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Abstract 

This study investigates RMB exchange rate risk spillovers and their underlying 

drivers across major currencies, highlighting time-frequency dynamics and structural 

asymmetries under different market regimes. First, we employ a quantile VAR model 

to evaluate the magnitude and direction of spillovers using return and volatility data 

under varying market conditions. The results reveal that RMB exchange rate risk 

spillovers rise sharply under extreme conditions, forming a U-shaped pattern across 

quantiles and highlighting sensitivity to tail risks. Return spillovers are short-term, 

while volatility spillovers are typically long-term but shift toward the short term during 

market turmoil. Return and volatility spillovers show clear heterogeneity under tail 

risks: returns remain balanced, while volatilities are strongly right-skewed. Moreover, 

we introduce a deep learning approach to explore the nonlinear, time-varying drivers of 

RMB exchange rate spillovers, with the Time Series Fusion Transformer (TFT) model 

outperforming traditional methods through effective variable selection and dynamic 

modeling in high-dimensional, non-stationary environments. The results reveal 

pronounced dynamic heterogeneity and structural breaks in RMB exchange rate 

spillovers, with key driving factors varying across market regimes—reflecting intricate 

risk transmission channels and adaptive market responses. The results offer actionable 

insights for risk management and policy design in exchange rate markets. 
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1. Introduction  

As a typical complex dynamic system, the degree of openness in the foreign 

exchange market plays a crucial role in enabling the free flow of global capital and 

improving resource allocation efficiency. Since the financial liberalization wave in the 

1980s, many developing countries have actively reformed exchange rate regimes, 

increased exchange rate marketization, and gradually relaxed capital account controls, 

fostering a highly integrated global financial market. According to data from the Bank 

for International Settlements (BIS), as of April 2022, the global foreign exchange 

market recorded an average daily trading volume exceeding USD 7.5 trillion, 

approximately 30 times the global average daily GDP. This figure far surpasses the 

trading volumes of global stock and bond markets, reaffirming the foreign exchange 

market’s dominance as the largest and most active financial market worldwide. Amid 

ongoing global trade liberalization and investment facilitation, China’s integration with 

the international foreign exchange market has steadily deepened. Notably, the inclusion 

of the RMB in the IMF’s Special Drawing Rights (SDR) basket in 2016 marked a 

significant milestone in aligning China’s economy with the global financial system. 

This development not only substantially enhanced the RMB’s status in the international 

monetary framework but also accelerated its internationalization process. The 

advancement of RMB internationalization not only strengthens China’s economic 

integration with the world but also significantly contributes to the diversification and 

stability of the global financial system. 

The accelerating transformation of the international economic and political 

landscape, coupled with deeper economic and financial integration, has elevated the 

foreign exchange market into a crucial channel for cross-border exchange rate risk 

transmission. While enhancing resource allocation and information flow, the market 

has become increasingly susceptible to systemic shocks. Growing currency 

interdependence raises the likelihood that local exchange rate fluctuations trigger 

“resonance” effects, amplifying risk spillovers and potentially escalating into systemic 

financial crises. This vulnerability is particularly pronounced amid heightened global 

uncertainties, such as U.S.-China trade tensions, the United Kingdom’s withdrawal 

from the European Union, and the Russia-Ukraine conflict, which have significantly 



increased volatility and contagion risks in the global foreign exchange market. For 

China, this situation poses a dual challenge. On one side, the country must urgently 

strengthen its capacity to detect and manage externally induced financial shocks to 

prevent systemic risks (Song and Xiong, 2018). On the other, promoting RMB 

internationalization and achieving high-quality economic growth require enhanced 

exchange rate stability, emphasizing the need for an orderly foreign exchange market 

and a balanced exchange rate (Cui et al., 2024; He et al., 2024). Therefore, 

systematically investigating the structural features and dynamic evolution of risk 

spillovers in the RMB foreign exchange market, along with their transmission 

mechanisms, holds significant practical and strategic value. 

Despite the rapid internationalization of the renminbi and the growing influence 

of its exchange rate fluctuations on global financial markets, academic research in this 

area remains relatively underdeveloped, with notable limitations in both scope and 

depth. On the one hand, much of the existing literature concentrates on a single bilateral 

exchange rate, such as the RMB-USD pair, while overlooking the potential multilateral 

interactions and risk transmission dynamics between the RMB and other major 

currencies (Du and Lai, 2017; Ding et al., 2020; Yu et al., 2024). On the other hand, a 

considerable number of studies treat the exchange rate merely as an exogenous variable 

used to explain the volatility of other market indicators, lacking a deeper investigation 

into its systematic role as a source of financial risk (Weiss and Wichowsky, 2018; Li et 

al., 2019; Long et al., 2022; Si et al., 2024). Furthermore, existing methodologies 

predominantly focus on mean value modeling (Tian et al., 2021; Sun et al., 2022; Wang 

et al. 2022; Yu et al., 2023), which limits their ability to effectively capture the 

asymmetric contagion mechanisms of tail risks under extreme market conditions. This 

also hinders a comprehensive reflection of the dynamic restructuring process of 

exchange rate risk in response to major unexpected events. Simultaneously, existing 

studies tend to focus on a single indicator, such as exchange rate returns or volatilities  

(Narayan, 2022; Huang and Zhang, 2024) , resulting in an incomplete and unsystematic 

portrayal of the heterogeneous spillover effects across different risk dimensions. As 

RMB marketization reforms deepen, exchange rate volatility has increased, along with 

rising vulnerability to external shocks. Consequently, prevailing frameworks 



increasingly fail to capture and address these emerging realities. This study provides 

fresh insights and empirical evidence by delineating RMB exchange rate spillover 

channels, characterizing tail risk spillovers, and analyzing their underlying drivers to 

inform policy formulation and risk management. 

This study addresses the following core questions: First, what are the static and 

dynamic features of RMB exchange rate spillovers during major shocks? How do 

transmission mechanisms vary across time scales, and what heterogeneous effects do 

they have on market volatility and risk diffusion? Second, how do the connectivity 

patterns of returns and volatilities differ in terms of structure and behavior? Third, what 

are the key drivers of RMB exchange rate spillovers, and how do they affect risk 

transmission? Accordingly, this study first identifies spillover relationships across RMB 

exchange rates at different quantiles using generalized forecast error variance 

decomposition within a quantile vector autoregression (QVAR) framework. Second, it 

investigates spillover effects under varying shock intensities from both time and 

frequency domains, constructing static and dynamic spillover networks. Finally, 

leveraging identified effects of market states on gross and net spillovers, the Temporal 

Fusion Transformer (TFT) model is employed to examine the key drivers of spillover 

dynamics and their evolving transmission mechanisms. 

This study makes three primary contributions beyond the existing literature. First, 

it jointly analyzes return and volatility dimensions of RMB exchange rate connectivity, 

differentiating their characteristics across distinct market regimes. Return connectivity 

reflects co-movements among returns, aiding in portfolio optimization and hedging 

strategy design, while volatility connectivity captures risk transmission pathways 

across markets, supporting dynamic risk management. By comparing these two forms 

of connectivity, the study enhances the understanding of spillover effects in the RMB 

exchange rate system and offers targeted tools for risk monitoring and informed 

decision-making. Second, it systematically investigates the determinants of return and 

volatility spillovers from both gross and net perspectives, thereby advancing the 

understanding of risk transmission mechanisms and pathways. This inquiry identifies 

key drivers of cross-market spillovers and provides both theoretical foundations and 

practical guidance for interpreting and managing their dynamics. By emphasizing the 



influence of different driving factors, the study extends existing research and marks 

significant progress in both its scope and analytical depth. Third, this study innovatively 

applies deep learning to financial analysis to explore the dynamic behavior of the RMB 

exchange rate. Adopting an inverse reasoning approach that infers explanations from 

predictions, the deep learning framework prioritizes forecasting accuracy over 

traditional model completeness, offering a novel and effective paradigm for identifying 

the drivers of exchange rate fluctuations. This also contributes to the broader 

exploration of RMB exchange rate “resonance” risk management, offering substantial 

theoretical and practical implications for related research areas and cross-domain risk 

management practices. 

The remainder of the study is organized as follows. Section 2 reviews the relevant 

literature. Section 3 outlines the research methodology and data. Section 4 empirically 

quantifies the spillover effects of the RMB exchange rate in terms of returns and 

volatilities. Section 5 analyzes the dynamic impacts of various drivers on both gross 

and net spillovers. Finally, Section 6 concludes with a summary of the main findings. 

2. Literature review 

With the deepening of financial integration, the global financial system has 

become increasingly interconnected, and the transmission of risks across institutions, 

markets, and regions has grown more frequent, heightening the threat of systemic risk 

(Khalfaoui et al., 2022; Su et al., 2023; Wang et al., 2024). Financial contagion is 

increasingly shaped by network dynamics, prompting a shift toward revisiting and 

improving fragmented regulatory frameworks (Helbing, 2013). As a result, the 

traditional “too-big-to-fail” regulatory approach, which focuses on the resilience of 

individual institutions, is being replaced by a “too-connected-to-fail” paradigm that 

emphasizes systemic interlinkages and contagion channels (Kelly et al., 2016). In this 

context, exchange rate markets are recognized as key conduits for cross-border risk 

transmission due to their sensitivity to capital flows and trade shocks (Goldberg and 

Krogstrup, 2023). In recent years, frequent abrupt shocks have attracted increasing 

academic attention to the critical role of exchange rates in connecting global markets, 

with growing recognition that their high synchronicity amplifies cross-border financial 



spillovers  (Tiwari et al. 2022) . 

Against this backdrop, structural linkages within foreign exchange markets and 

their cross-border spillover channels have become key areas for evaluating exchange 

rate risk transmission. Existing studies can be broadly classified into two strands. The 

first focuses on return spillovers (Narayan, 2022; Kakran et al. 2025). The second strand 

investigates volatility spillovers (Hsu, 2022; Das and Roy, 2023; Liu et al., 2025). 

Together, these studies offer a dual perspective on exchange rate spillovers by 

elucidating the pathways and interaction patterns among global currencies. Return 

linkages reflect co-movements in currency returns, aiding hedging and cross-currency 

investment decisions (Malik, 2021). In contrast, volatility linkages capture risk 

transmission channels and support effective foreign exchange risk management (Gong 

et al., 2025). A joint analysis of return and volatility connectivity in the RMB market 

enables a more comprehensive understanding of spillover dynamics, investment 

implications, and market efficiency. In view of the preceding analysis, this study 

systematically investigates RMB exchange rate correlations from both return and 

volatility perspectives. 

In the context of financial market risk contagion research, the Diebold-Yilmaz 

(DY) spillover index (Diebold and Yilmaz, 2012; 2014) has emerged as a widely 

adopted analytical framework. Compared with alternative spillover measures, the DY 

method systematically characterizes multi-market risk transmission paths, closely 

aligned with the logic of systemic risk transmission. When combined with rolling 

window techniques, it effectively captures time-varying spillover dynamics and has 

been widely applied in empirical studies (Antonakakis and Kizys, 2015; Zhang et al., 

2021; Li et al., 2023), substantially advancing spillover research. Building on this, 

Baruník and Křehlík (2018) extended the DY framework into the frequency domain via 

the BK spillover index, which captures spillover heterogeneity across frequency bands. 

This methodology has since gained broad traction (Zhang and Chen, 2024; Ahmadian-

Yazdi et al., 2025). However, both DY and BK approaches remain limited in capturing 

tail risk spillovers, as they fundamentally rely on conditional mean estimations. In 

response, complex network approaches have been introduced to better map the structure 

of cross-market risk transmission and enrich the analysis of exchange rate linkages  



(Yu et al., 2024; Sun et al., 2025) . Nevertheless, these methods also primarily rely on 

mean-based estimations. To overcome these limitations, Chatziantoniou et al., 2022 

proposed a quantile time-frequency framework that captures spillovers across market 

conditions and frequencies. Its robustness to extremes enhances risk assessment 

accuracy and strengthens policy adaptability (Gong et al., 2023). 

While extensive research has explored the intensity, structure, and dynamics of 

exchange rate spillovers, the majority remains descriptive, emphasizing identification 

over the elucidation of economic logic and transmission mechanisms. To deepen 

understanding of exchange rate interlinkages and systemic risk evolution, recent studies 

focus on identifying key spillover drivers. This approach identifies key variables and 

channels influencing spillovers, including monetary policy, financial market 

interdependence, macro fundamentals, commodity prices, and global uncertainty.  

Regarding monetary stability, Kucharčuková et al. (2016) show that the ECB’s 

unconventional policy significantly affects exchange rate volatility in non-euro 

countries through shifts in interest rate expectations and capital flows. Tian et al. (2023) 

find that the People’s Bank of China’s countercyclical policy alters information 

transmission between the onshore (CNY) and offshore (CNH) RMB markets, with 

spillovers exhibiting both directional and frequency heterogeneity. At the financial 

market level, Eraslan (2017) reports that sovereign credit rating downgrades intensify 

exchange rate linkages in emerging markets. Using risk network analysis, Huang and 

Liu (2023) further demonstrate that sovereign CDSs centralize cross-market contagion, 

amplifying volatility during external shocks. In terms of macro fundamentals,  Ozkaya 

and Altun (2024) find that although global financial factors dominate, domestic 

variables such as inflation and interest rates remain significant in explaining Turkey’s 

exchange rate dynamics. Global uncertainty events also act as spillover amplifiers. For 

instance, Kim et al. (2015) show that the 2008 global financial crisis heightened 

synchronization in exchange rate volatility across emerging Asian markets, primarily 

via capital flow disruptions and risk repricing. In sum, existing literature converges on 

the view that exchange rate spillovers are shaped by the interaction of multiple factors 

and propagate through a dynamic, multi-layered network of cross-market risk 

transmission. 



To accurately uncover the causes of spillover effects, selecting appropriate 

research methods to analyze their driving forces has become a key focus in this field. 

Most existing studies rely on traditional econometric techniques to identify the 

determinants of spillovers. For example, Dai et al. (2024) and Li and Smallwood (2025) 

employed multivariate regression models to examine the core drivers of exchange rate 

connectivity from the perspectives of macroeconomic fundamental synchronization and 

the evolution of onshore–offshore market structures. Jia and Dong (2024) utilized 

impulse response analysis to investigate the dynamics of clean energy stock price 

spillovers at different stages of the pandemic. Zhang et al. (2025) applied the copula-

CoVaR approach to identify the nonlinear spillover effects of energy and international 

carbon prices on China’s carbon market. Chen et al. (2025) adopted the spatial Durbin 

model to explore the determinants of spatial spillovers in the sustainability of coastal 

fisheries in China. 

With the rise of the digital economy, advancements in big data, artificial 

intelligence (AI), and computational power are no longer limiting factors to 

development. The interdisciplinary integration of scientific methodologies has 

transcended philosophical discussions and become a practical application (Ghoddusi et 

al., 2019). Given the strong alignment between AI technologies and socio-economic 

systems, machine learning has significantly improved predictive accuracy in the 

financial domain, particularly in forecasting economic indicators (Alexandridis et al., 

2024), providing valuable insights for risk regulation. However, the application of 

machine learning, particularly deep learning, in finance has been criticized as a “black 

box” due to its complex and nonlinear internal structures, which hinder interpretability 

and obscure the relationships among variables. Additionally, mainstream interpretation 

techniques, such as post hoc analysis methods (Ribeiro et al., 2016), often fail to 

account for the temporal ordering of input variables, limiting their effectiveness in 

interpreting time-series predictions. The Transformer model (Ashish, 2017), which has 

gained prominence in recent years, captures the temporal significance of features. 

However, as it was originally designed for natural language processing and primarily 

handles univariate sequences, it struggles to differentiate the contributions of individual 

variables in multivariate time-series prediction tasks. Consequently, it does not meet 



the interpretability requirements for complex multivariate systems. 

Building on the advanced Transformer architecture, the joint research team from 

Oxford University and Google introduced the TFT model in 2021, which achieved 

significant breakthroughs in both forecasting accuracy and interpretability (Lim et al., 

2021). Moreover, the TFT model pioneers the exploration of quantitative relationships 

among variables from a global perspective and supports simultaneous multi-variable 

forecasting—making it particularly well-suited for complex economic systems 

comprising multiple markets. Accordingly, this study adopts the TFT model and 

employs a reverse analytical approach from prediction to explanation to systematically 

identify the key drivers of RMB exchange rate spillovers, thereby broadening the 

existing analytical framework and methodological foundation. 

A review of the existing literature reveals that there remains considerable scope 

for further research on exchange rate spillovers. First, the RMB exchange rate spillover 

constitutes a complex and dynamic system, yet current research tends to adopt relatively 

narrow perspectives. For instance, no study has systematically compared spillover 

effects based on both returns and volatilities. Second, existing literature seldom 

investigates the coupling relationship between RMB exchange rate spillovers and their 

potential drivers, leaving the transmission mechanisms insufficiently explained. Third, 

empirical studies identifying the factors influencing spillovers still predominantly rely 

on traditional econometric methods, which struggle to capture complex features such 

as nonlinearity, high dimensionality, and time-varying dynamics. In addition, existing 

studies primarily concentrate on spillover effects among major international currencies  

(Kyriazis and Corbet, 2024), whereas systematic research on emerging markets, 

particularly the Chinese RMB, remains comparatively limited. Therefore, a quantitative 

analysis of RMB exchange rate spillover effects and their driving mechanisms under 

different market conditions, from the dual perspectives of returns and volatilities, will 

contribute to enriching and deepening existing research on exchange rate linkages. 

3. Methodology  

3.1 Quantile VAR Model 

Building on the generalized forecast error variance decomposition of the QVAR 



model, we measure the RMB exchange rate spillover effects across different shock 

intensities and time horizons. Using a rolling window approach, it dynamically 

estimates total and directional risk spillovers, overcoming the limitations of the DY 

spillover index (Diebold and Yilmaz, 2012; 2014) and the BK spillover index (Baruník 

and Křehlík, 2018) in capturing tail risk behavior. 

Specifically, the construction of the QVAR model proceeds as follows: First, 

define a 𝑝 -order quantile vector autoregression process, 𝑄𝑉𝐴𝑅(𝑝) , involving 𝑛 

variables: 

 𝑥𝑡 = 𝜇𝑡(𝜏) + Ф1(𝜏)𝑥𝑡−1 +Ф2(𝜏)𝑡−2 + 𝐿 + Ф𝑝(𝜏)𝑥𝑡−𝑝𝑢𝑡(𝜏) (1) 

Among them, 𝑥𝑡  and 𝑥𝑡−𝑖  are N × 1 dimensional vectors of endogenous 

variables; 𝜏  ranges between 0 and 1, representing the model-specific quantile; 𝑝 

denotes the lag order of the QVAR model; 𝜇(𝜏) is an N×1 dimensional conditional 

mean vector; Ф𝑗(𝜏) is an N×N dimensional coefficient matrix of the QVAR model; 

and 𝜇𝑡(𝜏) represents an N×1 dimensional error vector. Based on Wald’s theorem, Eq. 

