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Abstract

This paper explores control theory and stabilisation policy within the framework

of a cointegrated vector autoregressive (VAR) model, adopting the perspective of an

applied econometrician.We demonstrate that a new process derived from control the-

ory should be regarded as a series of observables. This process can be viewed as driven

by a vector autoregressive moving-average (VARMA) model, which, in turn, can be

interpreted through a structural VAR framework. This approach enables the econome-

trician to identify and evaluate policy interventions. We also introduce a data-driven

procedure for classifying intermediate and final policy targets within the model. The

practicality and effectiveness of this procedure are demonstrated through a counterfac-

tual policy analysis of New Zealand’s monetary policy data.
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1 Introduction

This paper explores control theory within the framework of a cointegrated vector autoregres-

sive (CVAR) model, viewed from the standpoint of an econometrician conducting counter-

factual analyses or assessing, ex post, the presence and effectiveness of stabilisation policies.

We build extensively on Johansen and Juselius (2001), hereafter referred to as JJ.

JJ introduced control theory in a CVAR framework to derive policies that aim at sta-

tionarizing a combination of target variables. A number of empirical studies have since used
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their theory in various contexts: for macroeconomic and financial data, see Christensen and

Nielsen (2009), Carlucci and Montaruli (2014), Boug et al. (2024), and Castle and Kurita

(2024), among others; for climate data, see Chevillon and Kurita (2024). The article by

Johansen and Juselius in this special issue presents a revised and extended version of their

previous work, JJ, delineating the core concepts of their method. Note that in this study, we

refer to their original 2001 paper as JJ, rather than the article published in this issue, but

we point out in our analysis where the two papers markedly differ in a manner that matters

to us.

This paper adopts the perspective of an applied econometrician aiming to assess policies

within the class of models considered by JJ. While most previous studies have focused

on simulating counterfactual retroactive or prospective policies, we examine here how an

econometrician can estimate and evaluate a policy ex post, after its implementation. This

requires identifying the observables and determining how to estimate the parameters of a

model for the generated observables. Based on our previous investigations, we find that the

framework and policy narrative presented by JJ in their original paper brings challenges

when attempting to identify the observed data and, consequently, in estimating a CVAR

model for the underlying data-generating process. However, building on Rambachan and

Shephard (2021), we propose an alternative interpretation for the implementation of control

policy along JJ’s mathematical results. We demonstrate that data observed after a policy has

been implemented can be represented as a vector autoregressive moving-average process, or a

VARMA(p, 1) process, which can be given a structural vector equilibrium correction (SVEC)

interpretation, where the lagged MA(1) innovation constitutes the policy shock. This enables

us to examine whether an applied econometrician can indeed identify the policy ex post.

This allows us to extend JJ’s analysis and explore in greater depth some of the mecha-

nisms governing control policy, with the aim of delineating how the policy maker can imple-

ment their policies and the econometrician can assess their success. For this we focus on the

situation where they cannot directly control their desired target through their instrument,

but must rely on market forces through an intermediate target. This is a situation that

was already studied by JJ. While their definitions of intermediate and final targets are clear

and unproblematic in theoretical contexts, challenges arise when these concepts are applied

empirically. Specifically, distinguishing between intermediate and final policy targets among

a set of candidate variables is complex in practice, particularly when analysing the data of

multiple candidate variables in a CVAR system. Although insights from economic theory

are valuable, they are often insufficient to justify an a priori distinction in most cases. One

of the aims of this paper is to propose a procedure for identifying feasible intermediate and

final policy targets in empirical contexts. An empirical illustration of the proposed procedure

is provided by modeling a New Zealand macroeconomic dataset.

New Zealand was chosen for the following reasons: (i) it is a front-runner in inflation
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targeting policy, having been the first country to formally adopt the policy in the early

1990s and is well-known for its successful implementation over the past three decades; and

(ii) the Reserve Bank of New Zealand (RBNZ) has published long-term time series data

on inflation expectations. While the suggested procedure can be applied to time series

from other economies, New Zealand’s data are particularly suitable for demonstrating the

usefulness of our procedure in the context of policy simulation analysis. For a preceding

empirical illustration of applying a cointegrated method to New Zealand’s time series data,

see Choo and Kurita (2016), inter alia.

The rest of this paper is organised into four sections. Section 2 briefly reviews control

theory within a CVAR system and then considers issues faced by an econometrician working

with the data generated after a policy has been implemented. Section 3 addresses the issue

of identifying intermediate and final policy targets and considers an empirical procedure.

Section 4 provides an empirical illustration of the procedure. Finally, Section 5 presents

concluding remarks. All econometric analyses in this paper were conducted using Cats

(Doornik and Juselius, 2023), Ox (Doornik, 2023) and PcGive (Doornik and Hendry, 2023).

2 Inference in controlled cointegrated systems

This section revisits control theory within the context of a CVAR model through the perspec-

tive of an econometrician willing to estimate a model and perform counterfactual analyses.

We begin by reviewing JJ’s control theory and then discuss various methodological issues

related to counterfactual policy analysis using a CVAR system.

2.1 CVAR-based control theory

We start by providing a brief review of control theory in a CVAR model for I(1) non-

stationary time series data; for further details of the model, refer to Johansen (1988, 1996),

Juselius (2006) and Hunter et al. (2017). Let Xt be a p-dimensional vector of time se-

ries which is represented as the following trend-restricted CVAR(k) model conditional on

X−k+1, . . . , X0:

∆Xt = α (β′, ρ)

(
Xt−1

t

)
+

k−1∑
i=1

Γi∆Xt−i + τ + εt, for t = 1, ..., T, (1)

where εt is a martingale-difference sequence with a positive definite variance matrix Ω ∈
Rp×p, a process satisfying a class of assumptions provided by Kurita and Nielsen (2019).

The parameters of (1) are defined as α, β ∈ Rp×r for r < p, Γi ∈ Rp×p, ρ ∈ Rr and

τ ∈ Rp. The parameters α (adjustment or loading vectors) and β (cointegrating vectors)

are assumed to be of full rank r (the cointegration rank). Let their orthogonal complements

α⊥, β⊥ ∈ Rp×(p−r) of full rank p − r, so that the equality α′⊥α = β′⊥β = 0 holds along with

3



the non-singularity of the two matrices (α, α⊥) and (β, β⊥). In order to justify I(1) CVAR

analysis rather than I(2) or higher order degrees of integration, we assume that α′⊥Γβ⊥ is

of full rank p − r for Γ = Ip −
∑k−1

i=1 Γi. In the development of control theory in the next

subsection, it is also essential to introduce here C = β⊥(α′⊥Γβ⊥)−1α′⊥, known as the impact

matrix in the Granger-Johansen representation.

The control theory developed by JJ considers a policy aiming at stabilising a subset of

the system variables, or a linear combination thereof, so they become stationary around

a specified mean. We simplify here the model (1) into a constant-restricted model with

k = 1 to make the required argument straightforward (but provide a proof for the general

case in the Appendix):

∆Xt = α(β′Xt−1 − µ) + εt, for t = 1, ..., T, (2)

for µ ∈ Rr. Equation (2) provides a basis for a review of the theory.

We now introduce two policy matrices a, b ∈ Rp×m for m + r < p. The matrix a is

associated with the selection of policy instruments, a′Xt, while the matrix b pertains to the

selection of policy targets, b′Xt. The aim of the policy is to stabilise b′Xt using a′Xt, which

means making b′Xt stationary with mean b∗ – the policy target level – through the use of

a′Xt. Achieving this requires a t-timed contemporaneous policy intervention, represented by

κ′Xt−κ∗ for κ ∈ Rp×m and κ∗ ∈ Rm. Policy implementation replaces Xt with Xctr
t , dubbed

the ‘controlled ’ process, which is defined as

Xctr
t = Xt + a (κ′Xt − κ∗) ,

for a = a(a′a)−1.

Given Xctr
t , assuming market dynamics are not modified by the intervention, equation

(2) generates a ‘new ’ series Xnew
t , with the requirement that b′Xnew

t is stationary with mean

b∗. The overall process is hence two-staged, so that from a policy inception at date t0, and

letting ν : x→ a (κ′x− κ∗) ,

Xt0 → Xctr
t0

= Xt0 + ν (Xt0)︸ ︷︷ ︸
(Policy)

→ Xnew
t0+1 = (Ip + αβ′)Xctr

t0
− α′µ+ εt0+1︸ ︷︷ ︸

(Ecosystem)

→ Xctr
t0+1 = Xnew

t0+1 + ν
(
Xnew

t0+1

)︸ ︷︷ ︸
(Policy)

→ ....

