustered by stock and quarter and are shown in parentheses. Indicators ***, **, *
denote statistical significance at the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4) (5) (6) (7)

Long Only Short Only All Positions

ExRet DGTW ExRet DGTW ExRet DGTW

MktReturn 1.01*** 0.03** 1.02*** 0.05** 1.01*** 0.03**
(0.02) (0.01) (0.05) (0.02) (0.02) (0.01)

SMB 0.54*** 0.53*** 0.54***
(0.04) (0.07) (0.04)

HML 0.04 -0.10* 0.03
(0.03) (0.06) (0.03)

UMD -0.01 -0.20*** -0.02
(0.03) (0.05) (0.03)

α 0.29* 0.08 -1.29*** -1.18*** 0.29** 0.08
(0.14) (0.10) (0.25) (0.14) (0.14) (0.10)

Short -1.61*** -1.33***
(0.26) (0.23)

H0 : Short+ α = 0 -1.32*** -1.25***
(0.31) (0.17)

Obs. 1,721,856 1,317,857 47,118 35,367 1,768,976 1,353,224
R2 0.19 0.00 0.16 0.00 0.19 0.00
Family FE Yes Yes Yes Yes Yes Yes
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Table 4: New Long and New Short Positions and Returns
This table shows the results from estimating Equation 2 on new positions. In the even-numbered columns,
the dependent variable is the excess return of stock j during quarter t (ExRet) and the independent variables
include quarterly risk-factors from the four-factor model (Fama and French (1993) and Carhart (1997)). In
the odd-numbered columns, the dependent variable is the characteristics-adjusted return (DGTW ). In the
results below, α measures the abnormal return to stocks in new long positions while NewShort measures
the additional return to stocks held in new short positions. Thus, NewShort+ α measures the total return
to stocks in new short positions. Estimates are reported when using contemporaneous new positions, new
positions from last quarter, and new positions from two quarters ago. The model includes a mutual fund
family fixed effect. Standard errors are clustered by stock and quarter and are shown in parentheses.
Indicators ***, **, * denote statistical significance at the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4) (5) (6) (7)

All Positions

Contemporaneous New Position in t− 1 New Position in t− 2

ExRet DGTW ExRet DGTW ExRet DGTW

MktReturn 1.03*** 0.08*** 1.05*** 0.05*** 1.06*** 0.06**
(0.02) (0.02) (0.04) (0.02) (0.04) (0.02)

SMB 0.68*** 0.60*** 0.60***
(0.05) (0.06) (0.07)

HML 0.05 -0.05 -0.05
(0.05) (0.06) (0.07)

UMD -0.00 -0.04 -0.03
(0.04) (0.04) (0.03)

α 2.26*** 2.08*** -0.52** -0.44*** -0.81*** -0.60***
(0.17) (0.20) (0.22) (0.12) (0.25) (0.17)

NewShort -3.64*** -3.37*** -0.93*** -0.69*** -0.20 -0.37*
(0.35) (0.36) (0.30) (0.25) (0.22) (0.21)

H0 : NewShort+ α = 0 -1.38*** -1.29*** -1.45*** -1.13*** -1.01** -0.96***
(0.42) (0.28) (0.35) (0.26) (0.27) (0.23)

Obs. 197,116 139,044 198,931 134,938 187,356 128,111
R2 0.19 0.01 0.15 0.00 0.16 0.00
Family FE Yes Yes Yes Yes Yes Yes
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Table 5: Long and Short Positions, Returns, and Information Acquisition
This table shows the results from estimating Equation 3. In the even-numbered columns, the dependent
variable is the excess return of stock j during quarter t (ExRet) and the independent variables include
quarterly risk-factors from the four-factor model (Fama and French (1993) and Carhart (1997)). In the odd-
numbered columns, the dependent variable is the characteristics-adjusted return (DGTW ). In the results
below, Long measures the abnormal return to stocks in long positions while Short measures the additional
return to stocks held in short positions. Further, MFIA measures the effect of information acquisition on
stocks held in long positions while the interaction term, ShortXMFIA, measures the additional effect of
information acquisition on stocks in short positions. Thus, ShortXMFIA+MFIA measures the total effect
of information acquisition on the returns of stocks in short positions. The model includes mutual fund family
and stock fixed effects. Standard errors are clustered by stock and quarter and are shown in parentheses.
Indicators ***, **, * denote statistical significance at the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4) (5)

All Positions

MFIA = Requestsijt MFIA = Requestsijt,t−1

ExRet DGTW ExRet DGTW

MktReturn 1.01*** 0.03** 1.01*** 0.04***
(0.02) (0.01) (0.02) (0.01)