(2) can be rewritten as an infinite order quantile vector moving average process, 

𝑄𝑉𝑀𝐴(∞): 

 𝑥𝑡 = 𝜇(𝜏) +∑ 𝜓𝑖(𝜏)𝑢𝑡−𝑖
∞
𝑖=0  (2) 

The generalized forecast error variance decomposition (GFEVD) is computed 

following the approaches of Koop et al. (1996) and Pesaran and Shin (1998). For a 

forecast horizon 𝐻 , the proportion of the 𝐻 -step-ahead forecast error variance of 

variable 𝑖 attributable to shocks from variable 𝑗, denoted by 𝜃𝑖𝑗
𝑔
(𝐻), can be expressed 

as: 

 𝜃𝑖𝑗(𝐻) =
(∑(𝜏))𝑖𝑗

−1∑ (𝜓ℎ(𝜏)∑(𝜏))
𝐻
ℎ=0 𝑖𝑗

2

∑ (𝜓ℎ(𝜏)∑(𝜏)𝜓
′
ℎ(𝜏))𝑖𝑖

𝐻
ℎ=0

 (3) 

 𝜃𝑖𝑗(𝐻) =
𝜃𝑖𝑗 (𝐻)

∑ 𝜃𝑖𝑗 (𝐻)
𝑁
𝑘=1

 (4) 

Here, ∑(𝜏) denotes the variance-covariance matrix of the error vector. Since the 

row sums of 𝜃𝑖𝑗(𝐻) do not equal one, they are normalized to 𝜃𝑖𝑗(𝐻). The normalized 

value 𝜃𝑖𝑗(𝐻) quantifies the directional spillover from variable 𝑖 to variable 𝑗 at the 

τ quantile. In this study, it is employed to measure spillover effects among different 

RMB exchange rate series. Moreover, the total directional spillover index from each 

variable to all others in the system is calculated as follows: 



 𝑇𝑂𝑖(𝐻) = ∑ 𝜃𝑖𝑗(𝐻)
𝑁
𝑖=1,𝑖≠𝑗 100 (5) 

 𝐹𝑅𝑂𝑀𝑖(𝐻) = ∑ 𝜃𝑗𝑖(𝐻)
𝑁
𝑖=1,𝑖≠𝑗 100 (6) 

Based on this, the total spillover index and net spillover index among the RMB 

exchange rate series at quantile τ are defined as follows: 

𝑇𝑆𝐼(𝐻) =
∑ (̃𝐻)𝑖𝑗
𝑁
𝑖 ,𝑗=1;𝑖𝑗

𝑁
100 

 = 𝑁−1 ∑ 𝑇𝑂𝑖(𝐻)
𝑁
𝑖=1  (7) 

= 𝑁−1∑ 𝐹𝑅𝑂𝑀𝑖(𝐻)
𝑁

𝑖=1

 

 𝑁𝐸𝑇(𝐻) = 𝑇𝑂𝑖(𝐻)− 𝐹𝑅𝑂𝑀𝑖(𝐻) (8) 

The above describes the calculation process of the time-domain spillover index 

based on the QVAR model. Next, we further compute the frequency-domain spillover 

index using the spectral decomposition method proposed by Stiassny (1996). First, 

based on the frequency response function 𝜓(𝑒−𝑖𝑤) = ∑ 𝑒−𝑖𝑤ℎ𝜓ℎ
∞
ℎ=0  , the spectral 

density 𝑆𝑥(𝜔) of 𝑥𝑡 at frequency 𝜔 is given by: 

 𝑆𝑥(𝜔) = ∑ 𝐸(𝑥𝑡𝑥
′
𝑡−ℎ)𝑒

−𝑖𝑤ℎ∞
ℎ=−∞ = 𝜓(𝑒−𝑖𝑤ℎ) ∑ 𝜓′(𝑒+𝑖𝑤ℎ)𝑡  (9) 

Among them, 𝜓(𝑒−𝑖𝑤ℎ) is obtained by taking the Fourier transform of 𝜓ℎ. It is 

worth noting that the frequency-domain GFEVD integrates the spectral density with the 

GFEVD. In the frequency domain, normalization of the frequency GFEVD is required, 

and the formula is as follows: 

 𝜃𝑖𝑗(𝜔) =
∑(𝜏)𝑗𝑗

−1| ∑ (𝜓(𝜏)(𝑒−𝑖𝑤ℎ )∑(𝜏))
𝑖𝑗

∞
ℎ=0 |2

∑ (𝜓(𝑒−𝑖𝑤ℎ ) ∑(𝜏)𝜓(𝜏)(𝑒𝑖𝑤ℎ))
𝑖𝑖

∞
ℎ=0

 (10) 

 𝜃𝑖𝑗(𝜔) =
𝜃𝑖𝑗 (𝜔)

∑ 𝜃𝑖𝑗 (𝜔)
𝑁
𝑘=1

 (11) 

Among them, 𝜃𝑖𝑗(𝜔)  represents the portion of the spectrum of variable 𝑖 

attributable to the impact of variable 𝑗  at a given frequency 𝜔 . To calculate the 

spillover index over different frequency bands, frequencies within a specified range 

𝑑 = (𝑎, 𝑏), where 𝑎,𝑏 ∈ (−, ) and 𝑎 < 𝑏, are aggregated. Then, Eq. (12) can be 

expressed as: 

 𝜃𝑖𝑗(𝑑) = ∫ 𝜃𝑖𝑗(𝜔)
𝑏

𝑎
𝑑𝜔 (12) 

𝜃𝑖𝑗(𝑑) measures the directional spillover from variable 𝑖 to variable 𝑗 within 



the frequency band 𝑑 under the 𝜏 quantile. Similarly, since this study also focuses on 

the overall spillover level, we further calculate the total directional spillover index of 

each variable to all other variables in the system within the given frequency band 𝑑, 

which is computed as: 

 𝑇𝑂𝑖(𝑑) = ∑ 𝜃𝑖𝑗(𝑑)
𝑁
𝑖=1,𝑖≠𝑗 100 (13) 

 𝐹𝑅𝑂𝑀𝑖(𝑑) = ∑ 𝜃𝑗𝑖(𝑑)
𝑁
𝑖=1,𝑖≠𝑗 100 (14) 

Similarly, the total spillover index and net spillover index in the quantile frequency 

domain can be defined as follows: 

𝑇𝑆𝐼(𝑑) =
∑ (̃𝑑)𝑖𝑗
𝑁
𝑖 ,𝑗=1;𝑖𝑗

𝑁
100 

 = 𝑁−1 ∑ 𝑇𝑂𝑖(𝑑)
𝑁
𝑖=1  (15) 

= 𝑁−1∑ 𝐹𝑅𝑂𝑀𝑖(𝑑)
𝑁

𝑖=1

 

 𝑁𝐸𝑇(𝑑) = 𝑇𝑂𝑖(𝑑) − 𝐹𝑅𝑂𝑀𝑖(𝑑) (16) 

3.2 Temporal Fusion Transformers 

In time series forecasting, traditional deep learning algorithms often face 

difficulties processing heterogeneous input data, and their complex architectures 

impede clear interpretation of how meaningful information is extracted during 

prediction. These limitations have hindered the broader application of deep learning 

forecasting techniques in the financial sector. The spatiotemporal fusion transformer 

addresses these challenges through data integration and key variable identification, 

without compromising predictive accuracy. This advancement substantially enhances 

the applicability of deep learning in multiple fields. As illustrated in Fig.1, the main 

components of the TFT algorithm include: (1) Gating Mechanism: skips irrelevant 

components and automatically adjusts model depth and complexity to suit various data 

scenarios. (2) Variable Selection Network: dynamically selects relevant input 

variables at each time step. (3) Static Covariate Encoder: encodes static features into 

context vectors to guide temporal dynamics. (4) Temporal Modeling: integrates 

sequence layers with multi-head attention modules to capture both short-term local 

patterns and long-term dependencies. (5) Interval Prediction: estimates the possible 

range of target values using quantile predictions. Below, we analyze several key 



modules of the TFT model. 

 

Fig.1. Basic Architecture of the TFT Model 

3.2.1 Gating mechanisms in TFT 

The gated residual network enhances the flexibility of nonlinear interactions 

between model variables and target outputs. The gated residual network takes two 

inputs: the primary input 𝑎  and an optional context vector 𝑐 . Its mathematical 

formulation is given by: 

 𝐺𝑅𝑁(𝑎,𝑐) = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑎+ 𝐺𝐿𝑈(1))  (17) 

 
1
=𝑊1 ,2 +𝑏1, (18) 

 
2
= 𝐸𝐿𝑈(𝑊2,𝑎+ 𝑊3 ,𝑐 + 𝑏2,)  (19) 

Here, ELU denotes the exponential linear unit activation function; 
1
 and 

2
∈

ℝ𝑑𝑚𝑜𝑑𝑒𝑙   represent intermediate layers;   stands for weight sharing; 𝑊(·)  is the 

weight matrix; and 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚  refers to standard layer normalization. The gated 

linear unit component offers the flexibility to suppress unnecessary architectural 

elements for a given dataset, and is described as follows: 

 𝐺𝐿𝑈() = (𝑊4,+𝑏4,)☉(𝑊5,+𝑏5,)  (20) 

Here,  ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙   denotes the input; (·)  is the sigmoid activation function; 



𝑏(·) ∈ ℝ
𝑑𝑚𝑜𝑑𝑒𝑙  represents the bias term; 𝑊(·) ∈ ℝ

𝑑𝑚𝑜𝑑𝑒𝑙  denotes the weight; and ☉ 

denotes the Hadamard product. The gated linear unit component enables the TFT model 

to regulate the influence of the gated residual network on the initial input. 

3.2.2 Variable selection networks in TFT 

The variable selection network identifies the most relevant variables for the 

prediction task and filters out noisy inputs in the TFT model that could degrade 

predictive performance. Let [𝐼]𝑡 = [
𝑡

(1)𝑇 ,
𝑡

(2)𝑇 , … ,
𝑡

(𝑚𝑥)𝑇]𝑇  denote the flattened 

vector of all past inputs, where 
𝑡

(𝑗) is the transformed input of the 𝑗-th variable. As 

illustrated in Eq. (21), [𝐼]𝑡 and the external environment variable 𝑐𝑠 are fed into the 

gated residual network, producing the variable selection weights 𝑉𝑥𝑡   after the 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 layer. According to Eq. (22), each 
𝑡

(𝑗) undergoes nonlinear transformation 

via the gated residual network, and as per Eq. (23), these processed features are 

weighted and combined based on their respective variable selection weights. 

 𝑉𝑥𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐺𝑅𝑁𝑉𝑥
([𝐼]𝑡 , 𝑐𝑠))  (21) 

 ̃
𝑡

(𝑗)
= 𝐺𝑅𝑁̃(𝑗)(𝑡

(𝑗))  (22) 

 ̃
𝑡
= ∑ 𝑣𝑥𝑡

(𝑗)
̃
𝑡

(𝑗)𝑚𝑥
𝑗=1  (23) 

3.2.3 Interpretable Multi-Head Attention in TFT 

The TFT model employs a self-attention mechanism to capture long-range 

dependencies across time steps and enhances the basic Transformer’s multi-head 

attention structure to improve the interpretability of the model. Specifically, the 

attention mechanism operates based on the relationship between “queries 𝑄 ∈

ℝ𝑁×𝑑𝑎𝑡𝑡𝑛 ” and “keys 𝐾 ∈ ℝ𝑁×𝑑𝑎𝑡𝑡𝑛 ”, and computes the “value” output using Eq. (24): 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝐴(𝑄, 𝐾)𝑉 (24) 

Here, 𝑁 denotes the number of time steps fed into the attention layer, and 𝐴(·) 

represents the normalization function. The attention scores are typically computed 

using a scaled dot-product mechanism, as shown below: 

 𝐴(𝑄, 𝐾) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇/√𝑑𝑎𝑡𝑡𝑛)  (25) 

The attention mechanism employs a multi-head attention strategy, enabling the 

model to capture information from different representation subspaces through multiple 



attention heads. Its mathematical formulation is as follows: 

 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,𝐾, 𝑉) = [𝐻1,… , 𝐻𝑚𝐻
]𝑊𝐻  (26) 

 𝐻ℎ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄

(ℎ) ,𝐾𝑊𝐾

(ℎ) ,𝑉𝑊𝑉

(ℎ))  (27) 

Among them, 𝑊𝐾

(ℎ) ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑎𝑡𝑡𝑛  , 𝑊𝑄

(ℎ) ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑎𝑡𝑡𝑛  , and 𝑊𝑉

(ℎ) ∈

ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣  denote the weight matrices for the “keys”, “queries” and “values” in each 

attention head, respectively. 𝑊𝐻

(ℎ)
∈ ℝ(𝑚𝐻·𝑑𝑉)×𝑑𝑚𝑜𝑑𝑒𝑙  represents the projection matrix 

that linearly combines the outputs from all attention heads. 

Given that each attention head uses distinct value vectors, a single attention weight 

is insufficient to capture the importance of individual features. To address this, the 

multi-head attention mechanism is modified to share a common value representation 

across all heads, followed by additive aggregation of their outputs. 

 𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑙𝑒𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐻𝑊𝑉  (28) 

𝐻 = 𝐴(𝑄, 𝐾)𝑉𝑊𝑉  

 = {
1

𝑚𝐻

∑ 𝐴(𝑄𝑊𝑄

(ℎ) , 𝐾𝑊𝐾

(ℎ))𝑚𝐻
ℎ=1 }𝑉𝑊𝑉  (29) 

= {
1

𝑚𝐻

∑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄

(ℎ) , 𝐾𝑊𝐾

(ℎ) ,𝑉𝑊𝑉 )

𝑚𝐻

ℎ=1

} 

Among them, 𝑊𝐻

(ℎ) ∈ ℝ𝑑𝑎𝑡𝑡𝑛×𝑑𝑚𝑜𝑑𝑒𝑙  serves as the final linear projection matrix, 

while 𝑊𝑉  denotes the shared value weight matrix across all attention heads. 

3.2.4 Quantile Output and Loss Function in TFT 

The TFT model produces prediction intervals by simultaneously forecasting 

multiple quantiles at each time step. These quantile forecasts are obtained through a 

linear transformation of the output from the temporal fusion decoder. Model training is 

performed by jointly minimizing the quantile loss, with the total loss computed as the 

sum of the individual quantile losses, as shown below: 

 Ƚ(Ω,W) = ∑ ∑ ∑ 𝑄𝐿(𝑦𝑡 ,𝑦(𝑞,𝑡−𝑇,𝑇),𝑞)

𝑀𝑇𝑚𝑎𝑥

𝑇𝑚𝑎𝑥
𝑇=1𝑞∈𝑄𝑦𝑡∈Ω

 (30) 

 𝑄𝐿(𝑦𝑡 , 𝑦̂, 𝑞) = 𝑞(𝑦− 𝑦̂)+ + (1− 𝑞)(𝑦̂ − 𝑦)+ (31) 

Here, Ω  denotes the domain of the training set containing M samples, 𝑦 

represents the true value, 𝑦̂ the predicted value, 𝑄 the input quantile, (·)+ stands for 

max(0,.), and W represents the weights of the TFT model. 

Unlike econometric and traditional machine learning models, the TFT model 



offers a significant advantage by accommodating three distinct input types: observed 

inputs, known inputs, and static inputs. Observed inputs are variables available only up 

to the present and cannot inform future values. Known inputs are features with 

predetermined future values, such as planned schedules or calendar variables. Static 

inputs represent immutable characteristics of the forecast entity, such as geographic 

region or sector classification. Conventional models typically rely solely on observed 

inputs, which limits their ability to exploit richer contextual information. The TFT’s 

flexible input framework enables integration of diverse data types and more 

comprehensive feature extraction. To address the shortcomings of autoregressive 

structures, especially their poor performance on high-volatility sequences, the model 

intentionally excludes the historical values of the target variable 𝑦𝑖 prior to time 𝑡 

when predicting 𝑦̂𝑖(𝑡,𝜏) . This design improves forecast stability. Overall, the TFT 

model adopts a more adaptable and information-rich framework than traditional 

approaches. 

 𝑦̂𝑖(𝑡, 𝜏) = 𝑓(𝜏,𝑂𝑖 ,𝑡−𝑘:𝑡 , 𝑘𝑖,𝑡−𝑘:𝑡+𝜏 , 𝑠𝑖)  (32) 

Among them, 𝑖  denotes the target entity within the system, 𝑡  represents the 

current time point, 𝜏  is the forecast horizon, and 𝑘  indicates the step size. The 

observed information 𝑂𝑖 ,𝑡−𝑘:𝑡 = {𝑂𝑖,𝑡−𝑘 , … , 𝑂𝑖,𝑡} refers to historical data observed up 

to time 𝑡; the predicted information 𝑘𝑖,𝑡−𝑘:𝑡+𝜏 = {𝑘𝑖,𝑡−𝑘 , … , 𝑘𝑖,𝑡+𝜏} includes both past 

and future known variables within the forecasting window; and 𝑠𝑖  denotes static 

features inherent to the target entity. 

The TFT model decomposes forecasting results along two dimensions, “Spatial” 

and “Temporal”, utilizing its embedded variable selection network and multi-head 

attention mechanism. This approach aims to pinpoint critical information locations 

within each forecast horizon. The “Spatial” dimension ranks the importance of different 

input variables, highlighting which indicators exert the greatest influence on predictions 

at specific time points, thereby helping to elucidate the economic dynamics driven by 

these variables. The “Temporal” dimension, on the other hand, identifies key time steps 

within the forecast window, reflecting how strongly the predictions depend on historical 

data, which aids in understanding the evolving stability of the production structure. 



3.3 Data and Descriptive Analysis 

Using exchange rate data from China’s major trading partners, this study 

constructs an RMB exchange rate market network. Since the People’s Bank of China 

adopted a managed floating exchange rate regime on July 21, 2005, which is primarily 

driven by market supply and demand and guided by a currency basket, significant 

marketization of the RMB exchange rate has occurred, increasing the influence of 

multiple currencies. Recent reforms and the internationalization of the RMB have 

further amplified exchange rate volatility. The currency basket reflects China’s key 

economic partnerships, making RMB fluctuations more informative and predictable. 

Based on average weights from the past three years, this study selects the top ten RMB 

exchange rates in the basket, which together represent approximately 81.02% of its total 

weight, validating their suitability for analysis (see Table A1). The data, sourced from 

the Wind database, span daily observations from March 5, 2007, to October 11, 2024. 

However, the RMB exchange rate is a quintessential complex system 

characterized by nonlinearities, non-stationarity, high volatility, irregular fluctuations, 

and emergent properties, with a wide range of influencing factors. The specific time 

series of the RMB exchange rate are illustrated in Fig.2. It is evident that different types 

of RMB exchange rates exhibit distinct trends across various periods, reflecting the 

impact of multifaceted political, economic, and other factors1. 

Fig.2. RMB Exchange Rate Line Chart from December 27, 2017 to October 11, 2024 

Note: This chart shows the exchange rates of the top ten currencies in the RMB 

 
1 Among them, the exchange rates for the Japanese yen and the Korean won are relatively small, so they are 

uniformly quoted in units of 100 yen and 100 won, respectively. 



currency basket. Rates are expressed using the direct quotation method, where a rise 

indicates RMB depreciation and a decline indicates appreciation. 

In the foreign exchange market, return series directly reflect price changes and are 

significantly shaped by shocks from extreme events. To capture variations in exchange 

rates, we compute the daily returns of each RMB exchange rate using the logarithmic 

difference method, defined as 𝑅𝑡 = ln⁡(𝑃𝑖,𝑡/𝑃𝑖,𝑡−1) × 100. Panel A of Table 1 presents 

descriptive statistics for the return series of ten RMB exchange rates. The average 

returns are slightly negative across all currency pairs, indicating a mild but negligible 

depreciation trend of the RMB. Return volatility is primarily measured by standard 

deviation, with higher values indicating greater fluctuations. Notably, RUBCNY 

exhibits the highest standard deviation, reflecting significantly higher volatility than 

other pairs. Most return series display positive skewness, indicating frequent small 

gains punctuated by occasional large losses. High kurtosis suggests heavy-tailed 

distributions with frequent extreme movements. Statistically significant Jarque-Bera 

statistics confirm the non-normality suggested by skewness and kurtosis. Both PP and 

ADF tests confirm that all return series are stationary. Ljung-Box Q statistics indicate 

significant autocorrelation, implying serial dependence and potential return 

predictability. 