To determine the parameters of the policy rule that achieve stabilisation, we see that equation

(2) implies that the long run response of the system satisfies

X∞ ≡ lim
h→∞

E(Xt0+h |Xt0 ) = CXt0 + α(β′α)−1µ.

The long-run response of the economic process to policy introduction is therefore, in the

directions defined by the policy target b, lim
h→∞

E
(
b′Xnew

t0+h

∣∣Xctr
t0

)
= b′

{
CXctr

t0
+ α(β′α)−1µ

}
.
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Hence b′Xnew
t having been stationarised by the intervention around b∗ means that, in terms

of the original variable,

b∗ = b′
{
C [Xt + a (κ′Xt − κ∗)] + α(β′α)−1µ

}
.

Hence, if det(b′Ca) 6= 0 holds, a policy rule that satisfies the requirements can be written as

κ′Xt − κ∗ = −(b′Ca)−1
[
b′CXt − b∗ + b′α(β′α)−1µ

]
,

so that κ′ = −(b′Ca)−1b′C and κ∗ = −(b′Ca)−1 [b∗ − b′α(β′α)−1µ] are solutions. We thus

refer hereafter to det(b′Ca) 6= 0 as the controllability condition.

The identity C = Ip − α (β′α)−1 β′ then leads to the following important equation

κ′Xt − κ∗ = (b′Ca)−1
[
b′α(β′α)−1(β′Xt − µ)− (b′Xt − b∗)

]
,

i.e., the policy rule constitutes of weighted average of two forms of disequilibria, given

respectively by β′Xt−µ, a vector of deviations from the long-run relationships, and b′Xt−b∗,
the discrepancy between the actual and desired targets.1

As the policy needs to be implemented every period, Xctr
t = Xnew

t + a (κ′Xnew
t − κ∗) for

all t > t0 and JJ derive the corresponding new dynamics:

∆Xnew
t+1 = [α, (Ip + αβ′) a]

(
β′Xnew

t − µ
κ′Xnew

t − κ∗

)
+ εt+1. (3)

The new system is characterised by an additional cointegration relation corresponding to

the implemented policy.

2.2 The econometrician’s problem

We now consider JJ’s analysis from the perspective of an econometrician aiming to iden-

tify policy intervention and conduct counterfactual analyses. We study the elements this

econometrician must consider in turn.

2.2.1 Timing and observables

The principle of JJ’s approach to policy is that the control rule is applied at each point in

time, thereby defining – implicitly or explicitly – two processes (Xnew
t , Xctr

t ), which accord

to a specific timing. Let us repeat it here as it is important for our discussion.

1Note that in the recent version of their theory presented in this special issue, JJ no longer refer explicitly

to the controlled process, but it can still be defined as the result of the authority’s intervention, so the new

– stablized – process requires that market dynamics, in the form of equation (2), remain unaffected by the

transform Xt → Xctr
t = Xt + ν (Xt) . In this context, it is still reasonable to ask what the observables are.
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1. At the beginning of period t, the policy-making authority observes the process that is

generated by market forces. We denote it by Xnew
t for simplicity (at policy inception,

t = t0, we let Xnew
t0

= Xt0). The authority chooses an intervention ν (·) that modifies

Xnew
t and generates the controlled process:

Xctr
t ≡ Xnew

t + ν (Xnew
t ) .

2. The market at time t+ 1 generates the next value Xnew
t+1 of the process:

Xnew
t+1 = (Ip + αβ′)Xctr

t − α′µ+ εt+1.

3. The authority intervenes again and sets Xctr
t+1 = Xnew

t+1 + ν
(
Xnew

t+1

)
, and so on.

In the narrative of JJ, the intervention is contemporaneous so Xnew
t is immediately trans-

formed into Xctr
t , and this is the process that market forces then work with to generate the

next period’s observations. Given that the policy is implemented at every period (between

inception and termination), the process observed by the econometrician must be Xctr
t+1. The

new process Xnew
t+1 corresponds to a latent state, as it is immediately transformed by the

authority and never actually holds.

An alternative timing for decisions is possible, which may render both processes ob-

servables. This would require introducing subperiods at t. For instance, if we consider the

Federal Funds rate as a policy instrument, then markets and the econometrician observe

Xnew
t at the beginning of the period (a month or a quarter). The decision or intervention

is then made at the FOMC meeting during the period, at which point Xctr
t is generated

and becomes the new value for the entire vector of t-timed observables. The outcome for

the next period becomes available in its first half — Xnew
t+1 first, followed by Xctr

t+1 later in

the period. One issue with this interpretation is that both Xnew
t and Xctr

t correspond to

the same set of variables. If the Federal Funds rate is part of Xnew
t , the observed value is

contingent on the policy being followed; it cannot be set by both markets and authorities

directly. Otherwise, we are dealing with two distinct concepts that must be represented by

separate variables. The only solution would be to assume that the policy instrument is set

solely by the authority, so that Ω, the variance-covariance of εt, is a singular matrix, with

zero variance in the direction of a, i.e.,

Var (a′εt) = 0.

In the example of the Federal Funds rate, the variance of its innovations in the CVAR

‘market’ representation (absent policy interventions) must therefore be zero.

This alternative timing does not align with the system’s assumptions in the absence of

the policy, so it cannot hold. Consequently, the process observable by the econometrician

should be a priori Xctr
t , while Xnew

t should be latent.
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2.2.2 What’s wrong with the controlled process?

Let us consider the consequences of the discussion above, where the policy generates a unique

set of observables, Xctr
t . While the theory has established that Xnew

t exhibits an increased

rank of cointegration, as in expression (3), and that b′Xnew
t is stationary about b∗, the

dynamics of Xctr
t is atypical. Indeed, the natural control rule derived by JJ is such that

κ′α = 0, and, Im + κ′a = 0. Notice in this case that, unlike the latent Xnew
t , whose rank of

cointegration is r+m, the observable Xctr
t maintains a cointegration rank of r, with modified

reduced-form errors:

∆Xctr
t+1 = α

(
β′Xctr

t − µ
)

+ (Ip + aκ′) εt+1, (4)

which is compatible with

κ′xctrt+1 = κ∗.

See the proof in the Appendix. Thus, for the controlled variable Xctr
t , the cointegration prop-

erties remain unchanged compared to the process without control. However, the innovations

to Xctr
t+1 in (4) exhibit a singular variance-covariance structure due to

det
[
(Ip + aκ′) Ω (Ip + aκ′)

′]
= 0.

See the Appendix for a proof. This reduced rank of the variance-covariance of the innovations

implies that the controlled process exhibits peculiar dynamics. This is clear from the control

policy which ensures that at all times

b′
[
CXctr

t + α (β′α)
−1
µ
]

= b∗,

i.e. a linear combination of Xctr
t remains constant at every period. Rewriting the above, we

see that

b′Xctr
t − b∗ = b′α (β′α)

−1 (
β′Xctr

t − µ
)
.

Hence β′Xctr
t − µ ∼ I (0) implies that b′Xctr

t − b∗ ∼ I (0) and the two are collinear. The

increased rank of cointegration in Xnew
t is only implicitly present in Xctr

t since the second

cointegration relation is directly proportional to the first, for this process. The reduced rank

of the covariance of the innovation for Xctr
t implies that, when this constitutes the observable

process, cointegration analysis will lead misleading results for the econometrician as we show

next by simulation.

2.3 Monte Carlo evidence

We document the extent to which degenerate dynamics for Xctr
t impair inference on the

cointegrating rank and, consequently, on the policy evidence. For this analysis, we consider

a scenario in which the authority implements a univariate policy (m = 1). To maintain

some plausibility of policy control, we assume that the parameters of the CVAR model are
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estimated using reduced-rank regression, rather than the true parameters, when forming the

policy. We then adopt the perspective of an econometrician with no prior knowledge of

the underlying cointegrating rank and evaluate how frequently the econometrician correctly

identifies the rank of cointegration across the original, and generated controlled and new

processes. Regarding the data generation process (DGP) we let it follow a CVAR(1) but

modify system dimensions and cointegration ranks. See the Appendix for further details of

DGPs employed in the Monte Carlo simulation. Using 10,000 Monte Carlo replications we

first report the rejection frequencies of the null of a given rank r of cointegration, using the

usual cointegration trace statistics at a nominal size of 5%.