SMB 0.54*** 0.53***
(0.04) (0.04)

HML 0.03 0.03
(0.04) (0.04)

UMD -0.01 -0.01
(0.03) (0.03)

Long 0.24 0.03 0.27* 0.08
(0.15) (0.08) (0.15) (0.09)

Short -1.28*** -1.09*** -1.29*** -1.12***
(0.17) (0.13) (0.16) (0.14)

MFIA 0.06* 0.08*** -0.04* -0.01
(0.03) (0.03) (0.02) (0.02)

ShortXMFIA 0.20** 0.22** 0.18*** 0.21***
(0.08) (0.08) (0.06) (0.07)

H0 : ShortXMFIA+MFIA = 0 0.26*** 0.30*** 0.14** 0.19***
(0.09) (0.08) (0.07) (0.07)

Obs. 1,768,734 1,353,132 1,710,949 1,306,197
R2 0.24 0.06 0.24 0.06
Family FE Yes Yes Yes Yes
Stock FE Yes Yes Yes Yes
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Table 6: New Long and New Short Positions, Returns, and Information Acquisition
This table shows the results from estimating Equation 3 on new positions. In the even-numbered columns,
the dependent variable is the excess return of stock j during quarter t (ExRet) and the independent variables
include quarterly risk-factors from the four-factor model (Fama and French (1993) and Carhart (1997)). In
the odd-numbered columns, the dependent variable is the characteristics-adjusted return (DGTW ). In the
results below, NewLong measures the abnormal return to stocks in long positions while NewShort measures
the additional return to stocks held in short positions. Further, MFIA measures the effect of information
acquisition on stocks held in long positions while the interaction term, NewShortXMFIA, measures the
additional effect of information acquisition on stocks in short positions. Thus, NewShortXMFIA+MFIA
measures the total effect of information acquisition on the returns of stocks in short positions. The model
includes mutual fund family and stock fixed effects. Standard errors are clustered by stock and quarter and
are shown in parentheses. Indicators ***, **, * denote statistical significance at the 1%, 5%, and 10% level,
respectively.

(1) (2) (3) (4) (5)

All Positions

MFIA = Requestsijt MFIA = Requestsijt,t−1

ExRet DGTW ExRet DGTW

MktReturn 1.04*** 0.08*** 1.04*** 0.08***
(0.02) (0.02) (0.02) (0.02)

SMB 0.68*** 0.68***
(0.05) (0.05)

HML 0.06 0.06
(0.06) (0.06)

UMD -0.00 -0.00
(0.04) (0.04)

NewLong 2.13*** 1.92*** 2.18*** 1.97***
(0.16) (0.16) (0.17) (0.17)

NewShort -3.13*** -2.93*** -3.15*** -2.97***
(0.33) (0.31) (0.33) (0.32)

MFIA 0.32*** 0.36*** 0.10 0.14*
(0.10) (0.10) (0.09) (0.08)

NewShortXMFIA 0.12 0.18 0.12 0.20
(0.17) (0.15) (0.14) (0.12)

H0 : NewShortXMFIA+MFIA = 0 0.45*** 0.54*** 0.22 0.34***
(0.17) (0.14) (0.15) (0.13)

Obs. 196,404 138,732 196,404 138,732
R2 0.26 0.10 0.26 0.10
Family FE Yes Yes Yes Yes
Stock FE Yes Yes Yes Yes
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Table 7: Information Acquisition and Benchmark-Adjusted Returns
This table shows results from estimating Equation 4 on the quarterly sample of mutual fund family returns.
The dependent variable is the average benchmark-adjusted return across the funds of family i during quarter
t. The independent variable of interest, MFIAit is the number of requests made by family i during quarter
t. The table uses MFIA from the same quarter as when the returns are earned and in the previous four
quarters. The other independent variables are described in Appendix A.2. The model includes quarter fixed
effects. Standard errors are clustered by family and quarter and are shown in parentheses. Indicators ***,
**, * denote statistical significance at the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4) (5) (6)

L0.MFIA L1.MFIA L2.MFIA L3.MFIA L4.MFIA

Return Return Return Return Return

MFIA 0.016* 0.014* 0.013* 0.011* 0.008
(0.008) (0.008) (0.007) (0.006) (0.005)

TNAM 0.003 0.004 0.004 0.004 0.005
(0.006) (0.006) (0.006) (0.006) (0.006)

NetFlow12 -0.259 -0.227 -0.188 -0.138 -0.071
(1.150) (1.121) (1.124) (1.121) (1.144)