At the same time, under extreme shocks, exchange rates often exhibit volatility 

clustering, leptokurtosis, and heavy tails, with tail risk spillovers becoming especially 

pronounced. Tail risk spillovers refer to the transmission of extreme volatility shocks 

across variables, often amplifying overall instability. Thus, exchange rate research must 

account for both returns and volatility. As a key indicator of market risk and uncertainty, 

volatility captures underlying fluctuations and becomes especially important during 

extreme events. 

To examine tail risk spillovers under extreme shocks, this study incorporates fat-

tail features and stochastic volatility. It applies asymmetric GARCH models—including 

EGARCH (Nelson, 1991), TGARCH (Zakoian, 1994), and GJR-GARCH (Glosten et 

al., 1993)—to capture leverage effects and asymmetric volatility clustering. The 

optimal model is selected based on Akaike Information Criterion (AIC) and log-

likelihood comparisons under both normal and Skew-t distributions. As shown in Table 



A2, the EGARCH(1,1) model with a Skew-t distribution performs best for most RMB 

exchange rates, effectively capturing asymmetry and fitting empirical data. Accordingly, 

for consistency, this study employs the EGARCH model using the Skew-t distribution 

to capture the leptokurtosis and fat tails commonly observed in financial time series. 

Relevant descriptive statistics are presented in Panel B of Table 1. 

From the data in Panel B, it is evident that RUBCNY exhibits higher average 

volatility compared to other RMB exchange rates, with the largest standard deviation, 

highlighting its pronounced volatility. The skewness coefficients indicate that the 

volatility distributions of all ten RMB exchange rates are positively skewed. Moreover, 

the kurtosis coefficients reveal that all volatility distributions exhibit leptokurtosis and 

heavy tails. Furthermore, Jarque-Bera test statistics confirm that the volatility series for 

all RMB exchange rates significantly deviate from normality. Both PP and ADF tests 

verify that all volatility series are stationary. Lastly, the Ljung-Box Q statistics indicate 

significant autocorrelation across all series. 

Table 1 

Descriptive statistics of RMB exchange rate fluctuations 
 Mean Sd Median Skew Kurtosis J-B ADF PP Q(10) Q(20) 

Panel A. Return Series of RMB Exchange Rates 

USDCNY -0.00003 0.00251 -0.000015 0.288 21.505 58881.42*** -11.329*** -57.384*** 57.232*** 95.685*** 

EURCNY -0.00009 0.006616 0.000117 -0.621 10.915 15357.666*** -13.252*** -56.785*** 9.245*** 20.031*** 

JPYCNY -0.00011 0.007615 -0.00027 -0.069 5.780 4255.295*** -13.936*** -58.280*** 25.761*** 43.839*** 

AUDCNY -0.00008 0.009504 0.00015 -1.458 23.536 71558.198*** -13.706*** -58.367*** 93.723*** 128.420*** 

MYRCNY -0.00010 0.00499 -0.00011 0.730 12.794 21101.371** -13.624*** -57.328** 14.310*** 33.734*** 

RUBCNY -0.00046 0.01481 -0.00025 0.521 40.273 206474.365*** -13.967*** -56.866*** 74.776*** 112.510*** 

HKDCNY -0.00003 0.00243 -0.00002 0.322 18.464 43430.382*** -10.981*** -57.293*** 60.792*** 103.020*** 

GBPCNY -0.00016 0.00707 0.00003 -1.038 12.369 20015.745*** -13.854*** -53.928*** 27.984** 56.736*** 

KRWCNY -0.00015 0.00805 -0.00011 0.882 51.511 337958.948*** -13.733*** -53.941*** 70.107*** 129.300*** 

THBCNY -0.00001 0.00395 -0.00012 0.272 6.770 5870.514*** -13.062*** -53.768*** 16.545*** 39.883*** 

Panel B. Volatility Series of RMB Exchange Rates 

USDCNY 0.002 0.002 0.002 1.710 4.024 3549.831*** -5.703*** -7.390*** 23839.000*** 40898.000*** 

EURCNY 0.006 0.003 0.005 1.269 1.059 962.899*** -3.506*** -3.460*** 28656.000*** 54061.000*** 

JPYCNY 0.008 0.002 0.007 0.854 1.299 586.638*** -5.666*** -6.498*** 23125.000** 37854.000*** 

AUDCNY 0.009 0.005 0.007 4.119 22.503 73058.346** -5.442*** -4.232*** 27640.000*** 49192.000*** 

MYRCNY 0.005 0.002 0.005 2.093 8.791 12063.338*** -5.209*** -6.119*** 23376.000*** 37516.000*** 

RUBCNY 0.012 0.009 0.009 3.782 20.158 58973.955*** -6.871*** -6.272*** 24096.000*** 36869.000*** 

HKDCNY 0.002 0.002 0.002 1.732 4.118 3685.986*** -5.663*** -7.118*** 24025.000*** 41147.000** 

GBPCNY 0.007 0.002 0.006 1.643 3.625 3045.703*** -3.837*** -3.487*** 28266.000*** 52208.000*** 

KRWCNY 0.007 0.004 0.006 4.382 26.233 97317.022*** -5.158*** -4.490*** 27099.000*** 46724.000*** 



THBCNY 0.004 0.001 0.004 1.131 2.023 1172.158** -6.240*** -7.269** 23194.000*** 37922.000*** 

Note: ADF denotes the Augmented Dickey-Fuller unit root test statistic; J-B denotes 

the Jarque-Bera test statistic; PP denotes the Phillips-Perron test; Q(n) denotes the 

Ljung-Box Q statistic at lag n; *, **, and *** indicate significance at the 10%, 5%, and 

1% levels, respectively. 

4. Empirical results  

Based on the QVAR model, this study utilizes its generalized forecast error 

variance decomposition method to construct the risk spillover matrix for RMB 

exchange rate returns and volatilities, systematically capturing spillover effects across 

different market conditions. From a time-frequency perspective, it computes and 

visualizes the static tail risk spillover matrix among RMB exchange rates and quantifies 

each market’s role in the risk propagation network using various metrics. Prior research 

has shown that tail risks during extreme upward or downward market movements 

intensify market irrationality and cause significant losses (Massacci, 2017). Analyzing 

spillovers only in normal markets is inadequate, emphasizing the necessity to study risk 

spillovers under extreme conditions. Accordingly, this study systematically contrasts 

RMB exchange rate spillovers across normal and extreme states to better capture 

systemic risk characteristics and transmission dynamics. 

4.1 Static Spillover Effects of the RMB Exchange Rate 

4.1.1 Time-Domain Perspective of the Results 

To examine the spillover effects between the returns and volatilities of ten RMB 

exchange rates, this study sets the lag order of the QVAR model to 4 based on the AIC 

criterion. Following the approach of  (Gabauer and Gupta 2020) , this study adopts a 

prediction horizon of 12 for the model variance decomposition. The results are 

presented in Tables 2 and 3, respectively. 

Table 2 

Time-Domain Static Spillover for RMB Exchange Rate Returns (Unit: %) 

 =0.05 =0.50 =0.95 

 OWN FROM TO NET OWN FROM TO NET OWN FROM TO NET 

USDCNY 94.81 83.37 78.18 -5.19 101.44 49.43 50.87 1.44 98.58 82.1 80.67 -1.42 

EURCNY 109.8 83.97 93.77 9.8 107.86 45.17 53.03 7.86 107.13 83.61 90.73 7.13 

JPYCNY 93.34 80.94 74.28 -6.66 96.7 11.02 7.72 -3.3 95.83 81.34 77.17 -4.17 

AUDCNY 105.26 82.98 88.24 5.26 109.75 44.81 54.56 9.75 104.21 82.9 87.11 4.21 



MYRCNY 98.54 83.53 82.07 -1.46 89.21 30.32 19.53 -10.79 97.47 84.22 81.7 -2.53 

RUBCNY 89.38 80.79 70.17 -10.62 97.04 15.27 12.31 -2.96 90.58 80.15 70.73 -9.42 

HKDCNY 98.19 83.39 81.59 -1.81 101.69 49.62 51.31 1.69 99.91 82.31 82.22 -0.09 

GBPCNY 105.52 83.12 88.64 5.52 100.59 40.9 41.49 0.59 102.79 83.3 86.08 2.79 

KRWCNY 99.39 82.9 82.29 -0.61 97.32 34.51 31.82 -2.68 96.91 82.14 79.05 -3.09 

THBCNY 105.77 83.34 89.11 5.77 98.4 33.11 31.51 -1.6 106.6 84 90.59 6.6 

TCI 82.83    35.42    82.61    

Note: OWN denotes own variance shocks or idiosyncratic risk, NET measures net 

directional spillovers, and TCI stands for the total connectedness index. FROM refers 

to the receiver of return spillovers, while TO denotes the transmitter. Together, FROM 

and TO sum to the TCI. NET is calculated by subtracting TO spillovers from FROM 

spillovers. Positive or negative values in the NET row indicate whether an asset is a net 

source or net recipient of shocks. 

Table 2 shows asymmetric return spillovers of RMB exchange rates across market 

states. It systematically analyzes the roles of currency pairs in the risk transmission 

network using various spillover indices, revealing the connectedness structure. The 

total spillover index (TCI) is markedly higher in extreme conditions than at the median, 

reflecting increased market interdependence and vulnerability to shocks. At the median 

quantile, AUDCNY shows the highest idiosyncratic risk, JPYCNY the lowest. Under 

extremes, EURCNY experiences the largest own variance shock, while RUBCNY 

shows the smallest, indicating diverse risk exposures across pairs. The risk reception 

index (FROM) indicates EURCNY is most vulnerable in downturns, USACNY leads 

in median markets, and MYRCNY dominates during upturns. This suggests EURCNY 

is sensitive in bearish markets, whereas USACNY and MYRCNY dominate risk 

reception in stable and bullish states. The risk transmission index (TO) identifies 

EURCNY as the main transmitter in extreme volatility, while AUDCNY leads in stable 

markets, likely reflecting its commodity market links. The net spillover index (NET) 

shows EURCNY as the key tail risk transmitter in turbulence, with AUDCNY dominant 

in stable conditions. This highlights market regimes’ strong impact on spillover 

dominance: EURCNY leads in high volatility, AUDCNY in calmer markets. Overall, 

RMB return connectedness shows clear state dependence, with currency roles 

dynamically shifting as markets change. 

Table 3 

Time-Domain Static Spillover for RMB Exchange Rate Volatility (Unit: %) 

 =0.05 =0.50 =0.95 

 OWN FROM TO NET OWN FROM TO NET OWN FROM TO NET 



USDCNY 103.63 69.95 73.58 3.63 105.66 56.7 62.36 5.66 73.47 87.87 61.34 -26.53 

EURCNY 112.83 71.41 84.24 12.83 108.91 44.48 53.39 8.91 123.14 80.32 103.46 23.14 

JPYCNY 106.69 69.8 76.49 6.69 106.64 43.69 50.33 6.64 105.9 88.2 94.1 5.9 

AUDCNY 84.52 53.95 38.47 -15.48 108.43 44.62 53.05 8.43 104.85 80.25 85.09 4.85 

MYRCNY 96.55 66.48 63.03 -3.45 88.01 37.49 25.5 -11.99 102.67 83.6 86.27 2.67 

RUBCNY 86.81 59.38 46.18 -13.19 100.44 22.72 23.17 0.44 110.53 77.19 87.72 10.53 

HKDCNY 104.97 70.56 75.53 4.97 106.54 56.87 63.4 6.54 79.47 87.29 66.75 -20.53 

GBPCNY 102 68.09 70.08 2 96.16 48.48 44.63 -3.84 111.8 85.77 97.57 11.8 

KRWCNY 98.11 65.7 63.81 -1.89 89.99 44.27 34.26 -10.01 110.46 79.86 90.32 10.46 

THBCNY 103.9 70.49 74.39 3.9 89.23 44 33.23 -10.77 77.73 87.76 65.49 -22.27 

TCI 66.58    44.33    83.81    

Note: OWN denotes own variance shocks or idiosyncratic risk, NET measures net 

directional spillovers, and TCI stands for the total connectedness index. FROM refers 

to the receiver of return spillovers, while TO denotes the transmitter. Together, FROM 

and TO sum to the TCI. NET is calculated by subtracting TO spillovers from FROM 

spillovers. Positive or negative values in the NET row indicate whether an asset is a net 

source or net recipient of shocks. 

Table 3 shows that RMB exchange rate volatility spillovers have dynamic 

structures similar to return spillovers and are highly state-dependent. TCI values at the 

0.05, 0.5, and 0.95 quantiles are 66.58%, 35.23%, and 83.81%, respectively, indicating 

stronger risk transmission under extreme market conditions, likely driven by increased 

tail risk correlations from global capital flows and uncertainty. Under neutral conditions, 

USDCNY and HKDCNY have the highest TO and FROM values, underscoring their 

central roles. Under extreme downside, EURCNY leads with TO and FROM at 84.24% 

and 71.41%, while in extreme upside, EURCNY and JPYCNY top the spillovers at 

103.46% and 88.2%. This suggests that RMB rates linked to developed economies are 

key nodes in shock transmission during volatile periods. At the 0.95 quantile, most pairs 

show TO and FROM above 60%, reflecting stronger upside risk spillovers and possible 

contagion asymmetry. The NET index identifies EURCNY as a consistent net risk 

exporter, with elevated spillovers at both tails. Spillover roles shift across states: 

AUDCNY is a net exporter at median and high quantiles but a net recipient at the low 

quantile; USDCNY shows the opposite. These results also highlight that currency pairs’ 

positions in the volatility network adjust dynamically with market conditions, revealing 

limitations of traditional conditional mean-based spillover metrics. 



 

Fig. 3. Net pairwise spillover relationships among different RMB exchange rate 

returns across quantiles 

To offer an intuitive view, this study constructs a tail risk spillover network for 

RMB using the generalized forecast error variance decomposition from the QVAR 

model. Ten RMB exchange rates form the nodes, with edges representing net volatility 

spillover relationships. Arrows show spillover direction toward net recipients, and edge 

weights indicate spillover intensity. Figs. 3 and 4 show notable heterogeneity in tail 

spillover patterns of returns and volatilities under different market conditions. During 

extreme downturns, RUBCNY exhibits the strongest net return spillover, reflecting its 

pronounced sensitivity to geopolitical events and energy price shocks, thus serving as 

a key transmitter of negative shocks. Under normal market conditions, MYRCNY is 

the primary net spillover source, while AUDCNY is the largest net recipient, indicating 

Malaysia’s active influence within the RMB system and Australia’s passive response as 

a commodity currency to external shocks. In extreme up markets, RUBCNY again leads 

as the main spillover source, suggesting its persistent role during rapid market 

recoveries or risk appetite increases. AUDCNY and EURCNY consistently act as stable 

net recipients across market states, likely due to commodity price cycles and the 

eurozone currency’s relative robustness. Overall, in terms of returns, tail market states 

correspond with increased total system spillover effects, highlighting the heightened 

sensitivity of the RMB exchange rate system under extreme market conditions. 

In the volatility dimension, market conditions exert a more pronounced influence 

on the spillover patterns. During low volatility periods, when the market is relatively 

stable, AUDCNY emerges as the primary net volatility spillover source, reflecting its 

role as a leading indicator of global commodity price movements and its continued 



significant volatility transmission effect in low-risk environments. Although the 

network structure adjusts under normal volatility, AUDCNY retains a dominant 

position. In high volatility periods, spillover interactions among currency pairs 

generally intensify, with RUBCNY transitioning from a source of return spillovers to a 

predominant contributor of net volatility spillovers. This may reflect its passive 

absorption of sharp market fluctuations, such as heightened risk aversion or delayed 

monetary policy responses. Meanwhile, EURCNY consistently acts as a stable net 

volatility receiver across all volatility states, underscoring its low volatility profile and 

resilience to shocks. 

 

Fig. 4. Net pairwise spillover relationships among different RMB exchange rate 

volatilities across quantiles 

4.1.2 Frequency-Domain Perspective of the Results 

To analyze the spillover effects of the RMB exchange rate across different 

frequency domains, this study calculates the market spillovers in short-, medium-, and 

long-term horizons. Following Goswami et al. (2023), the sample frequency domain is 

divided into high frequency 𝑑 = ( 5⁄ , ), medium frequency 𝑑 = ( 20⁄ ,  5⁄ ), and 

low frequency 𝑑 = (0, 20⁄ ) , corresponding respectively to short-term (1-5 days), 

medium-term (5-20 days), and long-term (over 20 days) periods2. 

Table 4 

Static frequency-domain spillover of RMB exchange rate returns under normal 

condition (unit: %) 
 USDCNY EURCNY JPYCNY AUDCNY MYRCNY RUBCNY HKDCNY GBPCNY KRWCNY THBCNY FROM 

 
2 The RMB spot exchange rate data in the Wind database covers Monday through Friday, reflecting the structure 

of the global foreign exchange market. Trading centers located in major financial hubs worldwide operate 24 hours 

a day, five days a week, excluding weekends. Accordingly, we define the segments based on duration: 1-5 days as 

a trading week, classified as high-frequency; 5-20 days, spanning a trading week to a month, classified as medium-

frequency; and periods over 20 days, exceeding a trading month, also classified as high-frequency. 



