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Abstract: 

 

This article investigates the reproducibility and robustness of deep reinforcement learning 

(DRL) in financial applications, focusing on algorithmic trading and portfolio management 

across two asset classes: stocks and cryptocurrencies. While DRL has gained popularity in 

these domains, most studies rely on single-run evaluations and overlook the high variance 

inherent to these methods. We reproduce influential DRL-based strategies under identical 

hyperparameters but across multiple independent random seeds and show that both 

performance and learned policies vary widely under fixed configurations. These experiments 

highlight the fragility of commonly reported results. Even the best performing algorithms 

display substantial variability across runs. To improve reliability, we introduce a checkpointing 

strategy and quantify uncertainty using bootstrapping and permutation tests. Our findings 

reveal that prevailing evaluation practices risk misleading conclusions about strategy efficacy 

and also conceal the true risk profile of DRL-based financial models. This underscores the need 

for more rigorous and reproducible protocols to ensure dependable advancements and foster 

genuine risk assessment in financial DRL research 
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1. Introduction 

Artificial intelligence (AI) is transforming modern finance, with its profound impact 

increasingly evident in the investment sphere. A recent comprehensive review by Bahoo et al. 

(2024) underscores AI's expansive role, identifying ten major research streams where AI is 

applied. These streams cover diverse applications, with most directly pertaining to investment, 

such as stock market analysis, the development of trading models, portfolio management, the 

study of cryptocurrencies, and investor sentiment analysis. Further exemplifying AI's growing 

influence, sophisticated models are now being developed that can digest complex information 

from corporate disclosures to macroeconomic trends, in some cases reportedly surpassing 

human analysts in tasks such as stock return prediction (Cao et al., 2024). This growing body 

of work illustrates how AI is reshaping the way investment decisions are made, risks are 

assessed, and portfolios are optimized. 

Among the diverse AI methodologies, Deep Reinforcement Learning (DRL) has emerged 

as a particularly compelling paradigm for financial applications such as algorithmic trading 

and portfolio management. Unlike traditional econometric or supervised machine learning 

methods, which typically require separate components or manual rules for tasks like signal 

generation, position sizing, and trade execution, DRL provides an integrated, end-to-end 

decision-making framework. A DRL agent learns directly from sequential market interactions, 

continuously updating its policy to make autonomous trading decisions in response to dynamic 

financial environments. This integration of signal discovery, action selection, and reward 

optimization within a single adaptive system makes DRL especially attractive for complex, 

data-rich financial applications. Notable studies—including Jiang et al. (2017), Liu et al. (2018) 

and Yang et al. (2020)—report promising results relative to benchmark strategies, leveraging 

actor-critic methods, ensemble techniques, and recurrent architectures. The literature has since 



expanded rapidly, with hundreds of DRL-based models proposed for tasks such as portfolio 

management and order execution (Sun et al., 2023). 

This rapid advancement underscores the enthusiasm for AI in finance. However, to ensure 

that this enthusiasm translates into reliable and trustworthy applications, it is crucial to 

critically evaluate the methodological underpinnings of these sophisticated tools. This paper 

focuses on DRL, arguing that despite its promise, prevailing research practices often overlook 

fundamental issues of reproducibility and robustness. Consequently, we challenge the claims 

of DRL’s superiority in financial settings that often stem from these methodological 

shortcomings. It is well established in the reinforcement learning literature that DRL algorithms 

are highly sensitive to initial conditions, including random seeds, hyperparameters, and 

implementation details—even in relatively simple environments like MuJoCo. Foundational 

works by Henderson et al. (2017) and Islam et al. (2017), conducted in simulated non-financial 

environments,  demonstrate that reported performance can vary substantially across runs, and 

that small implementation changes may lead to significantly different outcomes. Financial 

markets are even more complex: they are noisy, non-stationary, and difficult to simulate. 