HHI -0.071*** -0.070*** -0.070*** -0.069*** -0.068***
(0.016) (0.015) (0.015) (0.015) (0.015)

ExpenseRatio -0.090*** -0.089*** -0.089*** -0.088*** -0.087***
(0.025) (0.024) (0.025) (0.025) (0.026)

Turnover 0.041 0.041 0.041 0.041 0.042
(0.034) (0.034) (0.034) (0.034) (0.035)

Obs. 1,169 1,169 1,169 1,169 1,169
R2 0.09 0.09 0.09 0.09 0.09
Quarter FE Yes Yes Yes Yes Yes
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Table 8: Mispricing and Returns
This table shows the results from estimating Equation 5 on the quarterly sample of stock returns. In
Columns 2 through 4, the dependent variable is the excess return of stock j during quarter t (ExRet)
and the independent variables (suppressed in the output) include quarterly risk-factors from the four-factor
model (Fama and French (1993) and Carhart (1997)). In Columns 5 through 7, the dependent variable is the
characteristics-adjusted return (DGTW ) from (Daniel et al. (1997)). The indicator variable L1.Underpriced
equals one if stock j’s mispricing score was in the bottom quintile in quarter t − 1. The indicator variable
L1.Overpriced equals one if stock j’s mispricing score was in the top quintile in quarter t−1. Standard errors
are clustered by stock and quarter and are shown in parentheses. Indicators ***, **, * denote statistical
significance at the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4) (5) (6) (7)

ExRet ExRet ExRet DGTW DGTW DGTW

L1.Underpriced 0.22 0.56 0.34 0.61**
(0.34) (0.41) (0.24) (0.27)

L1.Overpriced -1.34** -1.39** -1.10** -1.19**
(0.60) (0.63) (0.43) (0.44)

Obs. 75,218 75,218 75,218 72,648 72,648 72,648
R2 0.18 0.18 0.18 0.00 0.00 0.00
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Table 9: Information Acquisition and Clear Winners
This table shows results from estimating Equation 6 on new positions. The dependent variable, MFIA, is
the number of requests from family i about stock j in quarter t. The independent variables LowDisagree,
Underpriced, Overpriced, and their interactions identify whether stocks are clear winners in a given quarter.
The model always includes mutual fund family and quarter fixed effects and includes stock fixed effects where
noted. Standard errors are clustered by family-stock and quarter and are shown in parentheses. Indicators
***, **, * denote statistical significance at the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4) (5) (6) (7)

New Long Only New Short Only

MFIA MFIA MFIA MFIA MFIA MFIA

LowDisagreeXUnderpriced -0.04*** 0.00 0.00
(0.01) (0.01) (0.01)

LowDisagree 0.00 -0.00
(0.01) (0.03)

Underpriced 0.00
(0.01)

Overpriced -0.00
(0.02)

LowDisagreeXOverpriced -0.08** -0.12** -0.11*
(0.04) (0.05) (0.06)

Obs. 110,887 110,770 110,770 13,600 13,125 13,125
R2 0.45 0.48 0.48 0.63 0.66 0.66
Family FE Yes Yes Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes Yes Yes
Stock FE No Yes Yes No Yes Yes
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Online Appendix

This appendix provides additional details to supplement the main text. There are two

sections of this appendix. Appendix A.1 contains details about the EDGAR Log Files and

the process of unmasking mutual fund IP addresses. Appendix A.2 contains a table detailing

the variables used in this paper. Appendix A.3 contains model details and extended proofs.
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A.1 Unmasking IP Addresses in EDGAR Log Files

The EDGAR Log Files contain billions of observations of “requests” or “requests to view a

filing.” Each observation details the filing requested (accession number), the date and time

of the request, and the requester (the IP address making the electronic request). A snapshot

of the raw EDGAR Log Files is shown below:

IP Address Date Time CIK Accession Number

38.97.91.ecg 20170531 09:47:33 051143 000104746917001061

38.65.241.fhf 20170531 11:07:28 274191 000002741917000008

67.199.249.igg 20170624 12:27:02 320193 000032019317000009

216.223.41.aah 20170624 16:12:55 831259 000083125917000016

Given our focus in this paper on the requester, linking the masked IP addresses to

identifiable investors (e.g., mutual fund families) is pivotal to our study. To unmask the IP

addresses, we first notice the fourth octet in the examples above.1 In place of the actual digits

of the requesting IP address, the fourth octet is reported as a set of three letters. However,

organizations typically register blocks of IP addresses, with the most common block fixing

the first three octets and containing all 256 versions of the fourth octet.2 In other words,

only the first three octets are necessary to identify the organization that has registered that

block of IP addresses.