Highest frequency (short-term): Frequency band of [1,5] days  

USDCNY 39.54 0.09 0.44 0.15 0.01 0.04 36.23 0.01 0.00 1.30 38.28 

EURCNY 0.07 43.76 1.22 10.46 1.29 1.66 0.14 13.12 3.71 3.88 35.55 

JPYCNY 1.00 2.00 70.25 1.05 0.19 0.67 1.09 0.03 0.07 2.88 8.98 

AUDCNY 0.26 10.74 0.65 43.91 2.94 1.83 0.12 9.38 6.51 2.78 35.20 

MYRCNY 0.23 1.83 0.34 3.77 54.83 1.88 0.25 1.57 4.88 2.67 17.42 

RUBCNY 0.08 2.23 0.44 2.51 2.54 64.85 0.11 1.08 0.88 1.34 11.20 

HKDCNY 35.78 0.20 0.52 0.09 0.04 0.06 38.70 0.05 0.02 1.36 38.12 

GBPCNY 0.06 13.72 0.05 9.24 1.20 0.91 0.07 45.13 3.00 2.32 30.57 

KRWCNY 0.05 3.48 0.13 7.57 4.67 0.64 0.04 2.98 51.67 4.80 24.35 

THBCNY 1.84 3.94 2.00 2.87 2.41 1.09 1.90 2.53 4.81 51.13 23.40 

TO 39.36 38.23 5.78 37.70 15.30 8.77 39.95 30.75 23.90 23.32  

NET 1.08 2.68 -3.20 2.50 -2.12 -2.43 1.83 0.19 -0.45 -0.08 TCI 

NPT 7.00 8.00 3.00 5.00 1.00 1.00 8.00 4.00 5.00 3.00 26.31 

Intermediate frequency (medium-term): Frequency band of [5,20] days  

USDCNY 7.00 0.01 0.09 0.05 0.01 0.03 6.60 0.00 0.00 0.29 7.07 

EURCNY 0.01 7.52 0.22 2.11 0.24 0.23 0.02 2.53 0.51 0.69 6.55 

JPYCNY 0.07 0.40 12.67 0.16 0.01 0.15 0.07 0.01 0.00 0.54 1.41 

AUDCNY 0.01 2.13 0.09 7.70 0.52 0.27 0.01 1.84 1.32 0.53 6.72 

MYRCNY 0.03 1.25 0.11 2.07 9.84 0.85 0.04 1.00 1.56 1.46 8.36 

RUBCNY 0.03 0.49 0.07 0.64 0.48 13.07 0.04 0.33 0.16 0.34 2.59 

HKDCNY 6.71 0.02 0.10 0.01 0.01 0.02 7.23 0.01 0.00 0.32 7.21 

GBPCNY 0.01 3.05 0.00 2.47 0.20 0.17 0.02 9.51 0.64 0.52 7.09 

KRWCNY 0.01 1.29 0.01 2.62 0.90 0.20 0.01 1.01 9.31 1.01 7.06 

THBCNY 0.27 1.28 0.53 1.16 0.55 0.28 0.31 0.73 0.98 10.52 6.10 

TO 7.14 9.92 1.24 11.28 2.91 2.20 7.12 7.47 5.18 5.71  

NET 0.08 3.38 -0.17 4.56 -5.45 -0.39 -0.09 0.38 -1.88 -0.40 TCI 

NPT 6.00 7.00 4.00 8.00 0.00 3.00 5.00 5.00 1.00 6.00 6.02 

Lowest frequency (long-term): Frequency band of [20,inf] days  

USDCNY 4.03 0.00 0.05 0.03 0.00 0.01 3.86 0.00 0.00 0.12 4.08 

EURCNY 0.01 3.55 0.07 1.03 0.11 0.17 0.02 1.21 0.25 0.21 3.08 

JPYCNY 0.05 0.14 6.07 0.07 0.01 0.00 0.06 0.00 0.00 0.29 0.62 

AUDCNY 0.01 0.89 0.06 3.59 0.22 0.15 0.00 0.67 0.70 0.18 2.88 

MYRCNY 0.01 0.70 0.04 1.18 5.01 0.61 0.01 0.41 0.79 0.78 4.54 

RUBCNY 0.04 0.26 0.04 0.36 0.25 6.81 0.05 0.18 0.11 0.19 1.48 

HKDCNY 4.09 0.00 0.06 0.01 0.00 0.01 4.44 0.00 0.00 0.12 4.30 

GBPCNY 0.01 1.46 0.00 1.06 0.08 0.08 0.03 4.46 0.30 0.22 3.24 

KRWCNY 0.00 0.67 0.01 1.16 0.35 0.09 0.01 0.44 4.51 0.38 3.10 

THBCNY 0.16 0.76 0.37 0.66 0.31 0.22 0.20 0.35 0.58 5.24 3.61 

TO 4.37 4.88 0.70 5.57 1.32 1.34 4.24 3.27 2.75 2.49  

NET 0.28 1.80 0.08 2.69 -3.21 -0.14 -0.06 0.03 -0.35 -1.12 TCI 

NPT 7.00 6.00 6.00 9.00 0.00 2.00 6.00 5.00 3.00 1.00 3.09 

Table 4 reports RMB exchange rate return spillovers of 26.31%, 6.02%, and 3.09% 

in high-, medium-, and low-frequency domains, respectively, with their sum 

representing total time-domain spillovers. The dominant high-frequency spillover 

highlights that risk transmission mainly occurs short-term, driven by short-term trading 

and speculation. Furthermore, factors such as high-frequency trading, market sentiment 

fluctuations, rapid information flow, and sudden economic events amplify these short-

term effects (Liu et al., 2025). Conversely, long-term spillovers are weaker, reflecting 

that RMB returns are less affected by low-frequency shocks. Long-term fluctuations 

mainly stem from economic fundamentals, indicating RMB market stability and 

suitability for long-term investment. Central bank policies, capital account 

liberalization, and RMB internationalization likely mitigate long-term spillovers and 

enhance asset stability over extended horizons. Regarding net spillovers, USDCNY, 



EURCNY, AUDCNY, and GBPCNY consistently act as transmitters. The US dollar and 

euro, as key reserve currencies, exert strong influence, while the Australian dollar and 

British pound affect RMB via commodity ties and financial centers. Meanwhile, 

MYRCNY, RUBCNY, KRWCNY, and THBCNY are net recipients across frequencies, 

likely due to smaller market sizes, lower liquidity, and greater external dependence, 

making them vulnerable to RMB and major currency fluctuations. Additionally, capital 

flows in these emerging currencies are unstable and sensitive to global investor 

sentiment, reinforcing their passive role in spillover transmission. 

Table 5 

Static frequency-domain spillover of RMB exchange rate returns under extreme 

conditions (unit: %) 

  USDCNY EURCNY JPYCNY AUDCNY MYRCNY RUBCNY HKDCNY GBPCNY KRWCNY THBCNY FROM 

=0.05 

Highest frequency (short-term): Frequency band of [1,5] days  

 USDCNY 13.71 7.17 7.51 5.97 7.10 6.05 13.18 6.80 6.38 7.85 68.00 

 EURCNY 5.64 12.19 6.83 8.42 6.64 5.89 6.02 8.93 6.82 7.62 62.82 

 JPYCNY 7.02 8.00 15.07 6.02 6.44 5.01 7.48 6.83 6.18 8.04 61.03 

 AUDCNY 4.83 8.49 5.37 12.28 7.01 5.82 5.18 8.23 7.55 7.03 59.53 

 MYRCNY 5.42 6.35 5.26 6.59 11.53 5.73 5.66 6.00 6.50 6.54 54.03 

 RUBCNY 6.21 7.65 5.6 7.12 7.07 14.46 6.39 7.13 6.45 7.35 60.97 

 HKDCNY 13.47 7.61 7.73 6.33 7.24 6.20 14.03 6.97 6.76 8.17 70.47 

 GBPCNY 5.79 9.51 6.49 8.77 6.82 5.80 6.21 12.84 7.41 7.47 64.27 

 KRWCN

Y 
4.14 5.76 4.61 6.49 5.83 4.25 4.42 5.54 10.93 5.92 46.97 

 THBCNY 6.18 7.36 6.56 6.77 6.62 5.56 6.36 6.62 6.93 12.05 58.96 

 TO 58.7. 67.9. 55.97 62.48 60.77 50.32 60.90 63.04 60.98 66.00  

 NET -9.30 5.08 -5.05 2.94 6.74 -10.65 -9.57 -1.22 14.00 7.03 TCI 

 NPT 2.00 6.00 3.00 5.00 8.00 0.00 1.00 4.00 9.00 7.00 60.71 

Intermediate frequency (medium-term): Frequency band of [5,20] days  

 USDCNY 2.59 1.66 1.53 1.49 1.64 1.32 2.57 1.65 1.40 1.73 15.00 

 EURCNY 1.43 2.81 1.67 2.11 1.67 1.53 1.46 2.26 1.78 1.90 15.82 

 JPYCNY 1.39 1.74 2.61 1.28 1.26 1.18 1.38 1.48 1.37 1.60 12.68 

 AUDCNY 0.90 1.65 0.87 2.48 1.38 1.29 0.98 1.66 1.66 1.39 11.79 

 MYRCNY 1.50 2.20 1.58 2.48 2.98 1.91 1.64 2.02 1.97 2.07 17.37 

 RUBCNY 0.76 0.92 0.70 1.08 1.03 2.34 0.83 0.82 0.80 0.82 7.76 

 HKDCNY 2.17 1.38 1.28 1.27 1.37 1.08 2.25 1.36 1.18 1.47 12.57 

 GBPCNY 1.11 2.02 1.17 1.94 1.43 1.28 1.14 2.70 1.44 1.54 13.07 

 KRWCN

Y 
1.71 2.64 1.65 3.00 2.34 2.00 1.81 2.68 3.47 2.42 20.26 

 THBCNY 1.46 1.85 1.58 1.81 1.72 1.45 1.52 1.79 1.65 2.82 14.83 

 TO 12.43 16.07 12.03 16.46 13.85 13.05 13.34 15.73 13.26 14.94  

 NET -2.56 0.25 -0.65 4.67 -3.53 5.28 0.77 2.67 -7.01 0.11 TCI 

 NPT 1.00 4.00 3.00 8.00 2.00 9.00 6.00 7.00 0.00 5.00 14.12 

Lowest frequency (long-term): Frequency band of [20,inf] days  

 USDCNY 0.34 0.01 0.01 0.00 0.00 0.00 0.33 0.01 0.00 0.00 0.37 

 EURCNY 0.55 1.03 0.58 0.68 0.57 0.49 0.55 0.75 0.61 0.55 5.34 

 JPYCNY 0.80 0.96 1.38 0.74 0.70 0.70 0.80 0.85 0.81 0.88 7.23 

 AUDCNY 0.87 1.64 0.82 2.26 1.26 1.21 0.91 1.85 1.76 1.35 11.66 

 MYRCNY 0.94 1.57 1.05 1.76 1.96 1.32 1.01 1.49 1.52 1.46 12.12 

 RUBCNY 0.83 1.45 1.03 1.79 1.50 2.42 0.90 1.50 1.55 1.50 12.05 

 HKDCNY 0.31 0.01 0.01 0.01 0.00 0.00 0.32 0.01 0.00 0.00 0.35 

 GBPCNY 0.54 0.90 0.47 0.88 0.55 0.58 0.55 1.34 0.71 0.62 5.79 

 KRWCN

Y 
1.34 2.10 1.25 2.28 1.75 1.51 1.39 2.23 2.70 1.81 15.66 

 THBCNY 0.88 1.17 1.05 1.17 1.11 0.99 0.91 1.17 1.10 1.80 9.54 

 TO 7.04 9.81 6.28 9.30 7.45 6.80 7.35 9.87 8.06 8.17  



 NET 6.67 4.47 -0.95 -2.36 -4.67 -5.25 6.99 4.08 -7.60 -1.37 TCI 

 NPT 8.00 7.00 5.00 3.00 2.00 0.00 9.00 6.00 1.00 4.00 8.01 

=0.95 

Highest frequency (short-term): Frequency band of [1,5] days  

 USDCNY 12.64 5.53 6.23 5.00 5.43 4.92 11.94 5.53 4.99 6.64 56.20 

 EURCNY 5.65 12.55 6.77 8.69 6.80 6.17 5.84 9.04 6.86 7.52 63.34 

 JPYCNY 6.81 7.55 13.03 5.84 6.23 5.10 6.87 6.47 5.80 7.65 58.32 

 AUDCNY 5.49 9.41 5.72 13.86 7.71 6.74 5.70 9.05 8.33 7.76 65.91 

 MYRCNY 4.10 5.05 4.18 5.50 9.38 4.74 4.18 4.97 5.33 5.55 43.60 

 RUBCNY 6.42 7.87 6.48 7.74 7.97 16.32 6.62 7.50 6.98 8.07 65.64 

 HKDCNY 12.40 6.14 6.70 5.53 5.93 5.18 12.90 5.92 5.27 6.96 60.03 

 GBPCNY 5.97 9.35 6.25 8.72 6.98 6.35 5.98 12.88 7.10 7.45 64.16 

 KRWCN

Y 
5.25 7.24 5.56 8.47 7.44 5.76 5.33 7.31 13.51 7.54 59.91 

 THBCNY 5.91 6.68 6.40 6.26 6.20 5.36 5.92 6.41 6.24 10.84 55.39 

 TO 58.00 64.82 54.30 61.76 60.69 50.33 58.38 62.20 56.89 65.13  

 NET 1.80 1.48 -4.02 -4.14 17.09 -15.31 -1.65 -1.96 -3.02 9.74 TCI 

 NPT 7.00 6.00 1.00 3.00 9.00 0.00 5.00 4.00 2.00 8.00 59.25 

Intermediate frequency (medium-term): Frequency band of [5,20] days  

 USDCNY 3.01 1.54 1.81 1.43 1.61 1.44 3.02 1.54 1.38 1.95 15.72 

 EURCNY 1.19 2.60 1.59 1.87 1.33 1.20 1.22 1.97 1.49 1.59 13.46 

 JPYCNY 1.59 1.90 3.55 1.40 1.49 1.17 1.61 1.55 1.47 1.89 14.08 

 AUDCNY 0.96 1.61 1.02 2.26 1.37 1.07 0.99 1.55 1.44 1.40 11.40 

 MYRCNY 2.33 3.04 2.69 3.23 4.02 2.52 2.31 2.90 3.05 3.21 25.28 

 RUBCNY 0.82 0.97 0.62 1.08 1.01 2.20 0.77 0.97 0.81 0.94 7.99 

 HKDCNY 2.59 1.31 1.62 1.23 1.39 1.24 2.70 1.29 1.19 1.68 13.54 

 GBPCNY 1.18 1.99 1.34 1.85 1.39 1.29 1.19 2.68 1.34 1.58 13.16 

 KRWCN

Y 
1.40 1.93 1.43 2.19 1.68 1.25 1.43 1.82 2.97 1.90 15.03 

 THBCNY 1.92 2.40 2.16 2.34 2.27 1.92 1.97 2.20 2.11 3.51 19.31 

 TO 13.96 16.70 14.29 16.63 13.53 13.10 14.52 15.79 14.28 16.15  

 NET -1.76 3.24 0.21 5.23 -11.75 5.11 0.98 2.63 -0.74 -3.15 TCI 

 NPT 2.00 7.00 4.00 9.00 0.00 8.00 4.00 6.00 3.00 2.00 14.90 

Lowest frequency (long-term): Frequency band of [20,inf] days  

 USDCNY 2.25 1.04 1.20 0.84 0.97 0.94 2.35 0.76 0.88 1.21 10.18 

 EURCNY 0.61 1.24 0.85 0.89 0.69 0.64 0.63 0.96 0.72 0.82 6.80 

 JPYCNY 0.99 1.09 2.08 0.88 1.02 0.83 1.03 0.98 0.83 1.28 8.94 

 AUDCNY 0.49 0.76 0.63 0.98 0.66 0.48 0.51 0.75 0.67 0.66 5.60 

 MYRCNY 1.52 1.77 1.83 1.81 2.38 1.50 1.53 1.67 1.75 1.95 15.34 

 RUBCNY 0.94 0.73 0.50 0.75 0.72 1.34 0.95 0.54 0.67 0.69 6.51 

 HKDCNY 1.94 0.90 1.08 0.72 0.85 0.81 2.09 0.65 0.76 1.04 8.75 

 GBPCNY 0.60 0.83 0.68 0.78 0.63 0.59 0.62 1.14 0.56 0.70 5.98 

 KRWCN

Y 
0.69 0.94 0.76 0.92 0.82 0.63 0.71 0.77 1.38 0.96 7.20 

 THBCNY 0.94 1.16 1.05 1.12 1.13 0.89 0.98 1.01 1.03 1.65 9.30 

 TO 8.71 9.22 8.58 8.72 7.47 7.30 9.33 8.10 7.87 9.31  

 NET -1.47 2.41 -0.36 3.12 -7.87 0.79 0.58 2.11 0.67 0.01 TCI 

 NPT 2.00 7.00 3.00 9.00 0.00 4.00 3.00 7.00 6.00 4.00 8.46 

Table 5 reports spillover effects under extreme upside and downside conditions. 

Total spillovers are significantly higher during extreme states than at the median, 

indicating intensified cross-market risk transmission amid severe volatility. Despite 

increased spillovers in extremes, short-term effects remain dominant, consistent with 

median-state findings. This highlights rapid market reactions to shocks in the short term, 

while long-term effects stay limited. Further analysis of the net spillover effects reveals 

that EURCNY consistently acts as a net risk transmitter in both extreme upside and 

downside conditions, underscoring its strong influence over other RMB exchange rates 

during periods of market turbulence. JPYCNY exhibits notable state dependence and is 



the primary risk spillover recipient under extreme downside conditions, indicating 

heightened vulnerability to shocks from other RMB exchange rate markets amid market 

panic. Conversely, in extreme upside scenarios, no single dominant recipient emerges, 

suggesting a more balanced risk transmission pattern. This pattern may reflect that 

during broadly bullish markets, increased investor risk appetite reduces the reliance of 

any individual exchange rate on external shocks, thereby dispersing risk more evenly 

across markets. 

Table 6 

Static frequency-domain spillover of RMB exchange rate volatility under normal 

condition (unit: %) 

 USDCNY EURCNY JPYCNY AUDCNY MYRCNY RUBCNY HKDCNY GBPCNY KRWCNY THBCNY FROM 

Highest frequency (short-term): Frequency band of [1,5] days  

USDCNY 0.48 0.02 0.05 0.01 0.03 0.01 0.40 0.02 0.01 0.07 0.61 

EURCNY 0.01 0.10 0.01 0.02 0.01 0.00 0.01 0.01 0.01 0.02 0.10 

JPYCNY 0.13 0.07 0.82 0.10 0.07 0.03 0.12 0.08 0.05 0.12 0.77 

AUDCNY 0.00 0.02 0.01 0.15 0.00 0.01 0.00 0.03 0.02 0.01 0.11 

MYRCNY 0.01 0.01 0.01 0.02 0.44 0.01 0.01 0.00 0.03 0.01 0.12 

RUBCNY 0.01 0.07 0.02 0.05 0.00 0.75 0.01 0.02 0.01 0.02 0.21 

HKDCNY 0.41 0.02 0.07 0.00 0.02 0.01 0.52 0.03 0.01 0.09 0.67 

GBPCNY 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.15 0.00 0.01 0.04 

KRWCNY 0.01 0.03 0.02 0.05 0.01 0.00 0.01 0.01 0.38 0.02 0.16 

THBCNY 0.05 0.03 0.06 0.02 0.04 0.00 0.04 0.04 0.01 0.44 0.29 

TO 0.64 0.27 0.26 0.27 0.19 0.08 0.60 0.23 0.15 0.38  

NET 0.03 0.17 -0.51 0.16 0.07 -0.13 -0.07 0.19 -0.01 0.09 TCI 

NPT 3.00 7.00 0.00 7.00 6.00 3.00 1.00 8.00 5.00 5.00 0.31 

Intermediate frequency (medium-term): Frequency band of [5,20] days  

USDCNY 0.94 0.05 0.10 0.02 0.07 0.02 0.77 0.05 0.02 0.14 1.25 

EURCNY 0.02 0.12 0.02 0.01 0.01 0.00 0.01 0.02 0.01 0.01 0.11 

JPYCNY 0.21 0.13 1.25 0.10 0.11 0.05 0.17 0.06 0.05 0.16 1.05 

AUDCNY 0.00 0.05 0.03 0.29 0.01 0.01 0.00 0.06 0.03 0.01 0.22 

MYRCNY 0.05 0.04 0.07 0.06 0.83 0.02 0.05 0.02 0.10 0.09 0.51 

RUBCNY 0.01 0.09 0.04 0.07 0.01 1.91 0.01 0.03 0.00 0.02 0.29 

HKDCNY 0.74 0.05 0.11 0.01 0.06 0.02 0.91 0.05 0.01 0.16 1.22 

GBPCNY 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.24 0.00 0.03 0.08 

KRWCNY 0.01 0.07 0.04 0.09 0.01 0.00 0.01 0.01 0.64 0.02 0.26 

THBCNY 0.11 0.07 0.22 0.05 0.09 0.05 0.10 0.06 0.06 0.85 0.81 

TO 1.16 0.57 0.64 0.43 0.37 0.19 1.14 0.36 0.28 0.65  

NET -0.09 0.46 -0.41 0.21 -0.13 -0.10 -0.08 0.28 0.02 -0.17 TCI 

NPT 1.00 8.00 1.00 7.00 3.00 5.00 2.00 9.00 6.00 3.00 0.58 

Lowest frequency (long-term): Frequency band of [20,inf] days  

USDCNY 41.88 1.91 4.35 0.66 0.96 1.33 37.67 2.00 0.78 5.18 54.84 

EURCNY 1.39 55.30 7.69 9.35 3.69 3.99 1.79 9.44 4.10 2.84 44.27 

JPYCNY 4.56 8.95 54.23 5.39 3.11 2.37 5.18 4.35 3.95 4.03 41.88 

AUDCNY 0.47 10.71 6.26 54.94 2.09 2.02 0.59 10.04 10.01 2.11 44.30 

MYRCNY 2.12 5.48 5.80 3.20 61.24 3.61 2.11 3.83 4.53 6.19 36.87 

RUBCNY 2.10 2.69 2.93 1.81 4.16 74.62 2.17 3.17 1.23 1.97 22.22 

HKDCNY 38.25 1.96 4.13 0.78 1.02 1.35 41.71 2.17 0.70 4.61 54.97 

GBPCNY 3.05 9.94 6.90 13.15 1.83 2.83 3.57 51.14 4.37 2.71 48.35 

KRWCNY 1.23 6.30 5.22 15.04 4.15 1.94 1.09 6.32 54.71 2.57 43.86 

THBCNY 7.38 4.61 6.15 2.97 3.93 3.46 7.50 2.73 4.18 54.70 42.90 

TO 60.56 52.55 49.43 52.36 24.93 22.90 61.66 44.03 33.83 32.21  

NET 5.73 8.28 7.55 8.06 -11.93 0.67 6.68 -4.32 -10.03 -10.69 TCI 

NPT 7.00 8.00 6.00 6.00 1.00 4.00 6.00 4.00 2.00 1.00 43.45 

Table 6 reports volatility spillover effects in the RMB exchange rate market under 

median conditions. TCI values are 0.31%, 0.58%, and 43.45% for high-, medium-, and 



low-frequency domains, respectively, contrasting sharply with return spillovers. 