Despite these challenges, most DRL studies in finance fail to quantify the variability of their 

results. This is true not only for some of the most widely cited papers, but also for recent work 

which claim superior performance of DRL (Huang et al., 2024; Y. Jiang et al., 2024; Li & Hai, 

2024; Zou et al., 2024) or lack thereof (Kruthof & Müller, 2025). Notably, some studies (Jang 

& Seong, 2023; Majidi et al., 2024; Théate & Ernst, 2021) have begun to address this issue, 

while still claiming superiority of their innovations—an approach we believe is more 

responsible for reporting such results. Interestingly, the latter two studies report substantial 

dispersion in returns and Sharpe ratios within the same experiments, further validating our 

concerns. Recent surveys (Pricope, 2021; Sun et al., 2023) both describe financial-market DRL 

as a still-emerging area, noting that most studies stop at a single profit-focused back-test on 

ad-hoc data and baselines, with minimal attention to risk, robustness, or reproducibility. This 

practice hampers fair comparison with classical benchmarks and obscures the relative strengths 

of competing DRL algorithms, leaving the community without a clear consensus on the most 

effective methods for quantitative finance. A recent survey by Pippas et al. (2025) identifies 

the same weakness, documenting pervasive one-off back-tests, inflated Sharpe ratios and scant 

reporting of uncertainty and therefore reinforce our call for more robust results reporting. 

In this paper, we replicate and extend prominent DRL trading strategies implemented in 

the FinRL library (Liu et al., 2021), which originally reported results from a single run per 

experiment. Our experiments cover two common financial tasks: algorithmic trading and 

portfolio management. As a key contribution, we repeat each experiment across twenty random 

seeds, revealing substantial variability in performance, even under otherwise identical settings. 

These findings highlight the methodological fragility of DRL in financial applications and 

underscore the need for more rigorous evaluation standards. We argue that future work should 

report results across multiple runs with confidence intervals and adopt standardized practices 

to improve robustness and reproducibility in financial DRL research. 

2. Data and methodology 

We use the open-source FinRL framework, which has contributed significantly to 

reproducibility in DRL research and has been adopted by other studies (Zou et al., 2024). Our 

analysis covers two distinct asset classes: U.S. equities and cryptocurrencies allowing us to 

represent both mature and emerging market segments and is inspired by influential studies we 

aim to reproduce. For the equity experiments, we use the 30 constituents of the Dow Jones 

Industrial Average, a diversified large-cap index representative of the U.S. market. The data 

spans January 2009 to December 2024, with a testing window from January 2021 onward, 



capturing both bull and bear markets. For the cryptocurrency experiment, we select 11 widely 

traded digital assets with sufficient historical depth, all launched before 2018, and use daily 

price data from January 2018 to December 2024. All financial data are sourced from Yahoo 

Finance. 

We design three experiments to evaluate DRL strategies in algorithmic trading and 

portfolio management. Each experiment is repeated 20 times using different random seeds, 

allowing us to assess the variability of results due to stochastic training processes. We quantify 

uncertainty using bootstrapping methods, following recommendations from Henderson et al. 

(2017).  

In the first experiment, we replicate the influential Dow 30 ensemble trading strategy 

proposed by Yang et al. (2020). The second experiment compares various DRL algorithms and 

proposes a strategy to improve robustness within this framework, closely following the setup 

of the first experiment. The third experiment addresses portfolio management in the 

cryptocurrency market, based on the FinRL implementation of Jiang et al. (2017). 

In the first two experiments, the state space is a 181-dimensional vector consisting of: 

available cash, closing prices of all stocks, the number of shares held, and four technical 

indicators—MACD, RSI, CCI, and ADX. The action space defines how many shares of each 

stock the agent can buy or sell, with an upper limit of 100 per timestep. The lower limit is set 

by the current holdings, implying no short selling. The reward is defined as the change in 

portfolio value between consecutive time steps. A transaction cost of 0.1% is applied to both 

buying and selling. Following Yang et al. (2020) we assume a risk-averse agent who moves 

entirely to cash when market volatility exceeds a predefined, data-driven threshold. We 

evaluate five widely used DRL algorithms:  

• Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015) is a deterministic, 

off-policy actor–critic algorithm for continuous action spaces that combines DQN-style 

target networks with an Ornstein–Uhlenbeck exploration process. 

• Advantage Actor–Critic (A2C) (Mnih et al., 2016) is a synchronous version of A3C: 

multiple workers share parameters and compute the advantage-function baseline to 

lower policy-gradient variance. 