Using this insight, we searched historical IP address registration records from 2010

through 2017 to identify the blocks of IP addresses registered to investment firms.3 Then,

using this hand-collected mapping between investment firms and IP addresses, we unmask
1For IP addresses, an octet is a group of eight bits, or the one to three digit numbers (from 0 to 255)

separated by periods in the examples above.
2For example, all 256 IP addresses beginning with 38.97.91 will be registered to the same organization.
3IP registration records were acquired from MaxMind, https://www.maxmind.com/en/home.
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the requesters in the EDGAR Log Files. As a result, the snapshot of raw data from above

has been transformed into the following.

Investment Firm Date Time Ticker Filing

Abrams Capital 20170531 09:47:33 IBM 10-K for 2016

Harbor Capital 20170531 11:07:28 TGT 10-K for 2016

Crabel Capital 20170624 12:27:02 AAPL 10-Q for Q2 2017

Ronin Capital 20170624 16:12:55 FCX Earnings for Q2 2017

Furthermore, the three letters used to mask the fourth octet is static, not dynamic. This

means, for example, that def replaces the digits 146 for every instance of 146. This allows us

to identify unique IP addresses. In other words, though an unmasked mutual fund may make

50 requests one day, we can observe how many different IP addresses made those requests.

Finally, we have adjusted the data to remove likely bots. As mentioned, the raw EDGAR

Log Files contain billions of requests with many thousands of requests per day coming from

single IP addresses. It is unlikely that these thousands of requests per day represent a

human actually clicking on documents in EDGAR. It is much more likely that they represent

computer programs (bots) downloading large quantities of data at a time. Given these IP

addresses do not fit with the spirit of our research, we remove them from the data. The

removal process is as follows: we remove IP addresses that either (i) make over 1, 000 requests

in a day or (ii) make requests for over 100 different CIKs (i.e., firms).
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A.2 Variable Details

Variable Description

Information Acquisition (MFIA) Measured at mutual fund family-stock-quarter (ijt) level.

Requestsijt The sum of the number of requests made by mutual fund family i for filings about stock j in quarter

t. The sum is winsorized at the 99th percentile and scaled by adding one and taking the natural log.

This data is primarily derived from the EDGAR Log Files.

Requestsijt,t−1 The sum of the number of requests made by mutual fund family i for filings about stock j in quarter

t and in quarter t − 1. The sum is winsorized at the 99th percentile and scaled by adding one and

taking the natural log. This data is primarily derived from the EDGAR Log Files.

Position Variables Measured at mutual fund family-stock-quarter (ijt) level.

Longijt Indicator equal to 1 if any of the mutual funds within mutual fund family i hold shares of stock j in

a long position at the end of quarter t. We exclude all observations where mutual fund family i holds

long and short positions of stock j during the same quarter. This data is derived from the CRSP

Mutual Funds database.

Shortijt Indicator equal to 1 if any of the mutual funds within mutual fund family i hold shares of stock j in a

short position at the end of quarter t. We exclude all observations where mutual fund family i holds

long and short positions of stock j during the same quarter. This data is derived from the CRSP

Mutual Funds database.

NewLongijt Indicator equal to 1 if Longijt = 1 and Longijt−1 = 0.

NewShortijt Indicator equal to 1 if Shortijt = 1 and Shortijt−1 = 0.

Stock Characteristics Measured at stock-quarter (jt) level.

ShortIntjt The number of shares held short divided by the number of shares outstanding. This ratio is winsorized

at the 99th percentile and scaled by adding one and taking the natural log. This data is derived from

the Compustat database.

IdioVoljt The standard deviation of daily abnormal returns for stock j during quarter t, winsorized at the 99th

percentile. Abnormal returns are estimated using the five-factor model with momentum. This data is

derived from the CRSP database as well as Kenneth French’s website.

Disagreementjt The standard deviation of analyst expectations from the IBES database. The standard deviation is

winsorized at the 99th percentile and scaled by adding one and taking the natural log.

Newsjt The total number of news articles and press releases for stock j during quarter t based on the Raven-

Pack database. The sum of news articles is winsorized at the 99th percentile and scaled by adding

one and taking the natural log.

MCAPjt The total market capitalization of firm j calculated as the share price multiplied by shares outstanding.

The product is scaled by taking the natural log.

InstOwnjt The number of shares owned by institutions which file 13F reports, winsorized at the 99th percentile

and scaled by adding one and taking the natural log. This data is derived from the Thomson Reuters

13F database.

Volumejt Share volume traded during quarter t, winsorized at the 99th percentile and scaled by taking the

natural log. This data is derived from CRSP.