Volatility spillovers are notably stronger in the low-frequency domain, indicating that 

long-term factors primarily drive volatility transmission. This suggests risk 

accumulates and dissipates over extended periods rather than through abrupt short-term 

shocks. Such dynamics likely stem from RMB fluctuations being influenced by 

macroeconomic cycles, international capital flows, and policy changes, while short-

term market noise and sudden events exert limited cross-market volatility impact. 

Regarding NET, EURCNY and AUDCNY consistently serve as the primary risk 

exporters across all frequency domains, highlighting their dominant role in volatility 

transmission within the RMB exchange rate market. Conversely, JPYCNY serves as 

the largest net risk receiver in the high- and medium-frequency domains, likely 

absorbing external risks in the short run due to its safe-haven characteristics. However, 

under low-frequency conditions, JPYCNY transitions into a significant net risk exporter, 

reflecting that long-term economic structural factors enhance its capacity to transmit 

risk, thereby evolving from a risk absorber to a key risk transmitter in the RMB 

exchange rate market. 

Table 7 

Static frequency-domain spillover of RMB exchange rate volatility under extreme 

conditions (unit: %) 

  USDCNY EURCNY JPYCNY AUDCNY MYRCNY RUBCNY HKDCNY GBPCNY KRWCNY THBCNY FROM 

=0.05 

Highest frequency (short-term): Frequency band of [1,5] days  

 USDCNY 1.90 0.33 0.47 0.06 0.31 0.30 1.76 0.30 0.23 0.63 4.41 

 EURCNY 0.05 0.30 0.11 0.07 0.09 0.07 0.05 0.12 0.09 0.09 0.74 

 JPYCNY 0.24 0.35 0.98 0.18 0.25 0.16 0.25 0.28 0.26 0.29 2.27 

 AUDCNY 0.01 0.04 0.03 0.19 0.02 0.01 0.01 0.04 0.04 0.02 0.22 

 MYRCNY 0.15 0.29 0.25 0.09 0.97 0.18 0.15 0.20 0.25 0.28 1.84 

 RUBCNY 0.37 0.46 0.37 0.14 0.41 2.23 0.37 0.34 0.26 0.43 3.15 

 HKDCNY 1.67 0.32 0.46 0.06 0.30 0.30 1.80 0.31 0.22 0.60 4.24 

 GBPCNY 0.03 0.07 0.05 0.04 0.04 0.03 0.03 0.20 0.04 0.04 0.39 

 KRWCNY 0.10 0.24 0.21 0.17 0.19 0.09 0.10 0.20 0.79 0.17 1.46 

 THBCNY 0.42 0.36 0.36 0.10 0.37 0.24 0.42 0.29 0.27 1.27 2.82 

 TO 3.03 2.47 2.31 0.91 1.97 1.38 3.16 2.09 1.65 2.55  

 NET -1.38 1.73 0.05 0.69 0.13 -1.77 -1.08 1.70 0.19 -0.27 TCI 

 NPT 1.00 7.00 4.00 9.00 5.00 0.00 2.00 8.00 6.00 3.00 2.15 

Intermediate frequency (medium-term): Frequency band of [5,20] days  

 USDCNY 2.93 0.50 0.71 0.10 0.46 0.47 2.71 0.47 0.36 0.95 6.73 

 EURCNY 0.09 0.52 0.21 0.12 0.16 0.12 0.09 0.20 0.17 0.14 1.31 

 JPYCNY 0.38 0.57 1.56 0.30 0.41 0.24 0.40 0.43 0.42 0.45 3.62 

 AUDCNY 0.01 0.07 0.05 0.31 0.03 0.02 0.01 0.07 0.07 0.03 0.37 

 MYRCNY 0.28 0.55 0.45 0.15 1.74 0.34 0.29 0.37 0.47 0.51 3.42 

 RUBCNY 0.59 0.74 0.61 0.24 0.67 3.62 0.61 0.57 0.42 0.69 5.14 

 HKDCNY 2.70 0.52 0.74 0.10 0.48 0.48 2.92 0.49 0.36 0.98 6.84 

 GBPCNY 0.05 0.12 0.08 0.08 0.06 0.05 0.05 0.34 0.07 0.07 0.63 

 KRWCNY 0.17 0.43 0.34 0.31 0.32 0.14 0.17 0.35 1.36 0.29 2.53 

 THBCNY 0.66 0.59 0.61 0.20 0.60 0.37 0.68 0.48 0.46 1.98 4.66 



 TO 4.94 4.10 3.81 1.59 3.20 2.23 5.02 3.44 2.79 4.12  

 NET -1.79 2.79 0.20 1.23 -0.22 -2.91 -1.82 2.81 0.26 -0.54 TCI 

 NPT 1.00 7.00 5.00 9.00 4.00 0.00 2.00 8.00 6.00 3.00 3.52 

Lowest frequency (long-term): Frequency band of [20,inf] days  

 USDCNY 25.22 4.37 6.20 0.90 3.99 4.37 23.31 4.22 3.00 8.44 58.82 

 EURCNY 4.90 27.76 10.35 6.68 8.57 5.78 5.08 10.55 9.26 8.19 69.37 

 JPYCNY 6.78 10.53 27.66 4.21 7.41 4.76 7.10 7.65 7.32 8.17 63.92 

 AUDCNY 1.57 10.59 7.40 45.55 4.00 3.02 1.77 10.57 10.45 3.99 53.36 

 MYRCNY 5.26 9.73 8.27 2.76 30.81 6.10 5.38 6.77 7.74 9.21 61.22 

 RUBCNY 5.88 7.26 5.95 2.34 6.83 34.77 6.05 5.74 4.03 7.02 51.09 

 HKDCNY 23.01 4.55 6.46 1.06 4.10 4.34 24.72 4.45 3.12 8.39 59.48 

 GBPCNY 5.34 12.13 9.01 7.41 6.78 5.13 5.69 31.37 8.34 7.24 67.07 

 KRWCNY 3.79 10.50 8.45 7.85 8.09 3.72 3.93 8.31 32.16 7.07 61.71 

 THBCNY 9.09 8.00 8.27 2.77 8.08 5.36 9.05 6.30 6.10 26.26 63.01 

 TO 65.62 77.67 70.37 35.96 57.86 42.58 67.36 64.56 59.36 67.73  

 NET 6.80 8.30 6.45 -17.39 -3.36 -8.52 7.87 -2.51 -2.35 4.71 TCI 

 NPT 8.00 6.00 6.00 0.00 4.00 1.00 9.00 2.00 3.00 6.00 60.91 

=0.95 

Highest frequency (short-term): Frequency band of [1,5] days  

 USDCNY 1.40 1.19 1.06 0.83 1.26 2.54 1.48 1.32 0.88 1.12 11.67 

 EURCNY 0.21 0.05 0.03 0.11 0.06 0.18 0.19 0.03 0.07 0.10 0.97 

 JPYCNY 1.06 0.60 0.63 0.40 0.61 1.66 1.07 0.71 0.41 0.60 7.11 

 AUDCNY 0.04 0.40 0.28 0.53 0.11 0.05 0.04 0.27 0.55 0.04 1.79 

 MYRCNY 0.03 0.47 0.36 0.48 0.34 0.04 0.03 0.27 0.51 0.08 2.26 

 RUBCNY 1.01 1.21 1.04 0.89 1.44 2.90 1.06 1.31 0.98 1.08 10.02 

 HKDCNY 1.28 1.13 0.98 0.81 1.15 2.36 1.36 1.24 0.82 0.98 10.75 

 GBPCNY 0.18 0.47 0.44 0.38 0.21 0.27 0.19 0.35 0.34 0.15 2.62 

 KRWCNY 0.02 0.56 0.39 0.81 0.23 0.04 0.03 0.39 0.85 0.08 2.54 

 THBCNY 0.93 0.93 0.83 0.66 1.08 1.34 1.01 0.96 0.79 0.95 8.51 

 TO 4.74 6.98 5.41 5.36 6.14 8.47 5.10 6.49 5.34 4.21  

 NET -6.93 6.00 -1.70 3.56 3.88 -1.55 -5.65 3.88 2.80 -4.30 TCI 

 NPT 0.00 9.00 2.00 8.00 5.00 4.00 3.00 7.00 6.00 1.00 5.83 

Intermediate frequency (medium-term): Frequency band of [5,20] days  

 USDCNY 1.95 1.67 1.47 1.16 1.75 3.57 2.06 1.84 1.23 1.55 16.31 

 EURCNY 0.33 0.22 0.15 0.27 0.20 0.33 0.31 0.17 0.22 0.17 2.17 

 JPYCNY 1.58 0.96 1.01 0.64 0.96 2.58 1.60 1.13 0.69 0.98 11.13 

 AUDCNY 0.22 0.75 0.57 0.90 0.36 0.26 0.21 0.56 0.91 0.21 4.06 

 MYRCNY 0.18 1.01 0.80 0.96 0.81 0.27 0.20 0.66 1.04 0.29 5.40 

 RUBCNY 1.43 1.82 1.54 1.34 2.14 4.16 1.52 1.96 1.46 1.60 14.80 

 HKDCNY 1.79 1.61 1.39 1.13 1.61 3.34 1.92 1.75 1.16 1.39 15.17 

 GBPCNY 0.35 0.78 0.78 0.65 0.41 0.46 0.38 0.62 0.60 0.28 4.69 

 KRWCNY 0.11 1.09 0.77 1.46 0.53 0.21 0.13 0.82 1.57 0.23 5.34 

 THBCNY 1.35 1.40 1.24 1.03 1.63 2.03 1.48 1.46 1.20 1.41 12.82 

 TO 7.33 11.08 8.71 8.64 9.60 13.05 7.90 10.36 8.53 6.69  

 NET -8.98 8.92 -2.42 4.59 4.20 -1.75 -7.27 5.67 3.19 -6.13 TCI 

 NPT 1.00 9.00 2.00 8.00 5.00 4.00 3.00 7.00 5.00 1.00 9.19 

Lowest frequency (long-term): Frequency band of [20,inf] days  

 USDCNY 8.78 5.99 5.82 4.04 6.28 11.31 9.07 6.66 4.46 6.25 59.89 

 EURCNY 2.83 19.40 11.89 13.68 9.25 4.34 3.40 12.11 13.52 6.17 77.18 

 JPYCNY 9.80 7.24 10.15 4.93 7.06 10.93 10.09 7.60 5.40 6.93 69.97 

 AUDCNY 2.31 13.90 10.89 18.32 8.12 4.71 2.76 12.00 15.15 4.56 74.39 

 MYRCNY 2.95 13.05 11.36 10.66 15.25 3.73 4.14 10.64 12.48 6.92 75.94 

 RUBCNY 5.82 6.11 5.37 4.45 7.31 15.75 6.03 6.67 4.87 5.74 52.37 

 HKDCNY 8.88 6.37 6.05 4.40 6.48 11.35 9.43 7.01 4.67 6.18 61.37 

 GBPCNY 5.84 13.03 11.42 10.14 8.54 6.76 6.35 13.25 9.80 6.59 78.47 

 KRWCNY 2.85 12.41 10.10 13.99 9.01 4.28 3.42 10.64 17.72 5.27 71.98 

 THBCNY 8.00 7.30 7.07 4.80 8.49 8.79 8.49 7.39 6.09 9.88 66.43 

 TO 49.27 85.40 79.98 71.09 70.54 66.19 53.75 80.72 76.44 54.59  

 NET -10.62 8.22 10.02 -3.30 -5.40 13.83 -7.61 2.25 4.47 -11.84 TCI 

 NPT 2.00 7.00 6.00 4.00 4.00 6.00 3.00 6.00 7.00 0.00 68.80 

Table 7 reports RMB exchange rate volatility spillovers under extreme market 

conditions, showing patterns consistent with those in returns. The TCI is significantly 

higher during extreme states than in the median scenario, mainly concentrated in the 

low-frequency domain. In terms of NET spillovers, during low-volatility stable periods, 



RUBCNY acts as a pure risk receiver, while EURCNY and JPYCNY serve as primary 

risk exporters. Conversely, under high-volatility conditions, USACNY, HKDCNY, and 

THBCNY become risk receivers, with EURCNY, GBPCNY, and KRWCNY acting as 

exporters. Notably, EURCNY consistently functions as a risk exporter across all 

frequency domains and market regimes, while the identities of risk receivers vary by 

exchange rate and market condition. RUBCNY displays a distinctive pattern during 

extreme uptrends: it remains a risk receiver in short- and medium-term horizons but 

emerges as the largest risk exporter in the long-term domain when volatility spillovers 

peak. This underscores the significant intensification of RUBCNY’s long-term 

spillover effect amid heightened market turbulence. 

4.2 Dynamic Spillover Effects of the RMB Exchange Rate 

Although static spillover effects under the three market states have been identified, 

their dynamic properties require further exploration. This study applies a rolling 

window method to analyze the time-varying spillovers of RMB exchange rate returns 

and volatilities. Following Hoque et al. (2024), a 200-day rolling window with a 12-

day forecast horizon is used to precisely capture spillover dynamics. Prior studies reveal 

that return spillovers during extreme upside or downside states differ significantly from 

the median, indicating that models relying only on conditional mean or median may 

underestimate market dependence amid large shocks. This underscores the importance 

of tail dependence in financial supervision and risk monitoring. Accordingly, we extend 

the analysis across all quantiles to more comprehensively characterize the asymmetry 

of spillovers and transmission mechanisms of extreme risks. 

4.2.1 Total Spillover Effects 

 

Fig. 5. Total risk spillover of RMB exchange rate returns across all quantiles 



 

Fig. 6. Total risk spillover of RMB exchange rate volatility across all quantiles 

The TCI based on the conditional median and conditional mean more accurately 

captures the overall spillover effects of RMB exchange rate tail risk under normal 

market conditions. However, the TCI varies across different levels of shock intensity, 

revealing significant heterogeneity in risk transmission. Fig. 5 and Fig. 6 illustrate the 

time-varying patterns of TCI for RMB exchange rate returns and volatilities across the 

full range of quantiles, offering a comprehensive view of how tail risk spillovers evolve 

over time and across different market states. 

We first analyze risk spillovers in the return series as shown in Fig. 5. The left 

panel presents the TCI distribution across quantiles, revealing the lowest spillover 

intensity near the 0.5 quantile, indicating limited transmission under normal market 

conditions. In late 2008, large stimulus policies responding to the global financial crisis 

spurred investment and significantly increased spillovers. Between 2013 and 2015 and 

again in late 2017, sluggish global recovery, heightened political uncertainty, and 

tighter financial conditions depressed capital markets, causing a TCI decline. By early 

2024, uneven global recovery and rising geopolitical tensions heightened volatility, yet 

TCI fell further, suggesting weakened systemic spillovers under uncertainty. The right 

panel’s first subplot shows the median-based TCI fluctuating between 40% and 70%, 

reflecting pronounced time variation consistent with earlier trends. The second subplot 

reports TCI at the 0.05 and 0.95 quantiles, which capture sensitivity to extreme negative 

and positive shocks. These tail values significantly exceed the median, ranging mostly 

from 80% to 95% with limited volatility. This indicates the RMB exchange rate 

system’s heightened sensitivity to extreme shocks and stronger risk transmission in tail 

events. The third subplot, based on Ando et al. (2018), presents relative tail dependence 



(RTD=TCIτ=0.95−TCIτ=0.05). Our results align with Massacci (2017), revealing clear 

asymmetry between upper and lower tails and strong tail connectivity. Positive 

(negative) RTD signals greater (weaker) dependence on positive (negative) shocks, 

correlating with financial vulnerability. Overall, RTD oscillates near zero, indicating 

balanced transmission of extreme positive and negative shocks. Yet, RTD deviates 

significantly in specific periods, reflecting cyclical shifts in tail risk sensitivity. For 

instance, late 2007 showed negative RTD, signaling stronger sensitivity to negative 

shocks; during late 2015’s exchange rate reform, RTD was positive, indicating greater 

dependence on positive shocks. These dynamics highlight evolving market sensitivity 

and offer key insights for risk monitoring. 

Secondly, we analyze risk spillover in the volatility series (see Fig. 6). The left 

panel’s 3D distribution shows that risk spillover near the 0.5 quantile remains low, 

indicating low volatility spillover under neutral market conditions. Color intensity 

reveals risk spillover in the right tail significantly exceeds the left, indicating stronger 

contagion during extreme upward movements. The first two right panels confirm this 

pattern, showing pronounced dynamic evolution of total RMB exchange rate risk 

spillover over time. Key event analysis shows the 2008 US subprime crisis triggered 

global turmoil, pressuring the RMB downward and causing prolonged export decline. 

China’s stock market saw severe volatility in 2015. Despite a non-market-oriented 

exchange rate mechanism, the RMB was notably impacted. Sino-US trade tensions 

escalation in 2018 intensified RMB depreciation expectations. The 2020 COVID-19 

outbreak and lockdowns severely disrupted the global economy, markedly increasing 

RMB risk spillover. The 2022 Fed rate hikes strengthened the US dollar, renewed RMB 

pressure, and elevated risk spillovers. The third right panel shows relative tail 

dependence from volatility, assessing asymmetry in tail risk spillover. Positive 

(negative) RTD values indicate stronger (weaker) spillovers during high versus low 

volatility periods. Volatility-based RTD remains consistently positive, implying 

heightened market interdependence in volatile periods. This suggests greater systemic 

risk under high-volatility shocks and relative stability in calmer conditions. This may 

reflect asymmetry between market behavior and policy: investor herding amplifies 

upward momentum during appreciations, while regulatory actions curb declines, 



reinforcing right-tail dependence. Asymmetries in global capital flows and external 

shocks also play key roles. For example, Fed policy adjustments often intensify RMB 

upward pressure but have limited impact on depreciation. Markets typically leverage 

upward moves but turn risk-averse during declines. This amplifies right-tail dependence, 

highlighting market fragility under high volatility. 

 

Fig. 7. Total dynamic spillover effects of RMB exchange rate returns across quantile-

based frequency domains 

 

Fig. 8. Total risk spillover effects of RMB exchange rate volatility across quantile-

based frequency domains 

Moreover, this study further examines risk spillover across quantiles. Figs. 7 and 

8 depict the tail risk spillover of the RMB exchange rate measured across different 

quantiles and frequency domains, offering a detailed view of its dynamic evolution 

under extreme market volatility and across time scales. The left panel shows that,  

regardless of whether the total spillover index derives from returns or volatilities, 



spillover effects across quantiles form a distinct U-shaped curve, reflecting intensified 

spillovers during extreme market conditions. Return-based total spillovers display 

symmetry between left and right tails, while volatility-based spillovers exhibit 

pronounced asymmetry, with right-tail spillovers notably exceeding those on the left. 