• Proximal Policy Optimization (PPO) (Schulman et al., 2017) proposed a clipped 

surrogate objective for stable on-policy training with fewer tuning requirements. 

• Twin Delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018) 

Extends DDPG with twin critics, delayed policy updates, and target policy smoothing 

to mitigate Q-function overestimation. 

• Soft Actor–Critic (SAC) (Haarnoja et al., 2018) is an off-policy actor–critic that 

maximizes reward plus an entropy term, producing stochastic policies that balance 

exploration and exploitation. 

Experiment 2 shifts focus to the relative performance of individual DRL algorithms, 

refining the model selection approach within the rolling window framework. Experiment 1 also 

uses a rolling window, its selection mechanism involves choosing the single best-performing 

algorithm among the five candidates based on the validation period's results, deploying only 

that winner for the subsequent 63-day trading period. Recognizing that DRL training is volatile 

and final models may not be the best, Experiment 2 evaluates multiple saved checkpoints for 

each algorithm on the 63-day validation data before each trading period. The checkpoint 

yielding the highest Sharpe ratio for that specific algorithm is then selected and used for its 

trading during the next 63-day window. Furthermore, Experiment 2 employs hyperparameters 

optimized through an initial grid search, whereas Experiment 1 relied on default parameters 

from the library. 



The third experiment implements a portfolio allocation environment (Costa & Costa, 

2023). Instead of trading discrete shares, the agent assigns portfolio weights to cryptocurrencies 

and cash, constrained to sum to one, thus no short selling is allowed in this experiment either. 

The policy network is a convolutional architecture known as the Ensemble of Identical 

Independent Evaluators (EIIE), introduced by Jiang et al. (2017). It receives a 50×11×3 input 

matrix representing the last 50 timesteps, 11 assets, and three features: closing, high, and low 

prices. The EIIE design uses local receptive fields of size 1 in all feature maps, allowing the 

network to process each asset independently until the final softmax layer, which outputs 

allocation weights. To account for transaction costs (set to 0.25% as in the original paper), 

portfolio weights from the previous time step are appended in the later layers, allowing the 

agent to learn to minimize unnecessary reallocation. Reward function aims to maximize the 

average logarithmic cumulative return, the same as in the referenced study. 

3. Empirical results 

3.1. Experiment 1 - Stock Trading 

In our first experiment, we replicate the ensemble-based DRL trading strategy proposed by 

Yang et al. (2020), using the 30 constituents of the Dow Jones Industrial Average as the 

investment universe. Our goal is to assess how training duration and stochastic variability 

inherent in DRL training affect reported performance, and to illustrate the risks of single-run 

evaluation that are common in financial DRL studies. 

Figure 1 presents the average daily account value of the ensemble DRL strategy, along with 

its 95% bootstrapped confidence interval based on 20 independent training runs. For 

comparison, the performance of the Dow Jones Industrial Average is shown as a passive 

benchmark. The left panel shows results after 10,000 training steps, while the right panel uses 

100,000 steps. We selected these durations to reflect the fact that many published studies do 

not specify stopping criteria or training duration—both of which can critically influence 

performance assessments. Experiments using 100,000 steps required several weeks to complete 

on an AWS ml.m5.xlarge instance, as our implementation uses multilayer perceptron (MLP) 

policies, which are not significantly accelerated by GPU hardware. 

We find that a single DRL run may appear to outperform the index, particularly when 

trained for fewer steps. However, when considering the 95% bootstrap confidence interval 

across 20 runs, the index’s trajectory often lies well within the model’s uncertainty band. This 

suggests that any observed outperformance in single-run evaluations may be illusory, arising 

from stochastic elements such as random initialization or sampling noise during training. 

Relying on a single trajectory risks cherry-picking and does not reflect the true behavior or 

robustness of the strategy. 

To assess statistical significance, we apply a non-parametric sign-flipping test to compare 

the average Sharpe ratio of the ensemble strategy to that of the buy-and-hold index. Under 

shorter training (10,000 steps), the difference is not statistically significant. Under longer 

training (100,000 steps), the DRL strategy performs significantly worse than the index (p < 

0.05). These results highlight that longer training alone does not guarantee improved or reliable 

performance, and may in fact worsen it under some configurations. 