Original New Control 

0 200 400 600 800 1000

50

100
Pr(Reject H0: r=0)

Original New Control 

0 200 400 600 800 1000

50

100
Pr(Reject H0: r ≤1)

0 200 400 600 800 1000

2

4

6
Pr(Reject H0: r ≤2) κ ' Xt

new κ ' Xt
ctr 

0 200 400 600 800 1000

0.00

0.05

κ ' Xt
new κ ' Xt

ctr 

Figure 1: Panels (a)-(c): Rejection frequencies, at the 5% nominal level, of the trace test

of a cointegration rank r in a 3-variate system as a function of the sample size (horizontal

axis). Each panel corresponds to a different hypothesized value of r when the truth if 1 for

the original data, and 2 for the new data. Distributions are obtained by simulation over

10,000 replications. Panel (d) on the bottom right presents one realization of the processes

over a sample of dimension 1000.

Figure 1 records such rejection frequencies for a range of null hypotheses concerning

a three-variate system. In the DGP, the rank of cointegration is r = 1 for Xt (denoted

Original, in the figure), and r = 2 for Xnew
t (New, in the figure) as policy control increases the

cointegrating rank. Over moderate samples of sizes greater than 200 observations, rejection

frequencies are close to the nominal values under the null (r ≤ 1 for Xt and r ≤ 2 for

Xnew
t ). The power is also high over the same sample size. By contrast, we observe massive

distortions about Xctr
t (Control, in the figure). Because of its DGP’s innovation covariance

matrix rank degeneracy, the test statistic rejects on average 50% of the time for the null of 1

8



Original New Control 
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Pr(Reject H0: r=0)

Original New Control 
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Pr(Reject H0: r=1)

0 200 400 600 800 1000

50

100
Pr(Reject H0: r=2) κ ' Xt

new κ ' Xt
ctr 
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-0.075

-0.050

-0.025

0.000 κ ' Xt
new κ ' Xt

ctr 

Figure 2: Panels (a)-(c): Rejection frequencies, at the 5% nominal level, of the trace test

of a cointegration rank r in a 3-variate system as a function of the sample size (horizontal

axis). Each panel corresponds to a different hypothesized value of r when the truth if 2 for

the original data, and 3 for the new data. Distributions are obtained by simulation over

10,000 replications. Panel (d) on the bottom right presents one realization of the processes

over a sample of dimension 1000.

cointegrating relation, and 2 to 3% for the null r ≤ 2. Treating the ‘controlled process’ as the

observables to test for the presence of an increased rank of cointegration would therefore be

misleading, with low power at r ≤ 1 and conservative size at r ≤ 2. Testing the correct null

that r ≤ 1 would lead to massive overrejection, owing to the singular innovation covariance

matrix. To explore the issues further, we consider in Figure 2 the situation of an initial

rank of cointegration r = 2 so the policy renders all processes stationary. In this situation,

inference on the controlled process is more similar to that of the new process, except that

the probability not to reject r = 2 is higher by about 15%. In both figures, the bottom right

panel presents κ′Xnew
t and κ′Xctr

t and we see that the former appears stationary and the

latter constant.

Given that inference on the rank of cointegration follows a sequential testing procedure,

we complement the previous results by a simulation where we record the frequency with which

a specific rank of cointegration r0 is selected, such that the procedure rejects r = 0, ..., r0− 1

and does not reject r0 at the 5% nominal size (if r0 < p or this latter null is not tested). These

results are presented in Figure 3 for the two DGPs considered previously, with r = 1 and 2.

The figure shows, on the left hand side where (p, r) = (3, 1) , that for the original and new

processes, the selection procedure achieves rates close to 95% of the correct cointegration
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Original New Control 
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100
Pr(Selecting r  = 1)(p , r) = (3, 1)

Pr(Selecting r  = 3)
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Figure 3: Probability to select a specific rank of cointegration using the sequential testing

procedure based on the trace test at the 5% asymptotic nominal size. Each row corresponds

to the selection of a different rank r. The cointegration rank of the original data is 1 in the

left colum, 2 in the right column. Horizontal axes record the sample size.

rank. Yet for the controlled process, this rate is about 50% for both r0 = 1 or 2. On the

right-hand side panels, where (p, r) = (3, 2) we see that the procedures works well for the

original process and for the new process. The controlled version selects r = 3 with a higher

frequency than that of selecting r = 2 on the left column, but still less so than the new

process.

In order to shed more light on the reasons for the results above, Figure 4 records the

distribution of the estimators of test statistics over a sample of T = 1, 000 observations,

together with that under the limiting distribution under the null. We used 10,000 Monte

Carlo replications to simulate distributions. We report only the situation (p, r) = (3, 1) but

similar results hold for other values. We see that the difference between inference on the new

and controlled processes lies essentially in that, while the trace statistic for the null r ≤ 1

rejects strongly for the new process, it is, for its controlled counterpart, correctly centered

on the limiting distribution but with very large variability caused by the innovation variance

singularity. This explains the high rejection rate we established before.

We present in the Appendix similar results for different parameter settings but with the

same number of observations and replications. All of these results indicate that inference

based on the controlled process is unreliable. This may seem to pose a problem for the

econometrician who wishes to perform inference in the policy setting considered above.
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Figure 4: Distribution of cointegration test statistics (each row denotes a different null for

r) at a sample of T = 1, 000 observations in a 3-variate setting. The left column corresponds

to the original data, the central one to the new data, and the column on the right to the

controlled data.

2.4 A new understanding

Fortunately, while the previous analysis may suggest that assessing policy empirically could

be challenging within the JJ framework, we believe it is possible to put it to the data. In fact,

we find that we can circumvent the need to handle controlled data. Our approach hinges on

a reinterpretation of the policy narrative, informed by recent research on the topic.

The route we follow consists of a reinterpretation of the timing of the policy, using a

framework delineated by Rambachan and Shephard (2021) and we borrow their explanations.

In their approach to policy, at each period t ≥ 1, the unobserved unit Xt receives a random

assignment Wt and we observe an outcome Xnew
t (Wt) . The “potential outcome” process at

time t, for any deterministic sequence {ws} , is Xnew
t

(
{ws}s≥1

)
. Under the assumption of

Non-anticipating Potential Outcomes, for each t ≥ 1 and all deterministic sequences {wt}t≥1 ,
{w′t}t≥1 , the potential outcomes do not depend on future realisations, i.e.,

Xnew
t

(
w1:t, {ws}s≥t+1

) a.s.
= Xnew

t

(
w1:t, {w′s}s≥t+1

)
.

Rambachan and Shephard make the link with the macroeconomic literature on impulse

response functions (IRF), defined in the context of Structural VARs as (Sims et al., 1982)

for h ≥ 1 as

IRFk,t,h (wk, w
′
k) ≡ E [Yt+h (Wk,t)|Wk,t = wk]− E [Yt+h (Wk,t)|Wk,t = w′k] .
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Rambachan and Shephard (2021) show that the IRF can be given a causal meaning, coincid-

ing with the Average Treatment Effect E [Yt+h (wk)− Yt+h (w′k)] under some orthogonality

conditions that are satisfied when the assignment constitutes a shock, which they define as

satisfying Wk,t ⊥
(
W1:t−1,Wk′,t,Wt+1:t+h,

{
Xnew

t+h (w1:t+h)
})
. From their definitions, the as-

signment Wt corresponding to the control policy is zero when the DGP for Xnew
t coincides

with that of Xt. We can therefore define the assignment as the control in JJ:

Wt+1 = πν (Xnew
t ) , (5)

for some matrix π to be defined. In our context where the policy is implemented at every

period, Rambachan and Shephard (2021) define the impulse causal effect at horizon h ≥ 1

as the difference between Xnew
t+h and the counterfactual X∗newt+h that obtains when the only

change is that the policy is not implemented at time t (so W ∗
t = πν

(
X∗newt−1

)
= 0 under the

counterfactual – this is the only difference in assignments between Xnew
t+h and X∗newt+h ). In their

words, the impulse causal effect measures the ceteris paribus causal effect – of intervening

to switch the time-t assignment from 0 to Wt – on the h-period ahead outcomes, holding

all else fixed along the assignment process. Since Xt is non-stationary in JJ, the impulse

causal effect and its unconditional expectation, the Average Treatment Effect, may vary

with time. Yet, we notice that the policy intervention, Wt+1 in (5) does not constitute a

contemporaneous shock in the Ramey (2016) or Rambachan and Shephard (2021, Theorem

2) sense, since Wt+1 is not unanticipated from, or uncorrelated with, lagged endogenous

variables, in fact it might a priori be persistent (though stationary under the assumption

of controllability). In practice, JJ, Theorem 7, show there exists a linear policy rule which

ensures that Wt+1 can be expressed as a function of the lagged shocks to the unperturbed

system and can be made iid – even when the original DGP is a VAR(k). In the context of

the VAR(1) , following on the implementation of the policy, the DGP writes

Xnew
t+1 = − [αµ+ (Ip + αβ′) aκ∗] + (Ip + αβ′) (Ip + aκ′)Xnew

t + εt+1,

so κ′Xnew
t+1 = −κ′αµ+κ′ (Ip + αβ′) [(Ip + aκ′)Xnew

t − aκ∗]+κ′εt+1. Under policy assumptions

κ′α = 0 and Im + κ′a = 0. The previous expression then simplifies as

κ′Xnew
t+1 = κ′ [(Ip + aκ′)Xnew

t − aκ∗] + κ′εt+1 = κ∗ + κ′εt+1,

i.e., setting π = (Ip + αβ′) , we obtain Wt+1 = πν (Xnew
t ) = (Ip + αβ′) aκ′εt.

Hence, the DGP under the new policy – the process for the potential outcome – becomes

∆Xnew
t+1 = α (β′Xnew

t − µ) + (Ip + αβ′) aκ′εt + εt+1, (6)

= α (β′Xnew
t − µ) +Wt+1 + εt+1,

i.e., a VARMA(1, 1) model. Using the results in Theorem 8 of JJ, we can show the same

result for a VAR(k) model that becomes a VARMA(k, 1) model under the policy. Hence,
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since εt ⊥ εt+1 holds, an alternative SVEC representation is feasible:

∆Xnew
t+1 = α (β′Xnew

t − µ) +Bεt+1, (7)

where εt+1 =
(
ε′t+1, ε

′
t

)′
and B conforms with (6). In equation (7), εt+1 contains an excess

shock that is a priori recoverable from past observations (Chahrour and Jurado, 2022).2

The analysis above shows that we can reinterpret the timing of the JJ framework through

a standard SVEC (7): the authority on policy does not exert a control at time t that modifies

Xt into Xctr
t . Instead, it observes Xt and introduces a direct shock to the system at time t+1

that relates to the observables at t. The intervention adds a shock Wt+1 to the system that,

as it does not correlate with εt+1, does not render the variance of the innovations singular.

Within the framework of random assignment, it is reasonable to consider the observed

process as Xnew
t . Under this interpretation, we avoid treating the controlled process as

the sole observable — indeed, it is not explicitly defined here. However, a key question

remains: how does the authority introduce this new shock to the system, a shock that shifts

Xnew
t+1 without fully controlling it (in contrast to Xctr

t in JJ)? Intuitively, the natural route to

achieving such a result relies on considering that the authority uses a primary tool that differs

from the observable — partially controlled — policy instrument. This setting was explicitly

considered by JJ, and we can further explore it from the econometrician’s perspective as a

natural approach to addressing the issue of observables within the controlled VAR system.

A key aspect of our discussion centers on equation (7), which demonstrates that the

original (α, β) parameters can empirically be recovered through the VARMA structure (see

Funovits, 2024). Consequently, the econometrician can perform ex post (i.e., after policy

implementation) the analysis that the policy maker conducts ex ante. The algorithm for

maximum likelihood estimation of the parameters of (7) remains a subject for future research;

instead, the empirical study in Section 4 illustrates ex post policy evaluation in the context

of intermediate and final policy targets, which are explored in the next section.

3 Policy with intermediate and final targets

In this section we further explore the controlled cointegrated model to clarify how the policy-

making authority can implement their policies. We focus on situations where they cannot

directly control the target through their instrument but must instead rely on market forces

via an intermediate target. This issue was previously considered in JJ, but here we demon-

strate how an applied econometrician can assess and identify these targets. The selection of

final and intermediate policy target variables presents a challenge both for policymakers and

econometricians analysing time series data. To ensure tractability, we restrict ourselves to

the case where m = 1, meaning there is a singular policy target along with a singular policy

2We do not assess here whether the shocks are actually recoverable in all situations.
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instrument in the CVAR system. If the final target is recognised as b′Xt, the intermediate

target is then stated as follows, according to JJ:

Definition 3.1 The intermediate target c′Xt for c ∈ Rp is a variable which is cointegrated

with the final target b′Xt, so that there exists a stationary relationship b′Xt+φc
′Xt for φ 6= 0.

Applied economists usually find it possible to determine known vectors b and c along

with a, guided by some prior knowledge on conceivable transmission mechanisms of economic

policy. It is indeed straightforward to fix a, or to choose an instrument variable, on the basis

of a policy tool available to monetary and fiscal authorities. However, selecting b and c in the

context of an empirical study is considered more challenging, as either b′Xt or c′Xt may serve

as final or intermediate targets. Since insights from economic theory are often insufficient to

fully justify the selection process, it is important to devise some data-driven approach. The

following subsections will discuss this approach in detail.

3.1 Identifying targets

Let us first consider a procedure for the empirical identification of the two types of policy

targets. For this, we see that Definition 3.1 requires there exists j ≤ r such that

sp (βj) = sp (b+ φc) for φ 6= 0,

where sp (·) denotes the vector space spanned by · and βj is one of the cointegrating vectors

in β = (β1,..., βr). We then introduce below our definition of a final target on the basis of

the selection vector b.

Definition 3.2 Suppose that sp (βj) = sp (b+ φc) holds for φ 6= 0, along with b = ej, where

ej denotes the j-th column vector of Ip for j ≤ r and with c = el for j 6= l for l ≤ p. Let

α = (α1,..., αr) be expressed in accordance with β. The variable b′Xt is defined as the final

target if sp (αj) = sp (b).

The definition of the intermediate target, Definition 3.1, then follows from Definition 3.2.

Note that b and c are orthogonal unit vectors. In order to understand Definition 3.2, it

is important to recognise that Cb = 0 is considered a critical attribute of the final target.

As an example, if p = 4, r = 2, j = 1 and l = 2, it then follows that b = (1, 0, 0, 0) and

c = (0, 1, 0, 0), and Cb = 0 is equivalent to

C =


0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 .
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In other words, b′Xt can only serve as a target variable, not as a policy instrument. Note

that Cc = 0 can also be satisfied; that is, it is compatible with Cb = 0. This compatibility

requires an additional condition, which is embodied in the condition on α, as shown in

Definition 3.2. If we split α = (α1, α2) for r = 2, the condition sp (αj) = sp (b) implies

α = (α1, α2) =


ξ ∗
0 ∗
0 ∗
0 ∗


for ξ 6= 0. In other words, b′Xt reacts solely to the disequilibria of (b+ φc)′Xt−1. It also

ensures Cb = β⊥(α′⊥Γβ⊥)−1α′⊥b = 0. Consequently, even if Cc = 0 is also true, only

sp (α1) 6= sp (c) is compatible with sp (α1) = sp (b), so that the classification is determined.

We summarise the above argument in a proposition below, assuming that the policy only

considers controls as unique variables, not linear combinations thereof.

Proposition 3.3 Suppose a = ei, b = ej and c = ek for i 6= j 6= k, j ≤ r and i, k ≤ p.

If a′Xt is treated as the policy instrument, b′Xt is identified as the final policy target while

c′Xt as the intermediate policy target if the following conditions are satisfied:

1. sp (βj) = sp (b+ φc) for φ 6= 0,

2. sp (αj) = sp (b) .

