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Abstract 

In this paper, we implement an integrated framework for constructing ESG-constrained, 

downside-risk-optimized equity portfolios in the European stock market. Extending 

traditional mean-variance approaches, we employ downside-oriented risk measures—

conditional value at risk (CVaR) and semi-variance—to better capture investors’ asymmetric 

aversion to losses. ESG scores are introduced as binding constraints based on percentile 

thresholds, ensuring that portfolios comply with predefined sustainability standards. Semi-

variance and CVaR objectives are formulated as convex programs to enable tractable 

optimization. Using data from Euro Stoxx 50 and Euronext 100 constituents, our empirical 

analysis reveals that: (i) integrating downside risk measures enhances tail-risk protection and 

may improve performance for loss-averse investors; but (ii) enforcing ESG constraints, 

particularly at stricter thresholds, leads to reduced diversification and a decline in risk-

adjusted returns (e.g., Sharpe and Sortino ratios). These findings highlight the inherent trade-

off between sustainability and financial efficiency, underscoring the importance of moderate 

ESG integration when balancing performance and ethical objectives. 
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1. Introduction 

Modern portfolio theory (MPT), as pioneered by Markowitz (1952), frames portfolio 

construction as a mean–variance (MV) trade-off, defining risk via return variance and 

deriving an efficient frontier that balances expected return and volatility. However, variance 

treats upside and downside deviations symmetrically, despite investors’ aversion to loss, and 

fails to capture extreme tail events that often drive realized drawdowns (Sortino & Price, 

1994). These limitations have spurred the adoption of downside-focused risk measures—

Conditional Value at Risk (CVaR), Value at Risk (VaR), and semi-variance—which isolate 

losses below a threshold and align risk assessment with investors priorities (Acerbi & Tasche, 

2002; Rockafellar & Uryasev, 2000). 

Concurrently, Environmental, Social, and Governance (ESG) considerations have moved to 

the forefront of investment decision-making. Investors and regulators now emphasize 

sustainability metrics alongside financial factors. Empirical studies report that companies 

with high ESG scores often deliver financial returns equal to or better than lower scoring 

peers, supporting the "fiduciary duty" of sustainability integration (Coqueret, 2022). As Chen 



and Mussalli (2020), Chen et al. (2021), and Coqueret (2022) found that the rise of SRI and 

ESG investing has galvanized both practitioners and academics, prompting a wide range of 

portfolio-level studies on performance, abnormal returns, and ESG-risk mitigation. 

A growing strand of this literature focuses on ESG-aware portfolio optimization. 

Hirschberger et al. (2013), Utz et al. (2014), and Gasser et al. (2017) extend Markowitz’s bi-

criterion model to a tri-criterion framework that optimizes return, risk, and ESG scores. In 

this line, Alessandrini and Jondeau (2020) introduce turnover, tracking-error, and factor-

exposure constraints to their ESG optimization; Chen et al. (2023) use a cross-efficiency data 

envelopment analysis (DEA) to combine ESG scores with financial measures; and Pedersen 

et al. (2021) derive an “ESG-efficient frontier” to quantify the trade-off between 

sustainability levels and maximum Sharpe ratios. More recently, Steuer and Utz (2023) map 

a three-dimensional efficient surface with non-contour cross-sections for ESG, return, and 

risk, while Abate et al. (2021) investigate downside-risk extensions of ESG-efficient models. 

Xidonas and Essner (2022) further explore multi-objective formulations that maximize ESG 

metrics subject to risk constraints. 

Despite recent advances, existing approaches tend to focus either on mean–variance ESG 

models or on downside-risk optimization without sustainability constraints, often 

overlooking the interplay between both. However, the integration of ESG criteria—

particularly through binding constraints—can significantly alter portfolio composition, often 

reducing diversification and deteriorating performance. This creates a practical tension 

between ethical investing and financial efficiency. To address this gap, we propose a unified 

and tractable convex optimization framework that jointly minimizes downside risk (via 

CVaR and semi-variance objectives) and enforces ESG compliance through weighted 

percentile-based constraints. Our approach allows for a systematic comparison of the trade-

offs involved, highlighting how stricter ESG standards may lead to higher portfolio 

concentration and lower Sharpe and Sortino ratios, particularly in the context of European 

equity markets. 