 
Figure 1. Ensemble strategy performance after 10,000 (left) and 100,000 (right) training steps 

per algorithm 

 

Figure 2 further illustrates the instability of the learned policies. We report the average 

portfolio allocation across all 30 stocks, aggregated over the first ten simulations under 10,000 

training steps, which produced comparatively better results. Despite using identical model 

configurations, the asset weights vary substantially across runs, suggesting that different 

policies are being learned each time. This variability violates the principle of algorithmic 

reproducibility, as proposed by Impagliazzo et al. (2023), which requires an algorithm to yield 

consistent outputs when trained on independent samples from the same distribution. 

In financial applications, where stability and interpretability are essential, such policy-

level volatility undermines the reliability of DRL-based trading strategies. If the same 

algorithm, trained under identical settings, recommends drastically different asset allocations 

depending on random initialization, then its use in real-world investment decisions becomes 

questionable. This experiment demonstrates that reporting a single successful run is not 

sufficient for evaluating DRL-based financial models, and may result in misleading 

conclusions about profitability or robustness.  

 



Figure 2. Average portfolio allocation across different seeds 

 

3.2. Experiment 2 – Algorithms Comparison 

A common limitation in financial DRL studies is the lack of clarity on how the final model 

is selected—specifically, the training duration, checkpointing strategy, and how many model 

configurations were tested. This lack of transparency can introduce selection bias, particularly 

when many runs are conducted but only the best results are reported (Bailey & Lopez de Prado, 

2014). The issue is especially problematic in complex environments like trading, where reward 

trajectories during training are volatile and final models are not always optimal.  

To address this issue, we conduct a second experiment that retains the 100,000 training 

steps used in Experiment 1 but introduces a checkpointing strategy. Each model is evaluated 

every 5,000 steps on a validation set, using the Sharpe ratio as a selection metric. The 

checkpoint achieving the highest Sharpe ratio is then used for trading in the subsequent period. 

This approach contrasts with the common practice of using the final model, which we found to 

be suboptimal in many cases. Additionally, in this experiment, we do not apply the turbulence 

threshold, allowing all policies to trade continuously and reflect full model behavior. 

Figure 3 shows the average account value across 20 runs for each algorithm. As training 

progresses, performance dispersion between algorithms becomes more pronounced. Since each 

curve represents an average over 20 runs, we gain greater confidence in the relative rankings. 

Notably, DDPG consistently outperforms other methods, particularly A2C. 

To assess whether these differences are statistically meaningful, we report 95% 

bootstrapped confidence intervals in Figure 4. While the intervals for DDPG and A2C overlap 

only marginally, formal testing is required to determine whether performance differences are 

statistically robust. We leveraged the pairing of seeds and applied a one-sided sign-flip 

permutation test to the per-seed Sharpe-ratio differences, followed by a Holm–Bonferroni 

correction for the four simultaneous contrasts. The raw p-values indicate that DDPG tends to 

outperform A2C (p = 0.013) and SAC (p = 0.026), but after family-wise error control the 

adjusted p-values rise to 0.052 and 0.078, respectively. Comparisons with PPO and TD3 are 

even less conclusive (adjusted p > 0.10). Consequently, no Sharpe-ratio difference remains 

statistically significant at the 5 % level. The largest effect size—a 0.16 Sharpe‐unit edge over 

A2C—therefore cannot be deemed reliable. These findings illustrate how apparent wins can 

vanish once appropriate paired testing and multiple-comparison correction are applied. This 

focus on relative performance is central to many DRL studies, where new methods are 

benchmarked against established baselines. For example, Zhang et al. (2019) compare A2C 

and DQN across asset classes, reporting superior results relative to benchmarks. Yet, such 

claims should be interpreted cautiously when uncertainty is not quantified. 

Interestingly, the best performing individual algorithms in this experiment outperform the 

ensemble strategy from Experiment 1. This suggests that selecting the best checkpointed 

model—rather than using the final model—can improve performance. However, we note that 

hyperparameter tuning may also have contributed to this effect. 