All the conditions here are empirically testable, so that we can treat this proposition as a

pre-procedure for CVAR-based policy simulation exercises involving both intermediate and

final policy targets. Section 4 below provides an empirical illustration of the procedure.

As a corollary to this proposition, we present the following result:

Corollary 3.4 Under the conditions of Proposition 3.3, the two vectors b′C and c′C are

collinear, along with b′Cb = c′Cb = 0.

Proof. See the Appendix.

This corollary has two interesting implications. First, it implies that c′Ca 6= 0 means

b′Ca 6= 0 and vice versa, as indicated by JJ. Second, it can facilitate a SVEC-type analysis.

In order to explain this second aspect, let us provide the Granger-Johansen representation

in the context of the simplified model (2):

Xt = C

t∑
j=1

εi +
∞∑
j=1

C∗i εt−i + CX0 − α (β′α)µ,

where
∑∞

j=1C
∗
i εt−i represents a linear process with the matrices C∗i decreasing exponentially

fast. For the purpose of considering its structural interpretation in the context of SVEC
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formulation, we introduce a non-singular matrix G so that we can define ut = Gεt for

GΩG′ = Ip and find

Xt = C̃
t∑

j=1

ui +
∞∑
j=1

C̃∗i ut−i + CX0 − α (β′α)µ,

for C̃ = CG−1 and C̃∗i = C∗iG
−1. See Juselius (2006, Ch.15) inter alia, for further details

of this type of formulation. The parameter C̃ represents the long-run impact matrix in

this context and needs to be restricted further to claim its structural interpretation. If we

continue to use the example p = 4, r = 2 and j = 1, the corollary implies, as a result of

matrix rotation,

C̃ =


0 −φc22 −φc23 −φc24
0 c22 c23 c24

0 ∗ ∗ ∗
0 ∗ ∗ ∗

G−1. (8)

The presence of collinear rows in (8) suggests that the SVEC model can be interpreted such

that it is the intermediate target that is directly influenced by a series of long-run structural

shocks (permanent shocks), while the final target reflects the shocks via the intermediate

target. The collinear structure can reduce the number of parameters in C̃, thereby facilitating

its identification within the SVEC framework.

3.2 New process in the classification of policy targets

The arguments presented in the preceding subsection suggest that the derived new system

can be reformulated to reveal the underlying structure shaped by the implementation of

economic policy. The expression of the new system is provided in the next proposition,

which is based on the simplified CVAR model (2) for the sake of simplicity.

Proposition 3.5 Suppose that all the conditions in Proposition 3.3 are satisfied, so that

b′Xt and c′Xt are identified as the final policy target and the intermediate policy target,

respectively. The system for Xnew
t is then expressed as

∆Xnew
t+1 = α◦

[
(b, c, δ)′Xnew

t − µ◦
]

+ εt+1, for t = k + 1, ..., T, (9)

where (b, c, δ) ∈ Rp×(r+1) represents a set of cointegrating vectors derived from the rotation

of (κ, β) such that

(b, c, δ)′Xnew
t − µ◦ ∼ I (0)

and

sp (δ) = sp (g⊥)

for g = (b, c), along with a set of adjustment vectors α◦ and constants µ◦ derived from

(a+ αβ′a, α) and (κ∗′, µ)′ respectively, as a result of the rotation of (κ, β).
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Proof. See the Appendix.

The derived system (9) explicitly shows that the selection vectors b and c are members

of the cointegrating vectors for Xnew
t , while the remaining cointegrating vectors consist of

δ, which is orthogonal to b and c as a consequence of matrix rotation given b and c. The

vectors δ′Xnew
t are likely to contain the policy instrument a′Xnew

t as its constituent. Note

that the cointegrating space for the original process,

β = [(b+ φc)ω, η] ∈ Rp×r

for a scalar ω and η = (β2,..., βr), is expanded to

β◦ ≡ (b, c, δ) ∈ Rp×(r+1)

for the new process. This expansion suggests that greater stability has been achieved in

β◦ as a result of policy implementation. This aspect is illustrated in the empirical analysis

presented in the next section.

4 Empirical application

In this section we provide an empirical application of the above propositions to a series of

macroeconomic data of New Zealand. We begin by examining the cointegrating rank of an

empirical VAR system and then applies the suggested procedure to the data to distinguish

between intermediate and final policy targets in the context of inflation targeting. We

also conduct policy simulation exercises using the empirical CVAR system and evaluate the

econometrician’s ex post assessment thereof.

4.1 Cointegrated VAR

We start with the estimation of an unrestricted VAR model for Xt consisting of New

Zealand’s quarterly macroeconomic series:

Xt = (πt, π
e
t , yt, it)

′ ,

where πt is a realised annual (year-on-year) inflation rate, πe
t is a survey-based annual in-

flation expectation, yt is the log of real output, it is the short-term interest rate. Further

details of the data are provided in the Appendix. Although the inclusion of the Monetary

Conditions Index (MCI) in Xt was considered, it has been excluded from our analysis. This

decision reflects the fact that its publication on the RBNZ website was discontinued at the

end of November 2000, signaling its diminished role in policy decisions. The estimation

period covers the third quarter of 1992 to the first quarter of 2020, comprising a total of

111 observations. The endpoint coincides with the onset of the COVID-19 pandemic, which
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significantly impacted New Zealand’s economy, so that the affected period has been excluded

from the estimation sample.

Figure 5 presents an overview of the data for the four variables. All the series appear to be

non-stationary; notably, πt and πe
t have exhibited synchronised movements, accompanied by

a clear upward trend in yt. We thus deem it suitable to employ a trend-restricted I(1) CVAR

method for the analysis of the data.

π 
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Figure 5: Overview of the data

According to a preliminary regression analysis some of the lagged dynamic terms at

k = 4 are judged to be fairly significant, resulting in the selection of a VAR(4) model for

further study. Figure 6 displays a battery of diagnostic graphs calculated from the esti-

mated VAR(4) model: scaled residuals (the first column), residual autocorrelation functions

(ACF, the second column) and residual quantile-quantile plots against normality (QQ plot,

the third column). The residuals appear to be free from serial correlations, providing evi-

dence in support of a quasi likelihood-based analysis of cointegration studied by Kurita and

Nielsen (2019). The cointegration literature also shows that trace tests for the selection of

cointegrating rank are robust to non-normality in the innovation term; see Cheung and Lai

(1993), inter alia, for further details. The evidence recorded in the figure thus justifies using

the VAR(4) model as a basis for exploring the underlying cointegrating rank.

Table 1 reports a class of trace test statistics for the choice of r, logLR(r|p) for r = 0, ..., 3

given p = 4. The series of tests are in support of r = 2 at the 5% level, so we select this

value as the retained cointegration rank. We then proceed to applying the procedure based

on Proposition 3.3, for which we recall that likelihood ratio tests for restrictions on α and β
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Figure 6: Residual diagnostics

Table 1: Inference on the cointegrating rank for Xt.

r = 0 r ≤ 1 r ≤ 2 r ≤ 3

log LR 84.738[0.000]∗∗ 45.168[0.027]∗ 21.292[0.169] 6.815[0.375]

Note. Figures in square brackets are p-values.
∗∗ and ∗ denote significance at the 1% and the 5% level, respectively.

have asymptotic χ2 distributions, given the selection of cointegrating rank (see Johansen,

1996, Chs. 7 and 8 for further details).

4.2 Classifying the policy targets

The hypothetical long-run structure we envision is as follows: (i) expected inflation serves

as the intermediate target while actual inflation is the final target, resulting in the long-

run synchronisation of the two inflation rates, and (ii) expected inflation is driven by the

output gap and interest rate, leading to a long-run Phillips curve formulation. Given this

hypothetical structure as well as the selection of the interest rate as an instrument variable,

we conceive the specification of a = (0, 0, 0, 1)′ , b = (1, 0, 0, 0)′ , c = (0, 1, 0, 0)′ and φ = −1;

that is, a′Xt = it, b
′Xt = πt, c

′Xt = πe
t and (b − c)Xt = πt − πe

t . The parameter φ can be

estimated in the CVAR framework but it seems natural to preset φ = −1 as a hypothesis,

suggesting a presumed synchronisation of πt and πe
t . This specification then allows us to test

for the validity of the two hypotheses given in Proposition 3.3, according to which we should
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fail to reject both of them. The first hypothesis to be tested under the above specification is

H
(1)
0 : sp (β1) = sp (b− c) .