The paper is organized as follows. Section 2 presents optimization models and ESG 

integration. Section 3 describes the data used and the empirical results on the Euro Stoxx 50 

and Euronext 100 datasets, including comparisons of Sharpe and Sortino ratios across 

models. Finally, Section 4 concludes and discusses implications for sustainable risk 

management in European equity portfolios. 

 

2. Portfolio Models and ESG integration  

2.1 Markowitz’s MV model and Sharpe formulation  

Markowitz (1952) proposed the traditional mean-variance (MV) framework, in which the 

portfolio variance is minimized for a given expected return. This model assumes that 



investors are risk-averse and base their decisions on the trade-off between expected return 

and risk, measured by variance. The Markowitz’ optimization problem is solved by 

minimizing the variance, 𝜎𝑃
2 = 𝑤′𝛴𝑤, which is the risk measure of the portfolio, for a given 

expected return, 𝜇𝑝 = 𝑤′𝜇, as follows:  

min
{𝑤}

 {𝑤′𝛴𝑤} 
𝑠. 𝑡.  𝜇′𝑤 = 𝜇𝑝, 

         𝑤′𝟏 = 1, 

         𝑤 ≥ 0 

(1) 

Where, 𝜇𝑝 is the expected return of the portfolio, 𝑤 ∈ ℝ𝑛×1 is the vector of weights of the 

assets, 𝟏 ∈ ℝ𝑛×1 is a vector of ones. The constraint 𝑤 ≥ 0 implies no short-selling.. 

Alternatively, the Sharpe model scales the portfolio to achieve an expected return adjusted 

by risk, simplifying the tangent optimal portfolio construction as: 

min
{𝑤}

 {𝑤′𝛴𝑤} 𝑠. 𝑡.  𝑤′𝜇 = 1, 

         𝑤 ≥ 0 
(2) 

Both formulations are solved using quadratic programming (QP), leveraging the convexity 

of the objective function and the linearity of the constraints. 

2.2 Semivariance Framework and Sortino model 

The Sortino model refines the Markowitz framework by replacing variance with semi-

variance, focusing only on downside deviations from a target return or a threshold. This is 

particularly relevant for risk-averse investors concerned more with losses than with total 

variability. Optimization proceeds by minimizing the semi-variance subject to return and 

budget constraints:  

 

min
{𝑤}

 {𝑤′𝛴̃𝑤} 

𝑠. 𝑡.  𝜇′𝑤 = 𝜇𝑝, 

         𝑤′𝟏 = 1, 

         𝑤 ≥ 0 

(3) 

 

where 𝛴̃ is the semi-variance matrix constructed using returns below the threshold. The main 

difference with the Markowitz model lies in the risk measure: while variance penalizes all 

volatility symmetrically, semi-variance focuses solely on downside risk, often producing 

more conservative portfolios in the presence of asymmetric return distributions. 

2.3 VaR and CVaR models 

Conditional Value at Risk (CVaR), also known as Expected Shortfall (ES), provides a 

coherent measure of downside risk, addressing limitations of Value at Risk (VaR) such as 

non-subadditivity. Following Rockafellar and Uryasev (2000), CVaR-based portfolio 

optimization can be expressed as a convex linear programming problem. For a loss function 



𝐿(𝑤, 𝑟) = −𝑤′𝑟 and a confidence level α\alphaα, the CVaR minimization problem is 

formulated as: 

min
{𝑤,𝜉𝑖}

 {𝜂 +
1

(1 −  𝛼)𝑁
∑ 𝜉𝑖

𝑁

𝑖=1

} 

𝑠. 𝑡.  𝜉𝑖 > 𝜇′𝑟(𝑖)

−  𝜂, 

𝜇′𝑤 = 𝜇𝑝, 

         𝑤′𝟏 = 1, 

         𝑤, 𝜉𝑖 ≥ 0 

(4) 

 

where 𝜂 ∈ 𝑅 is the VaR at level 𝛼, 𝜉𝑖  are auxiliary variables representing tail losses, and  𝑟(𝑖) 

are historical return scenarios. This model minimizes the expected loss in the worst (1−𝛼) of 

cases. This formulation is convex and solvable with standard linear programming solvers. 