Mispricingjt Average mispricing score for quarter t. The score is from Stambaugh and Yuan (2017). For interpre-

tation, we divide the score by 100 and subtract 0.50 to center on zero.
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Underpricedjt Indicator equal to 1 if Mispricingjt is in the bottom quintile of all stocks in quarter t.

Overpricedjt Indicator equal to 1 if Mispricingjt is in the top quintile of all stocks in quarter t.

ExRetjt The excess return of stock j during quarter t. The excess return is calculated as the raw return less

the risk-free rate. The excess return is multiplied by 100 for interpretability and is winsorized at the

1st and 99th percentiles.

DGTWjt The abnormal return of stock j during quarter t calculated as the difference between stock j’s raw

return less the appropriate equally-weighted DGTW benchmark return (Daniel et al. (1997)). The

abnormal return is multiplied by 100 for interpretability and is winsorized at the 1st and 99th per-

centiles. This return is referred to as the “characteristic-adjusted return.”

LowDisagreejt Indicator equal to 1 if Disagreementjt is in the bottom quintile during quarter t.

LowDisagreeXUnderpricedjt Indicator equal to 1 if Underpricedjt is 1 and stock j has low disagreement. Low disagreement is

defined as Disagreementjt in the bottom quintile during quarter t.

LowDisagreeXOverpricedjt Indicator equal to 1 if Overpricedjt is 1 and stock j has low disagreement. Low disagreement is

defined as Disagreementjt in the bottom quintile during quarter t.

Family Characteristics Measured at the family-quarter (it) level.

TNAMit Total net assets under management. Scaled by taking the natural log.

HHIit Herfindahl-Hirschman Index to measure portfolio concentration. Calculated as the sum of the squared

portfolio share of each holding within a portfolio. Winsorized at the 99th percentile and divided by

100 for interpretability.

Expense Ratioit Total annual expenses and fees divided by year-end TNA. Winsorized at the 99th percentile.

Turnoverit Minimum of aggregate purchases and sales of securities divided by average TNA over the calendar

year. Winsorized at the 99th percentile and scaled using the natural logarithm.

Netflow12it The net growth in fund assets beyond reinvested dividends (Sirri and Tufano (1998)) over the past

one year. Winsorized at the 1st and 99th percentiles.

Returnit Measures the risk-adjusted returns for a given fund compounded over a six-month period. One risk-

adjustment is to use “benchmark adjusted returns,” where appropriate benchmark return is subtracted

from the raw return of the fund. The second risk-adjustment is to account for the four-factor (FF4)

model.

Macro Variables Measured at the quarter (t) level.

MkReturnt The quarterly return on the market, from Kenneth French’s database.

HMLt The quarterly high-minus-low factor, from Kenneth French’s database.

SMBt The quarterly small-minus-big factor, from Kenneth French’s database.

UMDt The quarterly momentum factor, from Kenneth French’s database.
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A.3 Model Details and Proofs

This section provides derivations underlying the theoretical framework developed in Section

4 of the main text. We proceed in three parts. Section A.3.1 presents the baseline one-shot

information-acquisition model, proves equilibrium existence and uniqueness, and establishes

Propositions 1–3. Section A.3.2 extends the environment to sequential-signal acquisition,

derives the optimal stopping rule, and proves Proposition 4. Section A.3.3 provides details

on the minimum tranche size (qmin) assumption.

Throughout the appendix we retain the notation and parameterization introduced in the

main text unless explicitly noted otherwise.

A.3.1 Baseline Model

Equilibrium Existence and Uniqueness

The risky asset has a binary fundamental value (V ∈ {νH , νL}) and ∆ ≡ νH − νL > 0 is the

value gap. A risk-neutral investor may observe a signal of value by choosing precision π ∈

[0, 1] and paying cost c(π) = κπ2, κ > 0. Conditional on V , the signal x ∈ {νH , νL} satisfies

P (x = V ) = 1
2
+ π

2
. The posterior mean therefore lies π∆

2
above or below the pre-trade price

(P0 =
νH+νL

2
), which is pinned down by competitive noise traders at the unconditional mean.

After observing the signal, the investor selects position side s ∈ {L (long), S (short), 0} and

position size q.

Opening any position incurs fixed monitoring costs F > 0, and investors abstain from

trading or trade a minimal block qmin > 0. Trading costs for long positions total CL = F

while for short positions CS = F + ϕ+ ηqmin where both ϕ > 0 and ηqmin > 0.
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Lemma A1. For any chosen precision π, optimal trade decisions are:

Go Long iff x = νH and
π∆

2
qmin ≥ CL, Go Short iff x = νL and

π∆

2
qmin ≥ CS.