In order to identify the cointegrating space, we have also introduced a normalisation scheme

for the second cointegrating vector (0 and 1 for the first and the second element, respectively),

arriving at the following estimates:

α̂

(
β̂

ρ̂

)′(
Xt−1

t

)
=



−0.449
(0.097)

−0.152
(0.101)

0.013
(0.043)

−0.218
(0.045)

−0.062
(0.120)

−0.179
(0.125)

0.003
(0.095)

−0.147
(0.099)





1
(−)

0
(−)

−1
(−)

1
(−)

0
(−)
−0.240
(0.045)

0
(−)

0.494
(0.116)

0
(−)

0.002
(0.0004)



′
πt−1

πe
t−1

yt−1

it−1

t

 .

The log-likelihood ratio test statistic (logLR) is 4.046[0.257] with its p-value, according to

χ2(3), given in the square brackets, so that H
(1)
0 is not rejected at conventional levels.

Next is the testing of

H
(2)
0 : sp (α1) = sp (b) ,

under H
(1)
0 . Imposing a set of additional restrictions consistent with H

(2)
0 yields

α̂

(
β̂

ρ̂

)′(
Xt−1

t

)
=



−0.462
(0.092)

−0.146
(0.099)

0
(−)
−0.210
(0.043)

0
(−)
−0.202
(0.118)

0
(−)
−0.148
(0.094)





1
(−)

0
(−)

−1
(−)

1
(−)

0
(−)
−0.241
(0.045)

0
(−)

0.508
(0.118)

0
(−)

0.002
(0.0003)



′
πt−1

πe
t−1

yt−1

it−1

t

 , (10)

along with logLR = 4.395[0.623] on the basis of χ2 (6), hence leading to the conclusion that

H
(2)
0 fails to be rejected.

In order to consolidate the findings so far, we will also check the rejection of

H
(3)
0 : sp (α1) = sp (c)

under H
(1)
0 , so that sp (α1) 6= sp (c) is ensured. The resulting estimates are given below:

α̂

(
β̂

ρ̂

)′(
Xt−1

t

)
=



0
(−)
−0.312
(0.115)

0.081
(0.041)

−0.254
(0.049)

0
(−)
−0.233
(0.128)

0
(−)
−0.137
(0.102)





1
(−)

0
(−)

−1
(−)

1
(−)

0
(−)
−0.199
(0.038)

0
(−)

0.433
(0.098)

0
(−)

0.002
(0.0003)



′
πt−1

πe
t−1

yt−1

ist−1
t

 .
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The corresponding test statistic is logLR = 26.846[0.0002]∗∗ according to χ2 (6), strong

evidence against H
(3)
0 , so we are able to reject this hypothesis. Overall, we conclude that

b′Xt = πt is identified as the final policy target while c′Xt = πe
t as the intermediate policy

target.

Finally, getting back to (10), we introduce a zero restriction on the first element of the

second adjustment vector, so the feedback mechanism is consistent with the identification

scheme for the cointegrating space:

α̂

(
β̂

ρ̂

)′(
Xt−1

t

)
=



−0.502
(0.089)

0
(−)

0
(−)
−0.193
(0.0411)

0
(−)
−0.238
(0.118)

0
(−)
−0.139
(0.094)





1
(−)

0
(−)

−1
(−)

1
(−)

0
(−)
−0.224
(0.046)

0
(−)

0.497
(0.119)

0
(−)

0.002
(0.0004)



′
πt−1

πe
t−1

yt−1

it−1

t

 , (11)

along with logLR = 6.575[0.474], hence H
(2)
0 being non-rejected according to χ2 (7). The

identified structure in (11) indicate clearly how the instrument affects the intermediate tar-

get, thus having an influence on the final policy target.

The condition for the controllability of c′Xt = πe
t by means of a′Xt = it is given as

c′Ca 6= 0, which implies b′Ca = c′Ca 6= 0; see Corollary 3.4. The parameter estimates α̂ and

(β̂′, ρ̂′) recorded in (11) have been used in the estimation of the C matrix:

Ĉ =



0
(−)

0.206
(−)

0.038
(−)

−0.351
(−)

0
(−)

0.206
(0.134)

0.038
(0.057)

−0.351
(0.072)

0
(−)
−1.695
(0.868)

1.525
(0.370)

−0.260
(0.467)

0
(−)
−1.179
(0.445)

0.612
(0.190)

0.589
(0.239)


,

in which figures in parentheses denote standard errors. Inference concerning Ĉ is made

on the basis of Paruolo (1997). The element Ĉ24 in bold corresponds to c′Ĉa, which is

judged to be significantly different from 0 at the conventional level. Moreover, its value is

negative (c′Ĉa < 0), indicating that an increase in the short-term interest rate results in a

decrease in expected inflation. The first and second rows of Ĉ (that is, b′C and c′C) are

identical along with the first column zero, aligned with Corollary 3.4, covering the identity

c′Ĉa = Ĉ24 = Ĉ14 = b′Ĉa.

A series of zeros in the first column of Ĉ indicates πt lacks the capability to influence

all the other variables in the system, thus categorising πt as the final target in the context

of policy control, while c′Ĉa 6= 0 indicates πe
t can be controlled by it. We are thus justified

in concluding that the instrument a′Xt = it is employed to control the intermediate target
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c′Xt = πe
t , which is cointegrated with the final target b′Xt = πt, so that the final target is

also controllable by the instrument by way of the intermediate target.

4.3 Empirical study of Xnew
t for ex post theory verification

We now employ the empirical CVAR model obtained above to simulate a class of new pro-

cesses Xnew
t subject to the control rule. The argument in Section 2 allows us to focus on

a simulation study of Xnew
t , instead of the two processes (Xnew

t , Xctr
t ). Following the argu-

ment of Section 3, we have demonstrated above the controllability of c′Xt = πe
t by means of

a′Xt = it, with the consequence that b′Xt = πt is also under control. We are thus justified

in conducting a simulation exercise using Xnew
t , with the aim of controlling inflation expec-

tations rather than actual inflation. We will perform a set of two simulation studies here so

as to substantiate the theoretical arguments outlined earlier.

First, we simulate Xnew
t using an empirical version of the extended system (3) under the

natural control rule, where the selection vector c is used in place of b, with a pre-set target

value of c∗ = 0.015. This target value is intentionally set below 0.02 (i.e., 2%), the actual

target rate adopted by the RBNZ, to demonstrate the workings of the policy simulation

and its informativeness. Figure 7(a) displays the new instrument a′Xnew
t = inewt under the

projected policy, alongside the actual a′Xt = it; The former tends to exceed the latter,

reflecting the responses of tighter monetary policy required to achieve the target value c∗ =

0.015 in a counterfactual scenario. This monetary contraction has caused c′Xnew
t = πe,new

t

to hover around the target level, as shown in Figure 7(b); the new series πe,new
t appears

to be stationary with a mean of c∗ = 0.015, in contrast to the actual c′Xt = πe
t , which

exhibits more a clearly non-stationary behaviour than πe,new
t . We can therefore conclude

that expected inflation can be manipulated to achieve its pre-specified target level in the

counterfactual world through the use of the short-term rate instrument, consistent with the

expectation derived from c′Ĉa < 0 discussed in the previous subsection. This also implies

that actual inflation can be controlled due to its synchronisation with the expected inflation

rate.

Table 2: Inference on the cointegrating rank for Xnew
t .

r = 0 r ≤ 1 r ≤ 2 r ≤ 3

log LR 128.05[0.000]∗∗ 63.861[0.000]∗∗ 33.007[0.000]∗∗ 9.118[0.178]

Note. Figures in square brackets are p-values.
∗∗ denotes significance at the 1% level.

Second, we place ourselves in the position of an applied econometrician within this coun-

terfactual policy environment and pose the following question: Would their empirical anal-

ysis be able to detect the policy? To answer this, we conduct a cointegration study of
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Figure 7: Policy simulation

Xnew
t derived from the above simulation to verify Proposition 3.5. Table 2 presents, in the

same manner as Table 1, a set of trace test statistics calculated from the generated Xnew
t

series under the the pre-specified target level c∗ = 0.015. The results provide strong evidence

supporting r = 3, as predicted, contrasting with r = 2 recorded in Table 1.