To validate this, statistical tests on average spillovers at four extreme quantile pairs 

(0.95-0.05, 0.9-0.1, 0.85-0.15, and 0.8-0.2) were conducted. Results for returns show 

the mean difference near zero and the proportion close to 50%, confirming approximate 

balance between upper and lower tail spillovers. This balance under extreme shocks 

likely reflects the interplay of systemic risk, common drivers such as market sentiment, 

and regulatory equilibrium between policy intervention and market forces. Conversely, 

volatility results reveal consistently greater right-tail spillovers at these quantiles, with 

differences statistically significant. This indicates stronger contagion during extreme 

upswings than downturns. Frequency analysis supports this asymmetry, as upper-tail 

spillovers exceed lower-tail ones more frequently. The asymmetry may arise from 

amplified irrational market sentiment driven by factors such as trade frictions, domestic 

economic conditions, global currency settlements, and central bank policies, which 

intensify RMB exchange rate uncertainty and exacerbate volatility spillovers. 

The right panel shows that the TCI from the return series is mainly driven by the 

high-frequency component across all quantiles, reflecting the market’s acute sensitivity 

to short-term shocks. Conversely, the TCI from the volatility series is largely dominated 

by the low-frequency component, indicating that volatility spillovers tend to be more 

stable and linked to long-term risks. With increasing quantiles, high- and medium-

frequency spillovers increase substantially, sometimes matching or exceeding the low-

frequency component at extreme quantiles. This suggests that during sharp market 

fluctuations, risk responses extend beyond short-term shocks to include sustained 

oscillations, creating a complex interplay between short- and medium-term risks. This 

heterogeneity in spillover dynamics can be explained by the differing nature of return 

and volatility fluctuations. Return fluctuations mainly arise from short-term trading 

behavior, information shocks, and investor sentiment, leading to rapid and intense risk 

transmission. In contrast, volatility reflects broader market uncertainty evolving 

gradually under the influence of long-term macroeconomic trends, policy shifts, and 



structural changes. During extreme episodes, sharp short-term volatility spikes coexist 

with accumulating medium-term risks, amplifying both medium- and short-term 

components of volatility spillovers. This pattern highlights the complex and evolving 

nature of volatility risk transmission over time, consistent with previous findings. 

4.2.2 Net Spillover Effects 

 

Fig. 9. Net Risk Spillover of RMB Exchange Rate Returns Across Quantile-

Frequency Domains 

 

Fig. 10. Net Risk Spillover of RMB Exchange Rate Volatilities Across Quantile-

Frequency Domains 

Note: In the line charts across different quantiles, the yellow line represents the short-

term spillover effect, the green line indicates the medium-term spillover effect, and the 



red line signifies the long-term spillover effect. 

In the following analysis, this study primarily examines the network’s overall 

connectivity to investigate interactions among system variables. Prior studies recognize 

net interest rate shocks as key indicators of connectivity (Khalfaoui et al., 2022; Zhang 

and Wei, 2024). Figs. 9 and 10 display net spillover effects of the RMB exchange rate, 

derived from returns and volatilities across quantiles, and analyze their frequency-

domain characteristics. Fig. 9 shows that spillover effects at the distribution tails of 

RMB returns markedly exceed those near the median, suggesting more pronounced net 

spillover effects in extreme cases. Net spillover analysis across three quantiles 

underscores short-term spillover dominance. However, in Fig. 10, net spillover effects 

in extremes do not consistently surpass median levels, with even the net spillover at the 

0.5 quantile for RUBCNY exceeding that of the extremes. While long-term spillovers 

typically dominate in the volatility series, we hypothesize that short-term spillovers 

become exceptionally prominent during extreme upward movements. This hypothesis 

is supported by the empirical results. Overall, while spillover patterns in both figures 

are similar, volatility-based net spillover indices show greater volatility. Notably, each 

RMB exchange rate exhibits distinct spillover profiles, influenced differently by 

varying market volatility patterns. In extreme events, net spillover patterns across the 

two quantiles differ markedly, with no consistent net volatility transmitter or receiver 

over time. Therefore, investors and policymakers must closely monitor the evolving net 

spillover dynamics of the RMB exchange rate under such extreme conditions. 

5. Further analysis  

Building on the time-varying results above, the evidence indicates that external 

risk shocks play a significant role in shaping the extreme spillover effects among RMB 

exchange rates, affecting both return and volatility dimensions. This prompts a central 

question: what risk factors drive the dynamic evolution of interconnectedness across 

the ten RMB exchange rate markets? In practice, market participants often rely on these 

underlying drivers to anticipate or assess the magnitude of extreme risk spillovers in 

the global RMB exchange rate system. Identifying these determinants not only 

enhances the forward-looking effectiveness of risk management strategies but also 



offers valuable policy implications for investors and regulators seeking to evaluate 

evolving risk conditions. This section therefore aims to empirically identify the key 

drivers of both total and net spillover effects, in order to deepen understanding of RMB 

exchange rate risk transmission mechanisms and to uncover the structural logic behind 

spillover patterns in returns and volatilities across different market regimes. 

Drawing on existing literature, this study identifies eight potential time series 

drivers of dynamic total tail spillovers. These include: 1. Geopolitical Risk Index, 2. 

Real Interest Rate, 3. Gold ETF Volatility Index, 4. Crude Oil ETF Volatility Index, 

5. Short-Term Capital Flows, 6. Exchange Rate Intervention, 7. S&P 500 Index, 8. 

Shanghai Composite Index. The corresponding data were obtained from the Wind 

database and the National Bureau of Statistics of China. Below is a brief theoretical 

rationale for the selection of each variable: 

（1） Global Uncertainty Factor: Geopolitical Risk Index 

Geopolitical events frequently trigger increased risk aversion in financial 

markets, leading to a flight of capital toward safer assets, which subsequently 

influences the spillover effects of the RMB exchange rate. This indicator 

captures how external sudden risks exacerbate volatility within the exchange 

rate market, thereby altering the interconnectedness among different currencies. 

Accordingly, it is reasonable to hypothesize a significant relationship between 

the Geopolitical Risk Index and exchange rate spillovers (e.g., Hui, 2022; Iyke 

et al., 2022). 

（2） Monetary Stability Indicators: Real Interest Rate and Exchange Rate 

Intervention 

Real interest rates and exchange rate interventions, as key indicators of 

monetary stability, jointly shape the dynamic evolution of exchange rates 

through market forces and policy actions. In the RMB exchange rate system, 

real interest rates reflect domestic financial conditions, influencing capital flows, 

market expectations, and the internal linkage among exchange rates. Higher real 

interest rates enhance the appeal of RMB assets, attract capital inflows, and 

reinforce exchange rate equilibrium (Edison and Pauls, 1993). Meanwhile, 

central bank interventions guide market sentiment and correct short-term 



misalignments, especially when rates deviate from fundamentals. Through 

foreign reserve adjustments and countercyclical policies, such interventions 

mitigate the impact of one-sided expectations (Dominguez, 1998). Together, 

these mechanisms form a dual foundation—market-based and policy-driven—

for sustaining internal exchange rate stability and explaining the spillover 

patterns across RMB exchange rates. 

（3） Commodity Market Factors: Gold ETF Volatility Index and Crude Oil 

ETF Volatility Index 

Commodity prices are closely linked to exchange rate markets. Gold, 

recognized as a safe-haven asset, serves as an indicator of market risk 

expectations (Iqbal, 2017). Crude oil, as a major global commodity, directly 

influences inflation expectations and economic growth, thereby impacting 

currency markets (Ayres et al., 2020). Hence, incorporating the Gold ETF 

Volatility Index and Crude Oil ETF Volatility Index allows for a more 

comprehensive assessment of how external commodity factors affect spillover 

effects in the RMB exchange rate. 

（4） Influence of Capital Dynamics: Short-Term Capital Flows 

Short-term cross-border capital flows primarily influence exchange rate 

fluctuations through two key mechanisms: interest rate arbitrage and sentiment 

transmission. Capital flows are highly sensitive to the differential between 

domestic and foreign interest rates, and according to the uncovered interest 

parity theory, arbitrage transactions adjust the supply and demand balance via 

the spot foreign exchange market, which can lead to short-term exchange rate 

overshooting. Furthermore, abrupt shifts in market risk preferences can trigger 

a “herd effect,” meaning that during periods of increased uncertainty, short-term 

capital flows tend to exacerbate exchange rate fluctuations, and their self-

reinforcing trading inertia significantly amplifies the fragility of the exchange 

rate market. Consequently, these dynamics may actively promote the risk 

spillover effect of the exchange rate (Li et al., 2021). 

（5） Financial Market Impact: S&P 500 Index and Shanghai Composite Index 

The performance of global equity markets often reflects investors’ risk appetite 



and market liquidity conditions. Significant fluctuations in stock markets can 

trigger capital reallocations between RMB-denominated assets and other asset 

classes, thereby influencing exchange rate interconnectedness (Cenedese et al., 

2016; Nusair and Olson, 2022). Accordingly, this study selects the S&P 500 

Index as a proxy for the global market and the Shanghai Composite Index to 

represent the Chinese market, aiming to analyze how financial market volatility 

impacts the spillover effects of the RMB exchange rate. 

5.1 Determinants of Total Spillover Effects 

After identifying the core variables, this study analyzes the dynamic impact on the 

internal linkage relationships and spillover structure within the RMB exchange rate 

system. Given the complexity and pronounced time-varying nature of the exchange rate 

system, it is essential to employ methodologies capable of handling nonlinear, 

multivariate, and temporal dependencies for effective modeling and analysis. To this 

end, this study employs the TFT model 3  to empirically examine the dynamic 

relationships between the selected variables and exchange rate spillovers, aiming to 

more comprehensively characterize their mechanisms and temporal heterogeneity 

across varying market conditions. To enhance the model’s ability to capture long-term 

trends, all variables undergo X-5 filtering to mitigate the influence of short-term 

fluctuations. In the modeling process, the approach adopts an inter-temporal 

perspective, using several lagged periods of variables to predict outcomes for a single 

period, making the window length a crucial hyperparameter. The macroeconomic 

environment is complex, and the optimal lag length is unknown in advance. To address 

this, this study tests various lag settings and selects the best-performing one to ensure 

both predictive accuracy and economic interpretability. 

To systematically and rigorously assess the forecasting performance advantages 

of the TFT model, this study selected several representative classical AI models—

including Support Vector Machine (SVM), Multilayer Perceptron (MLP), Recurrent 

Neural Network (RNN), and Long Short-Term Memory (LSTM)—as benchmark 

 
3 In this study, we conducted a systematic hyperparameter search and optimization process during the training of 

the TFT model. By iteratively traversing the hyperparameter space, we identified the optimal configuration: 300 

training epochs, a batch size of 32, a learning rate of 0.7, 115 hidden units, a dropout rate of 0.1, and Ranger 

activation functions. These settings were validated through extensive experimentation, achieving a sound balance 

between convergence stability and predictive performance, and were employed as the standard setup in all 

subsequent analyses. 



methods. Prediction experiments were conducted focusing on the total and net 

spillovers of RMB exchange rate returns and volatilities. To enhance the comparability 

of results across models, all benchmark models incorporated the full set of input 

features used by the TFT model, and the inter-temporal lag length parameter was 

uniformly fixed at 5 periods in the forecasting setup to ensure consistency and fairness 

in comparison. 

Table 8 presents the forecasting performance of the TFT model compared with 

several traditional benchmark models across five key evaluation metrics: Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error 

(MAPE), Mean Squared Logarithmic Error (MSLE), and Median Absolute Error 

(MEDAE). The comparative analysis of forecast results for the two types of series at 

the 0.05, 0.5, and 0.95 quantiles demonstrates that the TFT model consistently 

outperforms the baseline models across most indicators and quantiles. This highlights 

its superior predictive performance and robustness in handling complex time series 

dynamics. It is worth noting that the coefficient of determination (R2) was excluded 

from the evaluation framework due to the limited variability in some target variables, 

which could otherwise lead to misleading interpretations. 

Table 8 

Forecasting Performance of Different Models on Total Risk Spillovers 

 TSI Based on Return Series TSI Based on Volatility Series 

 
RMSE MAE MAPE MSLE MEDAE RMSE MAE MAPE MSLE MEDAE 

τ=0.05 

SVM 1.411 1.1463 0.0131 0.0003 0.9963 3.7366 2.9009 0.0558 0.0049 2.2155 

MLP 1.3711 1.0964 0.0125 0.0002 0.9619 3.3779 2.5455 0.0469 0.0038 2.0095 

RNN 1.1967 0.9644 0.011 0.0002 0.8525 2.6809 1.9827 0.037 0.0024 1.7077 

LSTM 1.1842 0.929 0.0106 0.0002 0.7495 2.3603 1.6427 0.0309 0.0019 1.2261 

TFT 1.1696 0.8927 0.0102 0.0002 0.6979 1.725 1.2241 0.0226 0.001 0.9137 

τ=0.5 

SVM 3.7366 2.9009 0.0558 0.0049 2.2155 1.5363 1.1882 0.0241 0.0009 0.9656 

MLP 3.3779 2.5455 0.0469 0.0038 2.0095 1.3935 1.0488 0.0211 0.0007 0.8017 

RNN 2.6809 1.9827 0.037 0.0024 1.7077 1.2001 0.8923 0.0177 0.0005 0.6873 

LSTM 2.3603 1.6427 0.0309 0.0019 1.2261 1.0082 0.724 0.0145 0.0004 0.5392 

TFT 1.725 1.2241 0.0226 0.001 0.9137 0.94 0.6906 0.0139 0.0003 0.5484 

τ=0.95 

SVM 2.1233 1.7568 0.02 0.0006 1.6419 2.0561 1.6926 0.0193 0.0005 1.5442 

MLP 2.3116 1.908 0.0218 0.0007 1.7715 1.8996 1.4943 0.0172 0.0005 1.2373 



Note: Bolded values are the best-predicted evaluation indicator data. 

Based on the model’s predictive outputs for the total spillover of return and 

volatility series across ten RMB exchange rates from May 2021 to September 2024, 

this study utilizes the variable selection network and multi-head attention mechanisms 

of the TFT model to extract the relative importance of each explanatory variable in 

contributing to the spillover indices over time and across quantiles, as detailed in Table 

9. It is important to note that the attention weights primarily reflect the relative ranking 

of variable importance at each time step, and should not be directly interpreted as the 

actual quantitative contribution to the forecasting results (Clark et al., 2019; Kovaleva 

et al., 2019). Therefore, this study organizes the weights of the eight primary 

influencing factors over the forecast window and integrates them with the predicted 

values of the spillover index to conduct a comprehensive analysis of their relative 

importance and dynamic evolution. This approach aims to uncover the behavioral 

characteristics of the RMB exchange rate system during the sample period, rather than 

drawing conclusions based on individual indicators or isolated time points. 

An analysis of the total spillover within the return series indicates that, under 

normal market conditions, the S&P 500 Index holds the greatest relative importance, 

suggesting that RMB exchange rate returns exhibit strong sensitivity to fluctuations in 

global capital markets. As a widely recognized indicator of investor risk appetite and 

market liquidity, variations in the S&P 500 Index are rapidly transmitted to emerging 

market currencies, thereby influencing movements in the RMB exchange rate. Under 

extreme downside scenarios, the Geopolitical Risk Index becomes the most influential 

factor. This reflects the heightened importance of risk aversion and the dominant role 

of geopolitical uncertainty in driving foreign exchange market volatility when negative 

shocks intensify. Conversely, under extreme upside conditions, the Crude Oil ETF 

Volatility Index holds the highest relative weight. This finding suggests that during 

periods of positive global economic expectations and increased risk appetite, 

fluctuations in commodity prices, especially in energy markets, exert the strongest and 

most direct influence on the RMB exchange rate by altering trade conditions and 

RNN 1.7876 1.4116 0.0161 0.0004 1.1959 1.6988 1.3449 0.0154 0.0004 1.1596 

LSTM 1.6487 1.3435 0.0153 0.0004 1.1531 1.1812 0.9044 0.0104 0.0002 0.7088 

TFT 1.6096 1.1578 0.0135 0.0003 0.8802 1.0114 0.7640 0.0088 0.0001 0.5864 



shaping expectations of imported inflation. 

The total spillover of the volatility series exhibits distinct characteristics compared 

to its return counterpart. Under normal market conditions, short-term cross-border 

capital flows carry the highest weight, suggesting that variations in short-term liquidity 

serve as a primary driver of RMB exchange rate volatility. This pattern likely arises 

because cross-border capital flows directly reflect shifts in investor sentiment, risk 

appetite, and global liquidity, all of which exert immediate and sensitive influence on 

exchange rate fluctuations. In scenarios characterized by extremely low volatility, the 

Crude Oil ETF Volatility Index emerges as the most influential factor. This indicates 

that even during periods of market calm, marginal changes in commodity prices can 

disrupt expectations and exert a measurable impact on the foreign exchange market. 

Conversely, under conditions of extremely high volatility, exchange rate intervention 

becomes the dominant variable. This suggests that during periods of heightened market 

stress, official intervention in the foreign exchange market constitutes a critical tool for 

stabilizing expectations and mitigating excessive fluctuations. 

Table 9 

Importance Rankings of Input Variables 

Variables 
τ=0.05 τ=0.5 τ=0.95 

Coefficient Percentage Coefficient Percentage Coefficient Percentage 

Return Series Metrics 

Geopolitical Risk Index 33.0442 23.29% 7.6074 10.54% 8.4700 12.37% 

Real Interest Rate 3.8513 2.71% 8.3007 11.50% 8.8748 12.96% 

Gold ETF Volatility 19.5933 13.81% 11.2449 15.58% 10.0608 14.70% 

Crude Oil ETF Volatility 6.9057 4.87% 5.0780 7.04% 16.4095 23.97% 

Short-term Capital Flows 21.9175 15.45% 8.7392 12.11% 4.3259 6.32% 

Exchange Rate Intervention 23.0717 16.26% 8.8893 12.32% 3.8672 5.65% 

S&P 500 Index 6.7625 4.77% 11.3787 15.77% 10.3752 15.16% 

Shanghai Composite Index 26.7276 18.84% 10.9155 15.13% 6.0697 8.87% 

Volatility Series Metrics 

Geopolitical Risk Index 14.8129 14.86% 15.4359 13.28% 16.0813 8.81% 

Real Interest Rate 14.3101 14.35% 14.5784 12.54% 22.2295 12.18% 

Gold ETF Volatility 9.4719 9.50% 13.6203 11.71% 8.0352 4.40% 

Crude Oil ETF Volatility 16.4531 16.50% 16.0662 13.82% 23.1651 12.69% 

Short-term Capital Flows 10.6912 10.72% 18.1103 15.58% 36.3679 19.93% 

Exchange Rate Intervention 15.5757 15.62% 13.4997 11.61% 40.9651 22.44% 

S&P 500 Index 10.5680 10.60% 14.0220 12.06% 15.9166 8.72% 

Shanghai Composite Index 7.8264 7.85% 10.9400 9.41% 19.7627 10.83% 



Note: Bolded values indicate that under equal conditions, the variable has the highest 

coefficients and percentages. 