 

2.4 ESG Integration into the portfolio optimization models  

 

ESG considerations are integrated into the portfolio optimization models as linear constraints 

that enforce a minimum environmental, social, and governance (ESG) score for the portfolio. 

Let 𝑒 ∈ ℝ𝑛×1  be the vector of ESG scores of the assets, and ℰp is the ESG target from the 

optimal portfolio. Following to Utz et al. (2014) and Gasser et al. (2017), the MV-ESG 

optimal portfolio with a given ESG target ℰp = 𝑤′𝑒, for the convex function is given by: 

 

min
{𝑤}

 {𝑤′𝛴 𝑤}  

𝑠. 𝑡.  𝑤′𝜇 = 𝜇𝑝,  

         𝑤′𝑒 = ℰ𝑝, 

         𝑤′𝟏 = 1, 

                      𝑤 ≥ 0 

(5) 

 

In this sense, the previous Sharpe, Sortino and M-CVaR models can be reformulated as 

follows:   

min
{𝑤}

 {𝑤′𝛴 𝑤}  
𝑠. 𝑡.  𝑤′𝜇 = 1 

         𝑤′𝑒 = ℰ𝑝, 

                      𝑤 ≥ 0 

(6) 

 

min
{𝑤}

 {𝑤′𝛴̃ 𝑤}  
𝑠. 𝑡.  𝑤′𝜇 = 1 

         𝑤′𝑒 = ℰ𝑝, 

                      𝑤 ≥ 0 

(7) 

 

min
{𝑤,𝜉𝑖}

 {𝜂 +
1

(1 −  𝛼)𝑁
∑ 𝜉𝑖

𝑁

𝑖=1

} 

𝑠. 𝑡.  𝜉𝑖 > 𝜇′𝑟(𝑖)

−  𝜂, 

𝜇′𝑤 = 𝜇𝑝, 

(8) 



𝑤′𝑒 = ℰ𝑝, 

         𝑤′𝟏 = 1, 

         𝑤, 𝜉𝑖 ≥ 0 

This integration ensures that the portfolio not only meets financial risk-return objectives but 

also satisfies sustainability criteria. As demonstrated by Utz et al. (2014), Gasser et al. (2017), 

and Steuer & Utz (2023), ESG-constrained models can be used to construct an efficient 

frontier in three dimensions—return, risk, and ESG score—enabling investors to navigate 

the trade-offs among these competing goals. 

3. Numerical example and results  

3.1 Data  

The proposed model is applied to the European equity market, with a specific focus on the 

Euronext 100 and Euro Stoxx 50 indices, which serve as representative benchmarks of large-

cap and highly liquid stocks across the Eurozone. The Euronext 100 (NDX 100) captures the 

performance of the most actively traded companies listed on the Euronext exchanges, while 

the Euro Stoxx 50 (SX 50E) reflects the market capitalization and sectoral breadth of leading 

blue-chip firms in the region. The empirical analysis relies on historical monthly prices of 

the constituent stocks from January 2015 to August 2024. All financial and ESG-related data 

were obtained from Bloomberg, a widely recognized and reputable source of global market 

information. In the case of ESG indicators, we utilized the composite ESG score available 

through Bloomberg’s proprietary methodology, which integrates environmental, social, and 

governance dimensions into a single performance metric. This score facilitates consistent 

cross-sectional comparisons and serves as a crucial input for ESG-integrated portfolio 

optimization models. 

 

Given the well-documented challenges surrounding ESG data heterogeneity and rating 

divergence across providers, the selection of a robust and transparent data source such as 

Bloomberg is essential to ensure the reliability and replicability of the results. Prior to 

analysis, the dataset was systematically cleaned, and missing values were addressed using 

standard statistical imputation techniques, preserving the integrity of the time series structure.  

Table 1 summarizes the main descriptive statistics—including expected return, standard 

deviation (volatility)—of the monthly returns for the stocks with the highest ESG scores in 

each index.  