Proof. Conditional expected profit from a long after a high signal is π∆
2
qmin−CL. The investor

trades only when this is non-negative; the symmetric argument gives the short cut-off. ■

Define the precision hurdles for long and short trades:

πthr
L ≡ 2CL

∆qmin

, πthr
S ≡ 2CS

∆qmin

> πthr
L , (A1)

and let the investor’s ex-ante expected profit from optimally trading after observing x be:

Γ(π) ≡ 1

2

[
qmin

π∆

2
− CL

]
+
+

1

2

[
qmin

π∆

2
− CS

]
+
− c(π),

where [z]+ ≡ max{z, 0}. There are three relevant ranges for π:

• For π ≤ πthr
L : Γ(π) = −c(π) < 0.

• For π ∈ (πthr
L , πthr

S ] : only long trades can be taken, so Γ(π) = 1
2
(qmin

π∆
2

− CL)− c(π).

• For π > πthr
S : both long and short trades can be taken, so Γ(π) ≡ 1

2
(qmin

π∆
2

− CL) +

1
2
(qmin

π∆
2

− CS)− c(π).

Because c(π) is strictly convex and the linear benefit pieces are continuous with kinks at

both πthr
L and πthr

S , Γ(π) is strictly concave on each region and continuous everywhere, so

it attains a unique global maximizer π∗ ≡ argmaxπ≥0 Γ(π). If the maximal expected profit

is non-positive, Γ(π∗) ≤ 0, the investor acquires no information and never trades; otherwise
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she chooses the interior optimum π∗ > 0 and follows the cut-off rule in Lemma A1. This

proves existence and uniqueness of the equilibrium. ■

Proof of Proposition 1

Proposition 1 states that the precision threshold is higher for shorts than for longs: πthr
S >

πthr
L .

Proof. Precision thresholds for longs and shorts are defined in Equation A1. By construction,

CS = CL + ϕ+ ηqmin > CL where the locate fee and borrow surcharge are both greater than

zero (ϕ, ηqmin > 0). Therefore, πthr
S > πthr

L . ■

Proof of Proposition 2

Proposition 2 states that the average precision (or research intensity) for observed shorts is

higher than for observed longs.

Proof. Recall the two precision thresholds (πthr
L = 2CL

∆qmin
and πthr

S = 2CS

∆qmin
> πthr

L ), let the

gross trading benefit be defined as B(π) = 1
2

[
qmin

π∆
2

− CL

]
+
+ 1

2

[
qmin

π∆
2

− CS

]
+
, and note

that the slope of this benefit (the marginal benefit curve), with respect to chosen precision

π, is a step-function with three flat regions:

• B′(π) = 0 for π ≤ πthr
L ;

• B′(π) = bL = qmin∆
4

on (πthr
L , πthr

S ] (only longs can cover fixed costs);

• B′(π) = bS = 2bL = qmin∆
2

when π > πthr
S (both longs and shorts can cover fixed costs).

Also note that the investor’s net objective, the ex-ante expected profit, is Γ(π) = B(π)−κπ2

and the marginal cost is 2κπ.
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Matching the marginal-benefit step-function to the upward sloping marginal cost curve

gives two candidate interior optima:

πL(κ) =
qmin∆

8κ
, πS(κ) =

qmin∆

4κ
;

which are feasible only if they lie on their intended segments. Define

κhigh =
(qmin∆)2

16CL

, κlow =
(qmin∆)2

8CS

and note that κlow < κhigh whenever CS > 2CL. Thus, whenever short-selling costs are

significantly higher than the costs of long positions, the investor’s optimal precision falls into

exactly one of the following cost bands.

• High-cost band. When κ > κhigh the marginal cost curve is always higher than the

marginal-benefit step function and, thus, the optimal precision is π∗ = 0 and neither

long or short trades are executed.4

• Moderate-cost band. When κlow < κ < κhigh the marginal cost curve intersects the

marginal-benefits step-function only in the long-only region, thus, the optimal precision

is π∗ = πL(κ) ∈ (πthr
L , πthr

S ) and only long trades are executed.

• Low-cost band. When κ < κlow the marginal cost curve intersects the marginal-

benefits step-function in the short region (or is always below bS), thus, the optimal

precision is π∗ = πS(κ) ≥ πthr
S and both longs and shorts are executed.