The selection of r = 3 enables us to further explore whether a cointegrating structure con-

sistent with Proposition 3.5 truly underlies the system for Xnew
t . The revealed cointegrating

relationships (apart from the linear trend) are

(b, c, δ)′Xnew
t =


1 0 0

0 1 0

0 0 1

0 0 −2.223
(0.059)



′
πnew
t−1

πe,new
t−1

ynewt−1

inewt−1

 ,

and the test statistic is logLR = 4.20[0.380] according to χ2 (4), thus accepting the null

of the joint restrictions. The revealed structure aligns with the predictions in Proposition

3.5, representing a counterfactual world where both actual and expected inflation rates have

become stationary as a consequence of a series of policy interventions. This is accompanied

by the stationary combination of ynewt−1 and inewt−1 alone (not including πe,new
t−1 ), which contrasts

with the second cointegrating relationship in (11) that consists of πe
t−1, yt−1 and it−1.
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5 Conclusion

This paper explores the consequences of CVAR-based control theory from an econometri-

cian’s perspective, focusing on model estimation and counterfactual analysis. By reexamining

the mechanisms underlying JJ’s theoretical results, we discuss the challenges faced by an

applied econometrician. Monte Carlo studies illustrate the statistical properties of new and

controlled processes, reinforcing the argument that inference based on the controlled process

is unreliable. We also show that the same mathematical results can be interpreted under

a different policy timing narrative. In this context, the timing of the JJ framework can be

reinterpreted within an SVEC model. Rather than modifying policy variables contempora-

neously, the policy-making authority introduces a structural shock that is fully recoverable

from past observations, thereby avoiding singularity in the variance of the innovations to

the observables. Under this random assignment interpretation, the observed process should

correspond to the new process. Additionally, this paper presents a data-driven procedure

for categorizing intermediate and final policy targets within a model framework. The effec-

tiveness of this procedure is demonstrated through an analysis of New Zealand’s monetary

policy data. While the algorithm for maximum likelihood estimation of SVEC parameters

remains a topic for future research, the empirical study illustrates ex post policy evaluation

in the context of intermediate and final policy targets. This paper aims to lay the foundation

for future research that enhances the practicality of CVAR-based control analysis in applied

macroeconomic and financial studies.
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Appendix

A Proofs referring to Sections 2 and 3:

Derivation of the controlled process in Section 2.2.2:

The control rule is given by

κ′ = − (b′Ca)
−1
b′C and κ∗ = − (b′Ca)

−1
[
b∗ − b′α (β′α)

−1
µ
]
,

so by construction

κ′α = − (b′Ca)
−1
b′Cα = 0 and κ′a = − (b′Ca)

−1
b′Ca = −Im.

Now, consider xctrt+1 = (Ip + aκ′)xnewt+1 − aκ∗ with κ′α = 0 and Im + κ′a = 0. Using equation

(3) above, which is the dynamics of the new process,

∆xnewt+1 = [α, (Ip + αβ′) a]

(
β′xnewt − µ
κ′xnewt − κ∗

)
+ εt+1,

we see that

∆xctrt+1 = (Ip + aκ′) ∆xnewt+1 = (Ip + aκ′) [α, (Ip + αβ′) a]

(
β′xnewt − µ
κ′xnewt − κ∗

)
+ (Ip + aκ′) εt+1,

where (Ip + aκ′)α = α, and

(Ip + aκ′) (Ip + αβ′) a = (Ip + αβ′ + aκ′) a,

= (Ip + αβ′) a− a.

Hence,

(Ip + aκ′) (α, (Ip + αβ′) a) = α (Ir, β
′a) .

The controlled process therefore becomes

∆xctrt+1 = α (Ir, β
′a)

(
β′xnewt − µ
κ′xnewt − κ∗

)
+ (Ip + aκ′) εt+1

= α [β′xnewt − µ+ β′a (κ′xnewt − κ∗)] + (Ip + aκ′) εt+1

= α [β′ (Ip + aκ′)xnewt − µ] + (Ip + aκ′) εt+1

∆xctrt+1 = α
(
β′xctrt − µ

)
+ (Ip + aκ′) εt+1,

i.e., although the controlled process seems to exhibit one extra cointegration relation, the

latter is by construction proportional to the original one so it is degenerate. In other words,

the controlled process can be expressed as

∆xctrt+1 = α (Ir, a)

(
β′xctrt − µ
κ′xctrt − κ∗

)
+ (Ip + aκ′) εt+1,
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and pre-multiplying this expression by κ′ and performing further manipulation yields the

following identity:

κ′xctrt+1 = κ′xctrt + κ′a
(
κ′xctrt − κ∗

)
+ κ′ (Ip + aκ′) εt+1

= (Ip + κ′a)κ′xctrt − κ′aκ∗ + (Ip + κ′a)κ′εt+1

= κ∗,

due to κ′ (Ip + aκ′) = (Ip + κ′a)κ′ = 0. It then follows that κ′∆xctrt+1 = 0. The matrix

(Ip + aκ′) Ω (Ip + aκ′)′ is singular since

(Ip + aκ′) Ω (Ip + aκ′)
′
κ = 0,

i.e., the matrix has a zero eigenvalue and its determinant is zero.

Next, we extend the above to a general CVAR system with k > 1. Without loss of

generality, we fix k = 3 and provide the system in companion form by following JJ:

∆X̃t+1 = α̃
(
β̃′X̃t − µ̃

)
+ ε̃t+1,

where

X̃t+1 =

 Xt+1

Xt

Xt−1

 , ε̃t+1 =

 εt+1

0

0

 , µ̃ =

 µ

0

0

 ,

α̃ =

 α Γ1 Γ2

0 Ip 0

0 0 Ip

 and β̃ =

 β Ip 0

0 −Ip Ip

0 0 −Ip

 ,

so that we find

α̃⊥ = (α′⊥,−α′⊥Γ1,−α′⊥Γ2)
′

and β̃⊥ = (β′⊥, β
′
⊥, β

′
⊥)
′
.

In addition, recalling the definition C = β⊥(α′⊥Γβ⊥)−1α′⊥ when k > 1, we introduce

ã = (a′, 0, 0)
′

b̃ = (b′, 0, 0)
′

and κ̃ = (κ′1, κ
′
2, κ
′
3)
′
,

for κ′1 = − (b′Ca)−1 b′C, κ′2 = −κ′1Γ1 and κ′3 = −κ′1Γ2 so that κ̃′α̃ = 0 holds. Define

X̃new
t+1 =

(
Xnew′

t+1 , X
ctr′
t , Xctr′

t−1
)′

and X̃ctr
t+1 =

(
Xctr′

t+1, X
ctr′
t , Xctr′

t−1
)′
,

which are driven by

X̃new
t+1 =

(
I3p + α̃β̃′

)
X̃ctr

t − α̃µ̃+ ε̃t+1, (12)

X̃ctr
t+1 = X̃new

t+1 + ã (ã′ã)
−1
(
κ̃′X̃new

t+1 − κ∗
)
, (13)
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for κ∗ = −(b′Ca)−1[b∗ − b′ (Ip − CΓ) βµ]. Substituting (12) into (13) leads to

X̃ctr
t+1 =

[
I3p + ã (ã′ã)

−1
κ̃′
] [(

I3p + α̃β̃′
)
X̃ctr

t − α̃µ̃+ ε̃t+1

]
− ã (ã′ã)

−1
κ∗

=
[
I3p + ã (ã′ã)

−1
κ̃′
] (
I3p + α̃β̃′

)
X̃ctr

t −
[
I3p + ã (ã′ã)

−1
κ̃′
]
α̃µ̃

− ã (ã′ã)
−1
κ∗ +

[
I3p + ã (ã′ã)

−1
κ̃′
]
ε̃t+1.

This is reduced to, due to κ̃′α̃ = 0,

X̃ctr
t+1 =

[
I3p + ã (ã′ã)

−1
κ̃′ + α̃β̃′

]
X̃ctr

t − α̃µ̃− ã (ã′ã)
−1
κ∗ +

[
I3p + ã (ã′ã)

−1
κ̃′
]
ε̃t+1.