Table 1. Descriptive data for the top 10 stocks and ESG scores. 

NDX 100 

Stocks 
Return 

(%) 

Volatility 

(%) 

ESG 

score 

RYA ID 0.47 9.32 7.35 

SHELL NA 0.58 6.88 7.15 

SX 50E 

Stocks 
Return 

(%) 

Volatility 

(%) 

ESG 

score 

SU FP 1.38 6.67 7.75 

TTE FP 0.81 6.63 6.96 



AKRBP NO 2.01 11.72 7.11 

TTE FP 0.81 6.63 6.96 

ASML NA 1.98 7.72 6.83 

LDO IM 1.02 11.16 6.83 

ENI IM 0.51 7.37 6.8 

BESI NA 2.58 12.83 6.78 

EDP PL 0.60 6.08 6.76 

ENEL IM 0.96 6.19 6.68 
 

ASML NA 1.98 7.72 6.83 

ENI IM 0.51 7.37 6.8 

ENEL IM 0.96 6.19 6.68 

DB1 GY 1.26 5.42 6.53 

NOKIA FH -0.23 9.21 6.46 

MUV2 GY 1.30 6.01 6.4 

ITX SQ 0.85 7.41 6.38 

SIE GY 0.87 7.15 6.37 
 

Note: Ryanair Holdings (RYA ID), Shell PLC (SHELL NA), Aker BP ASA (AKRBP NO), TotalEnergies 

SE (TTE FP), ASML Holding NV (ASML NA), Leonardo SpA (LDO IM), ENI SpA (ENI IM), BE 

Semiconductor Industries NV (BESI NA), EDP - Energias de Portugal SA (EDP PL), and Enel SpA (ENEL 

IM), chneider Electric SE (SU FP), Deutsche Börse AG (DB1 GY), Nokia Oyj (NOKIA FH), Münchener 

Rückversicherungs-Gesellschaft AG (MUV2 GY), Industria de Diseño Textil S.A. (Inditex) (ITX SQ), and 

Siemens AG (SIE GY). 

Source: own elaboration. 

 

3.2 Results and discussion  

This section presents the empirical results of the portfolio optimization process across five 

key methodologies: Mean-Variance (MV), Maximum Sharpe Ratio (Max. SR), Maximum 

Sortino Ratio (Max. SoR), Conditional Value at Risk (CVaR), and Mean-CVaR (M-CVaR) 

portfolios, initially without incorporating ESG constraints. We begin by reporting the 

baseline performance metrics—expected return, volatility, CVaR, and risk-adjusted 

measures such as the Sharpe and Sortino ratios—of portfolios optimized solely on financial 

criteria. This provides a benchmark for subsequent comparison. Next, we analyse the 

performance of portfolios optimized using the same methodologies but under the inclusion 

of ESG constraints, implemented through minimum ESG score thresholds. This allows us to 

evaluate the impact of ESG integration on portfolio efficiency and risk-adjusted returns. We 

compare how downside-risk-optimized portfolios (CVaR and M-CVaR) perform relative to 

traditional MV portfolios, both with and without ESG considerations. 

We then explore the variations in portfolio composition resulting from the different 

optimization models and degrees of ESG integration. This analysis highlights how the choice 

of risk metric and the introduction of ESG constraints influence asset allocation decisions. 

To ensure the robustness of our findings, we conduct the optimization for two distinct 

European equity benchmarks—NDX 100 and SX 50E—and examine results under varying 

ESG selection criteria by applying percentile-based thresholds. Specifically, we select the 

top-performing firms based on ESG scores using the 60th, 70th, and 80th percentiles, thereby 

identifying sustainability leaders within the investment universe. 

Table 2. Results for the MV, Max. SR, Max. SoR, CVaR, and M-CVaR portfolios without 

ESG constraints. 