4At κ = κhigh the investor is indifferent between π = 0 and πthr
L ; we take π∗ = 0 without loss of

generality.
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Shorts are only observed in the low-cost band and are always backed by high precision

(π∗ ≥ πthr
S ) while longs are observed in both the low-cost band and the moderate-cost band,

thus some longs are backed by lower precision (πthr
L < π∗ < πthr

S ). Hence

E[π∗ | s = S] ≥ E[π∗ | s = L],

with strict inequality when CS > 2CL (so the moderate-cost band has positive width). ■

Proof of Proposition 3

Proposition 3 states that the average absolute abnormal return for observed shorts is higher

than for observed longs.

Proof. After observing the binary signal x ∈ {νH , νL} the investor’s posterior mean is

E[V |x] = P (V = νH |x)νH + P (V = νL|x)νL, so the perceived deviation from price is always

|E[V |x] − P0| = π∆
2

. This is the size of the “gap” the investor believes exists between the

fundamental value and the market price.

A trade of side s ∈ {L, S} is executed only if the expected gross gain on the minimum

block covers the fixed cost Cs; Lemma 1 therefore implies the return hurdle |E[V |x]−P0| ≥
Cs

qmin
= τs. Because τS > τL, a short is opened only when the perceived mispricing is strictly

larger than the minimum mispricing that triggers a long.

Shorts appear only in the low-cost band identified in Proposition 2; there the chosen

precision satisfies π∗ ≥ πthr
S , hence the mispricing at entry obeys |E[V |x] − P0|s=S ≥ πthr

S ∆

2
.

Longs are observed (i) in the same low-cost band when π∗ ≥ πthr
S , and (ii) in the moderate-

cost band when πthr
L < π∗ < πthr

S . In the second scenario, the mispricing lies strictly below
πthr
S ∆

2
. Hence the distribution of mispricings for longs is a mixture of large mispricings (from

the low-cost band) and strictly smaller ones (from the moderate-cost band), whereas the
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short-side distribution contains only the large mispricings.

The realized abnormal return on a unit position is α = V − P0. Conditional on the in-

vestor’s entry rule, its absolute expectation is monotone in the perceived mispricing. Because

a correct-side payoff of +∆
2

occurs with probability 1+π
2

while a wrong-side payoff −∆
2

occurs

with probability 1−π
2

, larger perceived mispricing at entry translates into larger average |α|.

Therefore, E[|α|
∣∣s = S] ≥ E[|α|

∣∣s = L], with strict inequality when CS > 2CL (so the

moderate-cost band has positive width). ■

A.3.2 Extended Model: Sequential Signals

Equilibrium Existence and Uniqueness

Let the investor observe sequential Gaussian signals xj = V + εj, εj ∼ N (0, σ2), each

costing κπ2
0 where π0 = 1

σ2 . After N draws the posterior mean and precision are mN =

1
N

∑N
j=1 xj, and πN = Nπ0. Let VN(m) be the investor’s continuation value after N draws

and posterior mean m. At that node the investor chooses to either (i) trade: take side s on

the minimum block qmin if |m| ≥ τs, earning qmin(|m| − τs); (ii) draw: pay the cost c = κπ2
0

and receive E[VN+1(m
′)]; or (iii) stop: do nothing and receive value 0. Hence,

VN(m) = max
{
0, qmin(|m| − τL), qmin(|m| − τS), E[VN+1(m

′)]− c
}
. (A2)

Because the Gaussian update is linear and costs are constant, VN(·) is even and strictly

increasing in |m| once |m| ≥ τL. This implies thresholds 0 < m̂L
N ≤ m̂S

N such that the

unique optimal action is draw if |m| < m̂L
N and E[VN+1(m

′)]− c > 0; quit if |m| < m̂L
N and

E[VN+1(m
′)]− c ≤ 0; long if m̂L

N ≤ m < m̂S
N ; and short if |m| ≥ m̂S

N . Posterior variance is

monotone decreasing in N , so the short boundary hN := m̂S
N is weakly increasing. Suppose
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h1 > τS. When τS = |m1| < h1 the investor would strictly improve by shorting now rather

than paying c to continue, contradicting optimality. Hence, h1 = τS and, by monotonicity,

hN = τS for every N ; the long boundary must equal τL by the same argument. Therefore,

the optimal stopping rule is: (i) continue sampling while |mN | < τL and the option value of

another draw exceeds its cost; (ii) quit with no position if |mN | < τL but the option value

of another draw has fallen to zero; (iii) trade a long block as soon as τL ≤ |mN | < τS; and

(iv) trade a short block as soon as |mN | ≥ τS.