Hence, we arrive at

∆X̃ctr
t+1 =

[
α̃β̃′ + ã (ã′ã)

−1
κ̃′
]
X̃ctr

t − α̃µ̃− ã (ã′ã)
−1
κ∗ +

[
I3p + ã (ã′ã)

−1
κ̃′
]
ε̃t+1

=
[
α̃β̃′, ã (ã′ã)

−1
]( β̃′X̃ctr

t − µ̃
κ̃′X̃ctr

t − κ∗

)
+
[
I3p + ã (ã′ã)

−1
κ̃′
]
ε̃t+1.

Noting that Im + κ̃′ã (ã′ã)−1 = Im + κ′1a (a′a)−1 = 0, we pre-multiply the above equation by

κ̃′ to derive the identity

κ̃′X̃ctr
t+1 = κ̃′X̃ctr

t + κ̃′ã (ã′ã)
−1
(
κ̃′X̃ctr

t − κ∗
)

+ κ̃′
[
I3p + ã (ã′ã)

−1
κ̃′
]
ε̃t+1

=
[
Im + κ̃′ã (ã′ã)

−1
]
κ̃′X̃ctr

t − κ̃′ã (ã′ã)
−1
κ∗ +

[
Im + κ̃′ã (ã′ã)

−1
]
κ̃′ε̃t+1

= κ∗.

Hence,

κ̃′X̃ctr
t+1 = κ′1

(
Xctr

t+1 − Γ1X
ctr
t − Γ2X

ctr
t−1
)

= κ∗,

or, equivalently, its general expression covering k > 3 is

κ′1Γ (L)Xctr
t+1 = κ∗,

for Γ (L) = Ip − Γ1L− · · · − ΓkL
k. �

Proof of Corollary 3.4:

Referring to the definition of the C matrix, we find

(b′ + φc′)C = (b′ + φc′) β⊥(α′⊥Γβ⊥)−1α′⊥ = 0,

which yields the collinearity b′C = −φc′C for φ 6= 0. The result b′Cb = c′Cb = 0 follows

directly from Cb = 0. �
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Proof of Proposition 3.5:

The new process for t = k + 1, ..., T is expressed as

∆Xnew
t+1 = (a+ αβ′a, α)

[(
κ′

β′

)
Xnew

t+1 −

(
κ∗

µ

)]
+ εt+1.

Recall the set of known vectors: a = ei, b = ej and c = ek for i 6= j 6= k, j ≤ r and i, k ≤ p.

We specify here b = e1 and c = e2, setting j = 1 and i = 2. Noting the identity κ′ =

−(b′Ca)−1b′C = −(b′Ca)−1b′ + (b′Ca)−1b′α (β′α)−1 β′, we can rewrite the above as

∆Xnew
t+1 = (a+ αβ′a, α)R1

[(
b′

β′

)
Xnew

t+1 −R−11

(
κ∗

µ

)]
+ εt+1,

where R1 is a rotation matrix defined as

R1 =

(
−(b′Ca)−1 (b′Ca)−1b′α (β′α)−1

0 Ir

)
,

and the constant term is subject to

e′1R
−1
1

(
κ∗

µ

)
= b∗.

Using the condition sp (β1) = sp (b+ φc) for φ 6= 0, we re-express β = [(b+ φc)ω, η] for

a non-zero scalar ω and η = (β2,..., βr), along with a conformable decomposition of the

constant term, so that we obtain

∆Xnew
t+1 = (a+ αβ′a, α)R1


 b′

ω (b′ + φc′)

η′

Xnew
t+1 −

 b∗

µ1

µ2


+ εt+1,

where (
µ1

µ2

)
= (0, Ir)R

−1
1

(
κ∗

µ

)
.

Furthermore, as a result of matrix rotation,

∆Xnew
t+1 = (a+ αβ′a, α)R1R2


 b′

c′

η′

Xnew
t+1 −R−12

 b∗

µ1

µ2


+ εt+1,

where

R2 =


1 0 0 · · · 0

ω ωφ 0 · · · 0

0
...

0

0
...

0

Ir−1

 .
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Since b and c are the first and second cointegrating vectors for Xnew
t+1 , both of which are

linearly independent of η, we can orthogonalise η with respect to g = (b, c). As a result of

orthogonalisation, we obtain

∆Xnew
t+1 = (a+ αβ′a, α)R1R2R3


 b′

c′

δ′

Xnew
t+1 −R−13 R−12

 b∗

µ1

µ2


+ εt+1,

where

R3 =

(
I2 0

η′g (g′g)−1 Ir−1

)
,

that is, its inverse R−13 denotes a matrix that orthogonalises η with respect to g, thereby

resulting in sp (δ) = sp (g⊥). It also follows that

α◦ = (a+ αβ′a, α)R1R2R3 and µ◦ = R−13 R−12 R−11

(
κ∗

µ

)
.

�

B Data definitions and sources

Details of the definitions of the data analysed in Section 4 and their sources are provided

below.

B.1 Data definitions

πt = the annual (year-on-year) rate of inflation calculated from

the Consumer Price Index (CPI), expressed as a decimal.

πe
t = the annual rate of expected CPI inflation (1 year out)

based on surveys of expectations, expressed as a decimal.

yt = the log of the production-based real Gross Domestic Product, seasonally adjusted.

it = the overnight interbank cash rate, quarterly average of monthly data,

expressed as a decimal.

B.2 Sources

All the data were obtained from the website of the Reserve Bank of New Zealand (accessed

on 14 June 2024). Detailed sources are as follows:

πt - https://www.rbnz.govt.nz/statistics/series/economic-indicators/prices

πe
t - https://www.rbnz.govt.nz/statistics/series/economic-indicators/survey-of-expectations

yt - https://www.rbnz.govt.nz/statistics/series/economic-indicators/gross-domestic-product

it - https://www.rbnz.govt.nz/statistics/series/exchange-and-interest-rates

/wholesale-interest-rates
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C DGPs in the Monte Carlo and its further outputs

The baseline data-generating process for the study in Section 2.3 is commonly formulated

as a CVAR(1) process:

∆Xt = α (β′Xt−1 + µ) + εt,

where εt is a multivariate i.i.d. pseudo normal process, N(0, d2Ω). Here, Ω is a positive

definite symmetric matrix, each diagonal and off-diagonal element assigned a unit value and

a quarter, respectively, along with a damping factor d = 0.01. The parameters for the above

process as well as a set of selection vectors a and b vary according to p and r as follows:

p r α β µ

3 1 (−0.2, 0.1, 0)′ (1,−1, 1)′ −0.01

3 2

(
−0.2 0.1 0

0 −0.1 0

)′ (
1 −1 1

0 1 2

)′
(−0.01,−0.13)′

4 1 (−0.2, 0.1, 0, 0)′ (1,−1,−0.5, 1)′ 0.015

4 2

(
−0.2 0.1 0 0

0 −0.1 −0.2 0

)′ (
1 −1 −0.5 1

0 1 1 −0.5

)′
(0.015,−0.08)′

4 3

 −0.2 0.1 0 0

0 −0.1 −0.2 0

0 0 −0.1 0


 1 −1 −0.5 1

0 1 1 −0.5

0 0 1 −2.0


′

(0.015,−0.08, 0.03)′

p r a b

3 1, 2 (0, 0, 1)′ (1, 0, 0)′

4 1, 2, 3 (0, 0, 0, 1)′ (1, 0, 0, 0)′

The parameters above are selected on the basis of a typical empirical study involving

inflation rates and short-term interest rates, along with other macroeconomic series. The

initial values X0 range from 0.02 to 0.05, mimicking plausible inflation and interest rates. In

each replication of the Monte Carlo study, 30 initial observations are discarded to mitigate

the impact of the initial values.

Further figures obtained from the Monte Carlo study are presented below in this ap-

pendix.
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Figure 8: Distribution of cointegration test statistics at a sample of T = 1, 000 observations

for p = 3 and r = 2.
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Figure 9: Distribution of cointegration test statistics at a sample of T = 1, 000 observations

for p = 4 and r = 1.
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Figure 10: Distribution of cointegration test statistics at a sample of T = 1, 000 observations

for p = 4 and r = 2.
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Figure 11: Distribution of cointegration test statistics at a sample of T = 1, 000 observations

for p = 4 and r = 3.
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