Combined with the analysis results of Fig. 11, it can be seen that the figure 

illustrates the dynamic evolution of the importance ranking of the influencing factors 

related to the total spillover of returns and volatilities over time at three quantiles. The 

results indicate that under different market scenarios, the core variables with the highest 

weights consistently maintain a significant leading position and dominate the trend of 

changes in the total spillover level of the RMB exchange rate. However, aside from 

these dominant variables, the relative importance of the remaining factors exhibits clear 

time-varying characteristics, showing a ranking structure that adjusts continuously over 

time. This pattern reflects that at different stages, evolving macroeconomic 

environments, global financial market fluctuations, and policy interventions lead to a 

phased restructuring of the exchange rate spillover framework. These features highlight 

the high sensitivity and adaptability of the spillovers of RMB exchange rate returns and 

multiple volatilities in responding to complex macro-financial scenarios. 

 

Fig. 11. Historical Dynamic Evolution of Variable Importance Rankings 

By further decomposing and analyzing the multi-head attention weights of the 

forecast results for the total spillover of RMB exchange rate returns and volatilities, this 

study reveals that the total spillover is not excessively dependent on the most recent  

influencing factors (see Figs. 10-11). Taking the extreme downside scenario as an 



example, for both returns and volatility, the relative importance of historical 

information within the five-period window used for daily forecasts is distributed 

relatively evenly and stably. Notably, the historical data from period T-5, which is 

temporally more distant from the forecast point T, occasionally contributes more to 

predictions at certain time points than the immediately preceding T-1 period. This 

indicates the absence of a simple “closer in time, higher weight” pattern, thereby 

highlighting a temporal lag in the actual influence of input variables on the total 

spillover level. 

We begin by examining the dynamics of returns, as depicted in Fig. 12. Under 

baseline market conditions, the spillover effects in RMB exchange rate returns exhibit 

relative stability. However, exogenous shocks disrupt this equilibrium, precipitating a 

dynamic reorganization of the spillover architecture. Specifically, at the median 

quantile, the contribution magnitudes across forecasting horizons were relatively 

homogeneous with limited volatility throughout the first half of 2022 and prior periods, 

indicative of rational market expectations and subdued external disturbances. Since late 

2022—most notably in the final quarter of the year and during June and July 2023—

these contribution values have manifested substantial fluctuations. This period 

coincides with a confluence of critical macro-financial events, including the accelerated 

tightening of U.S. monetary policy by the Federal Reserve, recalibration of China’s 

COVID-19 containment measures, and the ongoing unwinding of risks within the real 

estate sector. Such compounded shocks have engendered pronounced shifts in both 

global and domestic financial conditions, eliciting heightened volatility in market risk 

sentiment and triggering a rapid repricing and temporal differentiation of the relative 

importance across forecast horizons. 

In the extreme downside scenario, the volatility of contribution values across 

forecast horizons further intensifies, exhibiting more pronounced and abrupt 

fluctuations. Notably, the weight associated with the T-5 period consistently surpasses 

those of other lags, underscoring the heightened significance of more distant historical 

information in shaping market expectations during severe negative shocks. This pattern 

reflects the prevalence of inertia-driven trading and momentum continuation within the 

foreign exchange market. Market participants tend to anchor their expectations on prior 



trends, thereby amplifying short-term volatility and reinforcing the influence of 

historical trajectories on prevailing market sentiment and trading dynamics. Such 

behavior highlights a pronounced path dependence and collective behavioral tendency 

in the RMB exchange rate’s response to adverse external shocks under extreme 

downside conditions. 

In the extreme upside scenario, the spillover structure exhibits pronounced 

asymmetry and heterogeneity, characterized by episodic concentration in specific 

forecast periods. Notably, from May to September 2021, late 2022, April 2023 to 

February 2024, and August 2024, spillover contributions were heavily concentrated, 

reflecting temporary impacts of distinct events or market sentiment. Between May and 

September 2021, RMB broadly appreciated, supported by strong exports, capital 

inflows, and intermittent US dollar weakness. Regulatory adjustments in technology 

and real estate caused short-term sentiment shifts, driving spillover changes. Late 2022 

saw “triple pressure” from COVID outbreaks, real estate corrections, and Fed hikes, 

increasing risk aversion and market volatility with concentrated spillovers. From April 

2023 to February 2024, weak domestic data, Fed tightening, and real estate risks led to 

phased RMB depreciation, followed by a rebound as the Fed paused hikes and domestic 

policies aimed to stabilize growth—spurring volatile spillover patterns. In August 2024, 

factors including China’s Q2 GDP, Fed decisions, Chinese political signals, and US 

election-related policy shifts intensified market volatility, triggering another spike in 

spillover concentration. 



 

Fig. 12. Lagged weight distribution of historical information in total return spillover 

prediction 

Unlike returns, RMB exchange rate volatility spillovers display more complex, 

regime-dependent dynamics (see Fig. 13). Under normal and extreme downside 

conditions, volatility spillover weights concentrate mainly in two periods: February to 

August 2022 and June 2023 to December 2024. In these intervals, the T-5 lag dominates, 

indicating a delayed reflection of past information. During these periods, the Federal 

Reserve accelerated interest rate hikes, the escalation of the Ukrainian crisis drove up 

energy and food prices, China’s economic growth decelerated, and global supply chains 

remained strained—factors that collectively exerted sustained but moderate external 

pressure. Investor perceptions and risk pricing evolve gradually, reflecting that under 



normal and mild fluctuations, capital flows, risk assessments, and portfolio 

reallocations exhibit inertia. Consequently, volatility is primarily driven by long-term 

shifts in macroeconomic fundamentals rather than by isolated events. Overall, in stable 

or mildly volatile markets, exchange rate volatility mirrors the gradual integration of 

slow-moving macroeconomic changes into expectations, representing a natural 

economic cycle. 

Under extreme upside scenarios, variable importance weights show pronounced 

and volatile shifts. Notably, during mid-2021, from September 2022 to September 2023, 

and between May and December 2024, amid external shocks such as accelerated Fed 

rate hikes, changes in domestic macro policies, and rising geopolitical tensions, 

exchange rate volatility surged with weights concentrated in the T-1 period, reflecting 

strong market sensitivity to recent information. For example, in June 2021, the Fed’s 

tapering announcement triggered rapid US dollar strengthening and RMB depreciation 

pressure, sharply heightening investor risk sentiment and short-term volatility. After the 

Fed’s November 2022 rate hike, the US dollar index rose steadily, intensifying 

depreciation expectations and market uncertainty, leading to abrupt capital flow 

reversals. These episodes reveal a tight link between capital flow imbalances and 

shifting policy expectations. Market responses to major policy shifts or crises often 

display nonlinear dynamics with overshooting, large short-term capital movements, and 

elevated volatility—hallmarks of market irrationality. 



 

Fig. 13. Lagged weight distribution of historical information in total volatility 

spillover prediction 

Overall, fluctuations in the external environment disrupt the steady evolution of 

spillover effects seen under normal conditions by altering market risk preferences and 

liquidity expectations. This disturbance causes a significant temporal redistribution of 

spillover contributions across forecast horizons. Such dynamic shifts reveal the 

nonlinear, state-dependent nature of total RMB exchange rate return spillovers and 

underscore differences in transmission channels and amplification mechanisms across 

market regimes. Under normal conditions, RMB exchange rate return spillovers 

respond to information moderately and gradually, with risk adjustments unfolding 

steadily. In contrast, during extreme episodes, specific events or prevailing sentiment 



can swiftly dominate expectation formation, reshape the return spillover structure, and 

trigger sharp short-term adjustments. Similarly, RMB exchange rate volatility 

spillovers exhibit structural heterogeneity depending on market states. In both normal 

and extreme downside scenarios, volatility spillovers mainly reflect a long-term, stable 

adjustment process driven by macroeconomic fundamentals. Conversely, extreme 

upside scenarios intensify short-term shocks, often accompanied by abrupt capital flow 

shifts and rapid policy expectation revisions, highlighting heightened market stress 

sensitivity and nonlinear adjustment mechanisms amid significant external 

uncertainties. 

5.2 Determinants of Net Spillover Effects 

Subsequently, this study undertakes a detailed examination of the driving factors 

influencing the net extreme spillovers in the RMB exchange rate system. The weight 

coefficients and their corresponding proportional contributions of the principal 

determinants based on returns and volatilities are systematically reported in Tables 10 

and 11, respectively. 

Under different market conditions, each variable significantly and dynamically 

influences the net spillover of RMB exchange rate returns (see Table 10). At the 0.05 

quantile, representing extreme downturns, geopolitical instability from the Russia-

Ukraine conflict is the main shock driver, with RUBCNY bearing substantial risk. Real 

interest rate fluctuations due to global monetary tightening notably affect JPYCNY and 

KRWCNY. Short-term capital flow volatility increases pressure on USACNY and 

EURCNY, while commodity market uncertainties strongly impact AUDCNY and 

RUBCNY. Exchange rate interventions and S&P 500 Index changes further amplify 

RMB exchange rate pressures. At the 0.5 quantile, reflecting normal conditions, 

geopolitical risk influence wanes amid stable global politics, though real interest rates 

and commodity prices continue to affect the RMB moderately. Short-term capital flows 

and exchange rate interventions remain relevant, with interventions stabilizing 

exchange rate returns between 2.64% and 16.33%. At the 0.95 quantile, indicating 

extreme upward markets, all variables’ effects intensify, with larger coefficients 

amplifying their combined impact on exchange rate returns. 

Table 10 



Importance Ranking of Input Variables for Net Spillover in Return Series 

 USACNY EURCNY JPYCNY AUDCNY MYRCNY RUBCNY HKDCNY GBPCNY KRWCNY THBCNY 

Extreme Cases: Based on the 0.05 Quantile 

Geopolitical Risk Index 
26.2769 

(12.39%) 

31.8839 

(20.92%) 

2.3898 

(4.29%) 

20.1673 

(11.55%) 

14.9639 

(9.66%) 

35.3336 

(21.43%) 

4.2382 

(10.79%) 

21.6849 

(14.44%) 

9.3666 

(14.37%) 

12.2872 

(13.03%) 

Real Interest Rate 
32.0912 

(15.13%) 

23.09140 

(15.15%) 

12.4856 

(22.44%) 

23.2469 

(13.32%) 

14.1912 

(9.16%) 

5.76526 

(3.50%) 

6.01534 

(15.31%) 

16.8852 

(11.24%) 

7.46498 

(11.45%) 

9.49101 

(10.06%) 

Gold ETF Volatility 
29.1114 

(13.73%) 

17.8484 

(11.71%) 

5.0276 

(9.04%) 

5.4420 

(3.12%) 

14.8409 

(9.58%) 

25.2130 

(15.29%) 

1.62420 

(4.14%) 

7.4968 

(4.99%) 

11.2637 

(17.28%) 

17.7475 

(18.82%) 

Crude Oil ETF Volatility 
26.0642 

(12.29%) 

9.7425 

(6.39%) 

5.54670 

(9.97%) 

27.1115 

(15.53%) 

19.2829 

(12.45%) 

25.0526 

(15.19%) 

5.29604 

(13.48%) 

15.7451 

(10.48%) 

3.42319 

(5.25%) 

10.1179 

(10.73%) 

Short-term Capital Flows 
32.5372 

(15.34%) 

19.3082 

(12.67%) 

8.7867 

(15.79%) 

18.2186 

(10.44%) 

30.7122 

(19.83%) 

18.4439 

(11.19%) 

5.8590 

(14.92%) 

21.1378 

(14.07%) 

9.0748 

(13.92%) 

11.2650 

(11.94%) 

Exchange Rate Intervention 
21.7574 

(10.26%) 

17.9956 

(11.81%) 

10.4710 

(18.82%) 

26.0540 

(14.93%) 

23.8143 

(15.38%) 

6.44967 

(3.91%) 

6.3221 

(16.10%) 

24.8582 

(16.55%) 

8.9767 

(13.77%) 

11.8842 

(12.60%) 

S&P 500 Index 
39.1490 

(18.46%) 

16.9621 

(11.13%) 

7.2680 

(13.06%) 

31.8541 

(18.25%) 

8.4042 

(5.43%) 

20.7651 

(12.59%) 

8.4818 

(21.59%) 

17.8924 

(11.91%) 

9.0773 

(13.93%) 

9.8930 

(10.49%) 

Shanghai Composite Index 
5.0532 

(2.38%) 

15.6061 

(10.24%) 

3.6684 

(6.59%) 

22.4459 

(12.86%) 

28.6340 

(18.49%) 

27.8558 

(16.89%) 

1.4420 

(3.67%) 

24.4805 

(16.30%) 

6.5356 

(10.03%) 

11.6272 

(12.33%) 

Normal Cases: Based on the 0.5 Quantile 

Geopolitical Risk Index 
6.404879 

(9.87%) 

7.1273 

(5.73%) 

10.7620 

(7.74%) 

12.3847 

(10.76%) 

8.5458 

(6.97%) 

10.8004 

(18.98%) 

8.4426 

(7.17%) 

5.9163 

(5.75%) 

4.6328 

(8.27%) 

10.3572 

(9.58%) 

Real Interest Rate 
8.347584 

(12.86%) 

6.4221 

(5.17%) 

15.7498 

(11.32%) 

16.3707 

(14.22%) 

8.3601 

(6.82%) 

13.4186 

(23.58%) 

13.7218 

(11.66%) 

17.9379 

(17.42%) 

6.6962 

(11.95%) 

9.8886 

(9.14%) 

Gold ETF Volatility 
8.06875 

(12.43%) 

19.4102 

(15.61%) 

18.5652 

(13.35%) 

5.8880 

(5.11%) 

11.3590 

(9.27%) 

5.4863 

(9.64%) 

17.3527 

(14.74%) 

2.9345 

(2.85%) 

9.0889 

(16.22%) 

16.5925 

(15.34%) 

Crude Oil ETF Volatility 
2.36889 

(3.65%) 

26.8496 

(21.60%) 

17.6373 

(12.68%) 

17.3646 

(15.08%) 

18.8358 

(15.37%) 

5.4509 

(9.58%) 

10.3746 

(8.81%) 

14.7601 

(14.34%) 

5.8133 

(10.38%) 

24.0238 

(22.21%) 

Short-term Capital Flows 
7.1671 

(11.04%) 

5.6026 

(4.51%) 

14.4476 

(10.39%) 

15.3018 

(13.29%) 

18.3931 

(15.01%) 

5.5125 

(9.69%) 

19.7475 

(16.78%) 

12.6887 

(12.33%) 

7.3925 

(13.20%) 

18.5999 

(17.20%) 

Exchange Rate Intervention 
6.7068 

(10.33%) 

19.3491 

(15.56%) 

22.3304 

(16.05%) 

16.6246 

(14.44%) 

15.3045 

(12.49%) 

1.5005 

(2.64%) 

19.2163 

(16.33%) 

14.2150 

(13.81%) 

6.5009 

(11.60%) 

8.4201 

(7.79%) 

S&P 500 Index 
10.0930 

(15.55%) 

23.8126 

(19.16%) 

18.5248 

(13.32%) 

8.4288 

(7.32%) 

17.6083 

(14.37%) 

6.4198 

(11.28%) 

3.7196 

(3.16%) 

16.4005 

(15.93%) 

4.0034 

(7.15%) 

10.8576 

(10.04%) 

Shanghai Composite Index 
15.7547 

(24.27%) 

15.7387 

(12.66%) 

21.0710 

(15.15%) 

22.7722 

(19.78%) 

24.1540 

(19.71%) 

8.3178 

(14.62%) 

25.1335 

(21.35%) 

18.0952 

(17.58%) 

11.8927 

(21.23%) 

9.4062 

(8.70%) 

Extreme Cases: Based on the 0.95 Quantile 

Geopolitical Risk Index 
13.9186 

(12.20%) 

1.9304 

(8.63%) 

16.9080 

(10.51%) 

4.9767 

(13.55%) 

20.5781 

(9.76%) 

7.6727 

(16.39%) 

26.5043 

(15.66%) 

1.8911 

(12.34%) 

4.5199 

(8.48%) 

26.9965 

(11.54%) 

Real Interest Rate 
16.6341 

(14.58%) 

3.2616 

(14.58%) 

11.7255 

(7.29%) 

2.7737 

(7.55%) 

40.7271 

(19.32%) 

5.3802 

(11.49%) 

13.1304 

(7.76%) 

1.8517 

(12.08%) 

3.8823 

(7.28%) 

24.3619 

(10.41%) 

Gold ETF Volatility 
5.4567 

(4.78%) 

1.0076 

(4.50%) 

33.5028 

(20.83%) 

6.3125 

(17.19%) 

17.5937 

(8.34%) 

4.3120 

(9.21%) 

10.5470 

(6.23%) 

1.6893 

(11.02%) 

3.3309 

(6.25%) 

51.3631 

(21.96%) 

Crude Oil ETF Volatility 
13.9745 

(12.25%) 

5.6290 

(25.16%) 

15.4488 

(9.61%) 

3.6444 

(9.92%) 

25.7004 

(12.19%) 

6.0051 

(12.83%) 

35.7537 

(21.13%) 

1.8229 

(11.89%) 

24.6831 

(46.29%) 

18.0101 

(7.70%) 

Short-term Capital Flows 
17.5980 

(15.43%) 

2.3385 

(10.45%) 

24.7641 

(15.40%) 

5.5135 

(15.01%) 

38.2258 

(18.13%) 

8.6085 

(18.39%) 

25.5105 

(15.07%) 

1.9777 

(12.90%) 

1.3110 

(2.46%) 

22.1395 

(9.46%) 

Exchange Rate Intervention 
14.6897 

(12.88%) 

2.5508 

(11.40%) 

11.8072 

(7.34%) 

4.3366 

(11.81%) 

21.8241 

(10.35%) 

4.2903 

(9.16%) 

40.3910 

(23.87%) 

1.9400 

(12.66%) 

1.8842 

(3.53%) 

29.4811 

(12.60%) 

S&P 500 Index 
15.7645 

(13.82%) 

4.7144 

(21.07%) 

29.5569 

(18.38%) 

3.3346 

(9.08%) 

19.5962 

(9.29%) 

5.0217 

(10.73%) 

12.5637 

(7.42%) 

1.7465 

(11.40%) 

6.3216 

(11.85%) 

29.6534 

(12.68%) 

Shanghai Composite Index 
16.0328 

(14.06%) 

0.9396 

(4.20%) 

17.1201 

(10.64%) 

5.8315 

(15.88%) 

26.5866 

(12.61%) 

5.5306 

(11.81%) 

4.8392 

(2.86%) 

2.4063 

(15.70%) 

7.3944 

(13.87%) 

31.9180 

(13.64%) 

Examining the net spillover effects of RMB exchange rate volatility across 

quantiles reveals a multifaceted interaction of factors. At the 0.05 quantile, representing 

relatively stable markets, heightened global geopolitical conflicts increase demand for 

safe-haven assets, strengthening RMB’s linkages with other emerging market 

currencies. Under the Federal Reserve’s high interest rate regime, capital increasingly 

flows into US dollar assets, raising volatility sensitivity in currencies like MYRCNY 

and THBCNY. Commodity price fluctuations, reflecting inflation and supply risks, 



contribute as well—for example, gold price shifts boost volatility in resource-based 

currencies such as AUDCNY and THBCNY, while geopolitical tensions and OPEC+ 

cuts raise crude oil ETF volatility, reinforcing spillovers between RUBCNY and 

THBCNY. Exchange rate interventions stabilize markets for HKDCNY, RUBCNY, and 

GBPCNY, though frequent interventions may raise transparency concerns. At the 0.5 

quantile, net spillovers remain driven by multiple overlapping factors. Geopolitical 

risks—including the Russia-Ukraine war, Middle East tensions, and Sino-US strategic 

rivalry—strengthen volatility links among EURCNY, GBPCNY, and others. Real 

interest rate differentials continue to influence, while frequent cross-border capital 

flows tied to Sino-US policies sustain RMB volatility. Commodity market fluctuations 

further amplify RMB exchange rate swings, notably impacting energy-dependent 

currencies. Short-term capital flows and interventions remain effective in dampening 

volatility, especially in Asia. Stock market dynamics, reflecting expectations of a US 

soft landing, also heighten volatility correlations between the RMB and major 

currencies. At the 0.95 quantile, marking extreme market turbulence, intensified 

geopolitical risks worsen capital flow uncertainty and risk aversion, pressuring RMB 

depreciation. Short-term capital flows, interventions, and sharp commodity price 

swings compound this pressure. 