For this rule the investor is indifferent at the thresholds by definition of τs = Cs

qmin
, and

market makers break even at P0 =
νH+νL

2
. Thus (τL, τS, P0) constitutes an equilibrium. Now,

assume a distinct pair (τ̃L, τ̃S) ̸= (τL, τS) also supports an equilibrium. If τ̃S < τS, lowering

the short boundary lets the investor save at least one signal cost while never reducing trade

pay-offs, strictly increasing expected profit—a contradiction. If τ̃S > τS or the long boundary

moves, a symmetric contradiction arises. Hence, the boundary pair (τL, τS) is unique. ■

Proof of Proposition 4

Proposition 4 states that the average absolute abnormal return for observed shorts decreases

in the number of signals acquired.

Proof. Let the posterior dollar gap be gN ≡ |mN −P0| and its conditional standard deviation

be σ/
√
N . A short block is traded the first time the gap reaches the fixed hurdle gN ≥ τS

where τs =
Cs

qmin
. Denote this draw count by TS.

Conditional on trading after exactly N signals (TS = N), the gap must lie in [τS,∞), with

a truncated-normal tail. A standard formula gives the conditional mean of the overshoot:

E[gN − τS | TS = N ] =
( σ√

N

) φ(aN)

Φ(−aN)
, aN ≡ τS

√
N

σ
, (A3)
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where φ and Φ are the standard-normal pdf and cdf.

Because Φ(−aN) grows and φ(aN) shrinks with an, the fraction is bounded above by 1√
2π

.

Thus, E[gN | TS = N ] ≤ τS + σ√
2πN

and the right side is strictly decreasing in N .

At settlement the one-block abnormal return is α = V − P0. Conditional on executing

the short after precisely N filings, the posterior mean is mN and the residual uncertainty in

V is N (mN ,
σ2

N
). Therefore,5

E[|α| | TS = N ] = τS +
σ√
2πN

+
σ
√
2√

πN
, (A4)

is the sum of three positive terms whose second and third pieces shrink at the rate 1√
N

.

Hence, the whole expectation falls as N rises.

The details above focused on shorts. Long positions satisfy the same analytical bound

as shorts (Equation A4) but with the lower hurdle τL < τS. The second and third terms

of Equation A4—the overshoot of the posterior mean and the residual valuation noise—are

identical on both sides and shrink like 1√
N

. What is different between longs and shorts is the

baseline:

• Shorts must first clear the high dollar hurdle τS that reflects extra locate and borrow

fees. Because τS materially exceeds τL, each additional signal cuts the total expected

|α| by a perceptible amount, producing the downward slope highlighted in Proposition

4.

• Longs face the lower hurdle τL. Relative to the smaller baseline, the same 1√
N

decline

in the overshoot-and-noise terms is proportionally tiny, so the model predicts an almost

5See Lorden (1970).
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flat relation between information acquired and subsequent absolute returns on the long

side. ■

A.3.3 Minimum Tranche Size

Operational Practice. Large U.S. mutual-fund families rarely initiate a new position with

one share. Opening a position—long or short—triggers portfolio-compliance checks, internal

risk sign-off, back-office trade-ticket generation, and downstream monitoring of corporate

events. Therefore, desks often impose an internal ticket floor: long orders are usually entered

in round lots whose dollar value exceeds a preset minimum (often $25–$50 thousand for mid-

cap or large-cap stocks), and prime brokers supply stock-loan locates in the same round-lot

multiples on the short side. The model captures these institutional frictions with a fixed

monitoring cost F and a non-divisible block qmin. The surcharge ηqmin for shorts mirrors the

per-share borrow fee applied to that same lot.

Modelling Choice. Treating qmin as given is a simplification rather than a claim that

managers could never trade different block sizes. In richer microstructure models investors

do optimize quantity jointly with information (e.g., Kyle (1985)-type settings). Here, letting

the analyst pick an arbitrarily small q would merely convert the fixed desk cost F into a

per-share cost F/q, forcing us to append an additional first-order condition without altering

the economics of information choice. Keeping qmin fixed therefore improves tractability while

staying close to common desk practice.

Robustness. If one set qmin → 0 while keeping a strictly positive fixed cost F , the investor

could open an infinitesimal stake but still incur the full monitoring expense—a degenerate

corner that would require adding risk aversion or per-share execution costs to restore an
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interior optimum. Such extensions complicate notation yet leave the paper’s qualitative

insights intact: (i) higher short-side costs still raise the break-even precision hurdle; (ii) the

κ-band logic that delivers Propositions 1–3 is unchanged; and (iii) in the sequential model,

each additional draw would still shrink the posterior variance by 1/
√
N and hence reduce the

expected overshoot term, preserving Proposition 4. We therefore retain the stylised—but

industry-consistent—assumption of a fixed, non-optimized tranche size for analytical clarity.
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