 
Figure 3. Average results from different DRL algorithms 

 
Figure 4. Confidence intervals of the best performing algorithm (DDPG) and the worst (A2C) 

 

3.3. Experiment 3 – Cryptocurrencies portfolio management 

In this experiment, we evaluate the performance of the agent in a cryptocurrency portfolio 

allocation setting. This market provides a natural stress test due to its high volatility, frequent 

regime shifts, and weaker market efficiency compared to traditional equities. We follow the 

setup of Jiang et al. (2017), using the EIIE architecture, and report results separately for each 

year from 2021 to 2024, in line with the format of the original study. The model was retrained 

independently each year for 50 episodes, as this setting yielded favorable Sharpe ratios on the 

training set and longer training durations produced similar results. We compare the agent’s 

performance against two benchmarks: an equal-weighted portfolio of the eleven 

cryptocurrencies, and a fully Bitcoin-allocated portfolio, reflecting a more conservative 

strategy focused on the most widely held cryptocurrency. 

Figure 5 summarizes annual performance across these four years. In 2021, a strong bull 

market, the DRL agent outperformed the Bitcoin benchmark but slightly underperformed the 

equal-weighted strategy. In the bear market of 2022, the agent showed more robust 



performance, outperforming both benchmarks. During the market recovery in 2023 and 2024, 

the agent dynamically increased exposure to leading altcoins, outperforming the equal-

weighted benchmark in 2023 and both benchmarks in 2024. These results suggest that the agent 

is capable of adapting to changing market conditions and reallocating capital toward 

outperforming assets. 

However, consistent with our broader findings, these favorable outcomes must be 

interpreted with caution. The DRL agent’s performance varied substantially across runs. For 

instance, in 2024, its best-performing year, the 95% bootstrapped confidence interval for 

annual returns ranged from approximately 200% to 400%, illustrating the high variance 

inherent in the training process. This reinforces our position that conclusions drawn from a 

single run are unreliable. Reported gains may reflect favorable randomness rather than 

consistent algorithmic advantage. Thus, in financial applications, particularly in volatile 

markets like cryptocurrencies, comparison against robust baselines and uncertainty 

quantification are essential prerequisites for making credible performance claims. 

 
Figure 5. EIIE results for cryptocurrency portfolio management 

4. Conclusions 

This study exposes the methodological fragility of deep reinforcement learning (DRL) in 

financial applications. Across three experiments—stock trading with ensemble strategies, 

comparative evaluation of DRL algorithms, and cryptocurrency portfolio management—we 

demonstrate that performance varies substantially across random seeds, training durations, and 

model selection strategies, even under fixed hyperparameters. 

Our findings underscore a core limitation of current DRL practices in finance: results based 

on single runs are unreliable and often overstate algorithmic performance. Moreover, they 

conceal the true risk profile and instability inherent in these complex models. We show that 



incorporating bootstrapped confidence intervals, permutation-based significance tests, and 

multiple independent runs provides a more honest and statistically grounded assessment. Even 

when average returns are high, they are frequently accompanied by wide confidence intervals 

and unstable policy behavior, limiting their practical reliability. 

To improve evaluation reliability, we also introduce checkpointing, selecting models based 

on their validation-set Sharpe ratios rather than defaulting to final weights. This approach, 

though standard in supervised learning, remains underused in DRL and leads to improved out-

of-sample performance. 

We advocate for a shift in evaluation standards. Future research, particularly involving 

DRL but also extending its principles to other complex machine learning models used in 

finance, should adopt standardized, transparent protocols that prioritize robustness and 

reproducibility over potentially misleading point estimates. This includes mandatory reporting 

of results over multiple seeds, comprehensive uncertainty quantification, and clear 

documentation of all model selection procedures. As financial applications increasingly rely 

on sophisticated AI-driven models, ensuring their reproducibility, stability, and statistical 

integrity is not merely a matter of scientific credibility, but a prerequisite for responsibly 

unlocking AI's full potential in reshaping finance and for building trust in real-world 

investment and risk management contexts. 
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