Overall, the net extreme spillover of the RMB exchange rate is dynamically shaped 

by multiple factors across market conditions. Policymakers and regulators must 

continuously monitor global geopolitical developments, major economies’ monetary 

policy shifts, and commodity market fluctuations to enhance early risk detection. 

Exchange rate interventions should focus not only on market stabilization but also on 

transparent communication to effectively guide expectations. Additionally, 

strengthening oversight of cross-border capital flows and improving macroprudential 

regulations are crucial to enhance the RMB exchange rate’s resilience in a complex 

international environment. These measures will support orderly financial market 

development and protect systemic stability. 

Table 11 

Importance Ranking of Input Variables for Net Spillover in Volatility Series 

 USACNY EURCNY JPYCNY AUDCNY MYRCNY RUBCNY HKDCNY GBPCNY KRWCNY THBCNY 

Extreme Cases: Based on the 0.05 Quantile 



Geopolitical Risk Index 
19.2560 

(13.66%) 

6.3601 

(15.95%) 

15.7181 

(13.98%) 

17.9233 

(11.37%) 

24.2549 

(15.85%) 

8.8039 

(7.84%) 

11.4743 

(10.92%) 

12.7703 

(10.67%) 

8.2789 

(7.64%) 

30.4645 

(13.99%) 

Real Interest Rate 
19.1283 

(13.57%) 

4.2692 

(10.70%) 

13.1837 

(11.73%) 

30.2407 

(19.18%) 

23.6874 

(15.48%) 

21.1191 

(18.81%) 

13.8514 

(13.19%) 

19.6644 

(16.44%) 

14.6221 

(13.50%) 

36.5633 

(16.79%) 

Gold ETF Volatility 
19.8446 

(14.08%) 

4.3015 

(10.78%) 

14.6262 

(13.01%) 

24.2346 

(15.37%) 

12.9981 

(8.50%) 

10.2956 

(9.17%) 

16.6488 

(15.85%) 

12.8294 

(10.72%) 

7.6245 

(7.04%) 

27.0765 

(12.43%) 

Crude Oil ETF Volatility 
14.6671 

(10.41%) 

3.6005 

(9.03%) 

13.5330 

(12.04%) 

7.8329 

(4.97%) 

15.2206 

(9.95%) 

22.6645 

(20.19%) 

12.3518 

(11.76%) 

12.4714 

(10.42%) 

24.0370 

(22.20%) 

27.8029 

(12.77%) 

Short-term Capital Flows 
16.1616 

(11.47%) 

3.6376 

(9.12%) 

14.3271 

(12.74%) 

19.7128 

(12.50%) 

27.2283 

(17.80%) 

5.2601 

(4.68%) 

1.3342 

(1.27%) 

14.1634 

(11.84%) 

10.9365 

(10.10%) 

24.4190 

(11.21%) 

Exchange Rate Intervention 
19.5728 

(13.89%) 

5.6549 

(14.18%) 

16.3315 

(14.53%) 

5.7274 

(3.63%) 

20.2435 

(13.23%) 

10.1309 

(9.02%) 

20.9316 

(19.92%) 

16.6660 

(13.93%) 

12.0025 

(11.08%) 

26.6707 

(12.25%) 

S&P 500 Index 
17.6027 

(12.49%) 

7.0505 

(17.68%) 

8.7266 

(7.76%) 

26.5442 

(16.84%) 

14.4277 

(9.43%) 

21.7668 

(19.39%) 

11.8369 

(11.27%) 

16.9905 

(14.20%) 

11.6984 

(10.80%) 

18.9722 

(8.71%) 

Shanghai Composite Index 
14.6886 

(10.42%) 

5.0117 

(12.57%) 

15.9749 

(14.21%) 

25.4488 

(16.14%) 

14.9327 

(9.76%) 

12.2417 

(10.90%) 

16.6239 

(15.82%) 

14.0839 

(11.77%) 

19.0944 

(17.63%) 

25.7868 

(11.84%) 

Normal Cases: Based on the 0.5 Quantile 

Geopolitical Risk Index 
12.8576 

(14.09%) 

24.4572 

(15.97%) 

18.0544 

(10.59%) 

11.7360 

(10.59%) 

7.9530 

(9.21%) 

11.4857 

(9.55%) 

17.1779 

(15.30%) 

17.0190 

(12.34%) 

11.3829 

(9.27%) 

18.3348 

(16.76%) 

Real Interest Rate 
8.7502 

(9.59%) 

16.2916 

(10.64%) 

20.8866 

(12.25%) 

11.0375 

(9.96%) 

3.9535 

(4.58%) 

13.1581 

(10.94%) 

13.4827 

(12.01%) 

14.7167 

(10.67%) 

10.4670 

(8.53%) 

12.8246 

(11.72%) 

Gold ETF Volatility 
13.1015 

(14.36%) 

21.7334 

(14.19%) 

21.3730 

(12.53%) 

14.6740 

(13.24%) 

8.7300 

(10.11%) 

14.1593 

(11.77%) 

18.3545 

(16.35%) 

13.6471 

(9.90%) 

17.4762 

(14.23%) 

13.9074 

(12.71%) 

Crude Oil ETF Volatility 
16.5052 

(18.09%) 

11.7398 

(7.67%) 

29.6872 

(17.41%) 

26.2235 

(23.65%) 

14.8491 

(17.19%) 

19.4557 

(16.17%) 

12.9637 

(11.55%) 

14.6258 

(10.61%) 

25.2994 

(20.61%) 

7.6771 

(7.02%) 

Short-term Capital Flows 
9.1766 

(10.06%) 

20.5722 

(13.43%) 

15.4230 

(9.04%) 

15.0986 

(13.62%) 

12.9984 

(15.05%) 

14.3287 

(11.91%) 

6.6200 

(5.90%) 

20.9303 

(15.18%) 

16.0897 

(13.11%) 

13.3056 

(12.16%) 

Exchange Rate Intervention 
7.8343 

(8.59%) 

16.7791 

(10.96%) 

28.6918 

(16.82%) 

12.0956 

(10.91%) 

17.7021 

(20.94%) 

18.2350 

(15.16%) 

18.4109 

(16.40%) 

20.1947 

(14.64%) 

11.4063 

(9.29%) 

13.8120 

(12.63%) 

S&P 500 Index 
9.1779 

(10.06%) 

32.3007 

(21.09%) 

18.9787 

(11.13%) 

10.5732 

(9.54%) 

5.6876 

(6.58%) 

13.7931 

(11.47%) 

11.2139 

(9.99%) 

13.8504 

(10.04%) 

12.1564 

(9.90%) 

13.1609 

(12.03%) 

Shanghai Composite Index 
13.8295 

(15.16%) 

9.2546 

(6.04%) 

17.4632 

(10.24%) 

9.4296 

(8.51%) 

14.5153 

(16.80%) 

15.6821 

(13.04%) 

14.0587 

(12.52%) 

22.9162 

(16.62%) 

18.4921 

(15.06%) 

16.3566 

(14.95%) 

Extreme Cases: Based on the 0.95 Quantile 

Geopolitical Risk Index 
6.8382 

(3.14%) 

6.228 

(11.07%) 

14.6789 

(8.99%) 

17.4270 

(10.49%) 

38.9061 

(20.20%) 

2.7111 

(10.65%) 

16.5901 

(17.58%) 

18.0859 

(7.73%) 

27.2760 

(16.49%) 

15.0387 

(10.12%) 

Real Interest Rate 
27.6282 

(12.67%) 

10.6325 

(18.90%) 

12.5148 

(7.67%) 

11.2741 

(6.78%) 

26.1765 

(13.59%) 

0.6464 

(2.54%) 

5.3929 

(5.71%) 

23.0230 

(9.84%) 

22.8672 

(13.82%) 

19.3400 

(13.01%) 

Gold ETF Volatility 
43.3894 

(19.90%) 

5.7615 

(10.24%) 

22.2065 

(13.61%) 

19.9616 

(12.01%) 

24.6545 

(12.80%) 

3.2114 

(12.61%) 

7.7091 

(8.17%) 

24.3478 

(10.41%) 

24.4446 

(14.78%) 

23.0068 

(15.48%) 

Crude Oil ETF Volatility 
28.3387 

(13.00%) 

3.3933 

(6.03%) 

27.1100 

(16.61%) 

49.4354 

(29.75%) 

20.5219 

(10.66%) 

4.1755 

(16.40%) 

14.8077 

(15.69%) 

65.1902 

(27.87%) 

4.7969 

(2.90%) 

34.3497 

(23.11%) 

Short-term Capital Flows 
21.5745 

(9.89%) 

6.5115 

(11.58%) 

21.1385 

(12.95%) 

21.6078 

(13.00%) 

20.0783 

(10.43%) 

3.3295 

(13.07%) 

10.4533 

(11.07%) 

22.3089 

(9.54%) 

15.9818 

(9.66%) 

10.7199 

(7.21%) 

Exchange Rate Intervention 
36.2883 

(16.64%) 

6.7422 

(11.99%) 

48.4403 

(29.63%) 

12.1223 

(7.29%) 

29.8902 

(15.52%) 

2.0538 

(8.06%) 

10.2158 

(10.82%) 

36.5829 

(15.64%) 

20.6308 

(12.47%) 

20.7881 

(13.98%) 

S&P 500 Index 
14.7643 

(6.77%) 

10.3289 

(18.36%) 

12.1707 

(7.46%) 

23.6145 

(14.21%) 

24.0359 

(12.48%) 

4.5876 

(18.01%) 

10.4511 

(11.07%) 

26.4269 

(11.30%) 

24.1010 

(14.57%) 

17.3204 

(11.65%) 

Shanghai Composite Index 
39.2285 

(17.99%) 

6.6513 

(11.82%) 

4.9436 

(3.03%) 

10.7359 

(6.46%) 

8.3294 

(4.32%) 

4.7522 

(18.66%) 

18.7702 

(19.89%) 

17.9682 

(7.68%) 

25.3414 

(15.32%) 

8.0963 

(5.45%) 

6. Conclusion 

In recent years, as China deepens its global economic integration, trade and cross-

border capital flows have become increasingly active. Consequently, exchange rate 

risks transmit more frequently across currencies through complex financial linkages, 

creating widespread “resonance” effects in global markets. In this context, this study 

takes the RMB exchange rate and its top ten counterparties in a representative currency 

basket as the research sample, and applies a quantile-based VAR spillover index to 



construct a risk spillover network based on return and volatility series across multiple 

quantiles. This framework allows for a comprehensive assessment of the intensity and 

direction of RMB exchange rate risk spillovers under both normal and extreme 

conditions, as well as their evolution over time and frequency domains. Furthermore, 

the study employs an advanced deep learning model equipped with a multi-head 

attention mechanism and embedded variable selection functions to analyze the driving 

forces and dynamic influence mechanisms of RMB exchange rate spillovers. The model 

effectively captures the contributions of diverse influencing factors and reveals their 

time-varying importance under different market states, thus offering new insights into 

the complex interaction structure and dynamic propagation path underlying exchange 

rate risk. On this basis, the study arrives at the following major conclusions: 

The RMB exchange rate’s risk spillovers, based on returns or volatility, show clear 

state dependence and a distinct U-shaped pattern, with intensities rising sharply in 

extreme market conditions. This highlights the system’s sensitivity to tail risks. 

Frequency analysis reveals that return spillovers are mainly short-term, while volatility 

spillovers are dominated by long-term components. Yet, during market turbulence, 

long-term volatility effects shift toward shorter horizons, reflecting temporal changes 

in risk transmission. Notably, tail risk spillovers differ between returns and volatility: 

return spillovers are balanced across tails, whereas volatility spillovers skew strongly 

to the right tail, indicating more severe contagion in high-volatility periods. Moreover, 

individual RMB exchange rates respond heterogeneously to external shocks; under 

extremes, net spillovers vary widely among pairs, with no single currency consistently 

dominating risk transmission. 

Furthermore, in studying the driving factors of RMB exchange rate spillover, the 

TFT model demonstrates excellent capabilities in dynamically capturing and 

identifying mechanisms within the high-dimensional, nonlinear, and time-varying 

characteristics of the RMB exchange rate system. Compared to traditional AI models, 

it offers superior prediction accuracy and adapts better to heterogeneous market 

conditions. Its multi-head attention and variable selection enhance the detection of key 

variables and relevant historical information. RMB exchange rate spillovers show 

significant dynamic heterogeneity, with spillover structures varying across market 



states. Notably, long-term historical data can outweigh recent data, challenging the 

common assumption that more recent information always matters most. Under extreme 

downturns, path dependence and inertia dominate, while extreme upturns bring sudden 

spillover shifts with concentrated weights. Key drivers also shift by scenario: the S&P 

500 index leads during normal periods, geopolitical risks dominate downturns, and 

crude oil ETF volatility stands out in upturns. For volatility spillovers, short-term cross-

border capital flows prevail normally, energy market shocks matter in low volatility, 

and exchange rate interventions stabilize during high volatility, highlighting policy’s 

regulatory role. Moreover, the driving factors of the net spillover of the RMB exchange 

rate also display dynamic multi-factor superposition across different market scenarios, 

reflecting the complex mechanisms of risk transmission and market responses. 

This study offers valuable implications for both policymakers and investors. For 

policymakers, adopting a global perspective is crucial since the RMB exchange rate 

functions within a complex multi-market network. Its fluctuations are influenced not 

only by the US dollar but also by interactions among major global currencies and 

financial markets. Thus, exchange rate policies must go beyond focusing solely on the 

US dollar and emphasize managing transmission channels across diverse markets. 

Enhancing resilience to external shocks calls for better policy coordination and 

forecasting, stronger strategic reserves to address geopolitical tensions and commodity 

volatility, and greater policy flexibility to mitigate market disruptions from uncertainty. 

Market-oriented reforms are equally important, including increasing transparency and 

flexibility in exchange rate formation, optimizing intervention strategies to avoid 

procyclical extremes, and strengthening real-time monitoring with countercyclical 

regulation of cross-border capital flows. Together, these actions improve the flexibility 

and stability of the RMB exchange rate system. For investors, keen awareness of tail 

risks and the ability to adjust asset allocations with shifting market regimes are vital. 

Tracking key variable changes and allocating prudently to safe-haven assets strengthen 

portfolio resilience. Investors should also leverage advanced analytics, such as high-

frequency data and AI methods, to quickly identify and respond to risk channels and 

anomalies. These tools support more robust, adaptive strategies amid growing market 

uncertainty. 

  



Appendix A 

Table A1 

Average Weights of Currency Basket in the CFETS RMB Exchange Rate Index (2022-

2024) 

No. 
Currency 

type 

Weights 

in 2022 

Weights in 

2023 

Weights in 

2024 

Average Weights 

Over Three Years 

1 USD 0.1983 0.1983 0.1890 0.1952 

2 EUR 0.1821 0.1821 0.1790 0.1811 

3 JPY 0.0976 0.0976 0.0858 0.0937 

4 KRW 0.0951 0.0951 0.0837 0.0913 

5 AUD 0.0607 0.0607 0.0595 0.0603 

6 MYR 0.0464 0.0464 0.0512 0.0480 

7 RUB 0.0385 0.0385 0.0490 0.0420 

8 HKD 0.0360 0.0360 0.0347 0.0356 

9 THB 0.0344 0.0344 0.0343 0.0344 

10 GBP 0.0296 0.0296 0.0271 0.0287 

11 SGD 0.0247 0.0247 0.0297 0.0264 

12 SAR 0.0229 0.0229 0.0282 0.0247 

13 MXN 0.0227 0.0227 0.0260 0.0238 

14 CAD 0.0215 0.0215 0.0240 0.0223 

15 AED 0.0190 0.0190 0.0247 0.0209 

16 ZAR 0.0143 0.0143 0.0144 0.0143 

17 CHF 0.0116 0.0116 0.0155 0.0129 

18 PLN 0.0111 0.0111 0.0113 0.0111 

19 TRY 0.0090 0.0090 0.0112 0.0097 

20 NZD 0.0065 0.0065 0.0057 0.0062 

21 SEK 0.0055 0.0055 0.0051 0.0054 

22 DKK 0.0047 0.0047 0.0037 0.0044 

23 HUF 0.0041 0.0041 0.0040 0.0041 

24 NOK 0.00395 0.00400 0.00207 0.00334 

Source: China Money Network 

Table A2 

Model Selection and Estimation Results for RMB Exchange Rates Using Asymmetric 

GARCH Models 

Variables Models Distribution AIC LogLikelihood 

USACNY 

EGARCH 
norm -5.989 8637.523 

skew-t -6.430 9274.124 

TGARCH 
norm -5.796 8359.468 

skew-t -6.388 9214.437 

GJR-GARCH norm -5.768 8318.294 



skew-t -6.359 9172.619 

EURCNY 

EGARCH 
norm -3.188 4600.899 

skew-t -3.309 4777.766 

TGARCH 
norm -3.186 4597.480 

skew-t 3.309 4776.721 

GJR-GARCH 
norm -3.191 4605.631 

skew-t -3.308 4775.143 

JPYCNY 

EGARCH 
norm -3.362 4850.889 

skew-t -3.533 5100.156 

TGARCH 
norm -3.281 4734.428 

skew-t -3.533 5100.696 

GJR-GARCH 
norm -3.355 4841.915 

skew-t -3.527 5090.777 

AUDCNY 

EGARCH 
norm -3.467 5002.462 

skew-t -3.538 5106.523 

TGARCH 
norm -3.467 5002.391 

skew-t -3.538 5107.722 

GJR-GARCH 
norm -3.470 5007.104 

skew-t -3.540 5109.749 

MYRCNY 

EGARCH 
norm -6.789 9789.790 

skew-t -6.917 9975.832 

TGARCH 
norm -6.692 9650.269 

skew-t -6.916 9975.182 

GJR-GARCH 
norm -6.795 9798.002 

skew-t -6.915 9974.061 

RUBCNY 

EGARCH 
norm -10.292 14838.350 

skew-t -10.475 15103.690 

TGARCH 
norm -10.092 14549.620 

skew-t -10.474 15101.490 

GJR-GARCH 
norm -10.269 14803.970 

skew-t -10.458 15079.630 

HKDCNY 

EGARCH 
norm -10.112 14578.420 

skew-t -10.499 15138.490 

TGARCH 
norm -10.023 14450.800 

skew-t -10.461 15083.520 

GJR-GARCH 
norm -8.484 12232.830 

skew-t -10.434 15044.250 

GBPCNY 

EGARCH 
norm -2.576 3719.416 

skew-t -2.774 4006.711 

TGARCH 
norm -2.522 3640.622 

skew-t -2.774 4005.573 

GJR-GARCH 
norm -2.614 3773.106 

skew-t -2.764 3991.949 

KRWCNY EGARCH norm -8.503 12259.900 



skew-t -8.573 12362.610 

TGARCH 
norm -8.421 12141.210 

skew-t -8.572 12361.460 

GJR-GARCH 
norm -8.505 12262.210 

skew-t -8.570 12357.950 

THBCNY 

EGARCH 
norm -11.675 16830.140 

skew-t -11.821 17042.970 

TGARCH 
norm -11.594 16714.080 

skew-t -11.820 17042.210 

GJR-GARCH 
norm -11.653 16798.600 

skew-t -11.805 17020.090 
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