NDX 100 



 Mean Volatility CVaR 
Sharpe 

Ratio 

Sortino 

Ratio 

MV 0.0094 0.0281 -0.0597 0.333 0.616 

Max. SR 0.0201 0.0384 -0.069 0.5223 1.0983 

Max. SoR 0.0211 0.0433 -0.0641 0.4875 1.2119 

CVaR 0.0119 0.0353 -0.0445 0.3358 0.7733 

M-CVaR 0.0195 0.0425 -0.0534 0.4573 1.2439 

SX 50E 

 Mean Volatility CVaR 
Sharpe 

Ratio 

Sortino 

Ratio 

MV 0.011 0.0337 -0.0606 0.3254 0.6811 

Max. SR 0.0153 0.0378 -0.0631 0.4047 0.8651 

Max. SoR 0.0153 0.0384 -0.0633 0.398 0.8703 

CVaR 0.0128 0.0383 -0.0495 0.3334 0.7712 

M-CVaR 0.0137 0.0371 -0.0517 0.3683 0.8374 

Source: own elaboration. 

Table 3. Results for the MV, Max. SR, Max. SoR, CVaR, and M-CVaR portfolios with 

ESG constraints (60th percentile) 

NDX 100 

 Mean Volatility CVaR 
Sharpe 

Ratio 

Sortino 

Ratio 

MV 0.0097 0.029 -0.061 0.3324 0.6145 

Max. SR 0.0198 0.0387 -0.07 0.5121 1.0928 

Max. SoR 0.0198 0.041 -0.064 0.4833 1.1822 

CVaR 0.0135 0.036 -0.047 0.3752 0.9319 

M-CVaR 0.0193 0.0449 -0.054 0.4307 1.204 

SX 50E 

 Mean Volatility CVaR 
Sharpe 

Ratio 

Sortino 

Ratio 

MV 0.0112 0.034 -0.063 0.3298 0.6808 

Max. SR 0.015 0.0374 -0.061 0.4001 0.8594 

Max. SoR 0.015 0.0383 -0.063 0.3906 0.8584 

CVaR 0.0128 0.0369 -0.053 0.347 0.7714 

M-CVaR 0.0142 0.04 -0.055 0.3561 0.8111 

Source: own elaboration. 

 

The empirical results show that while the integration of ESG constraints into the optimization 

process leads to a moderate erosion of performance metrics - particularly in terms of expected 



return, Sharpe ratio and Sortino ratio - the resulting ESG-constrained portfolios continue to 

outperform their respective benchmarks. For both the NDX 100 and SX 50E universes, 

portfolios constructed without ESG constraints delivered higher risk-adjusted returns in most 

models, particularly under the Sortino and M-CVaR frameworks. However, when ESG 

criteria are imposed (60th percentile threshold), the underperformance remains relatively 

limited. For example, the SR portfolio for the NDX 100 universe declines slightly in mean 

return (from 0.0201 to 0.0198) and Sharpe ratio (from 0.5223 to 0.5121), while maintaining 

its relative efficiency. Similar patterns are observed in all the other optimization models and 

in the SX 50E results. Importantly, as shown in the cumulative returns (Figure 1), the ESG-

integrated portfolios continue to outperform the benchmarks over the entire sample period, 

demonstrating that sustainability constraints, while imposing certain trade-offs, do not 

compromise the portfolios' ability to deliver robust long-term performance. 

 

Figure 1. Cumulative returns for optimal portfolios and benchmarks 

a. NDX 100 

 

a. SX 50E 

 
Source: own elaboration. 

 



3.3 Sensitivity Analysis: ESG Constraints with 70th and 80th Percentiles 

To evaluate the robustness of the ESG integration in the portfolio construction process, we 

conducted a sensitivity analysis by tightening the ESG filter to retain only the top-performing 

companies in each reference index (NDX 100 and SX50E), based on the 70th and 80th 

percentiles of ESG scores. Table 4 presents the results when the top 30% (≥70th percentile) 

of companies by ESG score are held. In both indices, the Sharpe and Sortino ratios for the 

Max. SR and Max. SoR portfolios remain superior, highlighting the efficiency of these 

optimization approaches under ESG constraints. Notably: 

 

In the NDX100, the Sortino Ratio reaches 1.132 for the Max. SoR strategy, indicating strong 

downside risk-adjusted returns. In the SX50E, although absolute returns are slightly lower, 

the Max SR and Max SoR strategies still show improved ratios compared to MV and CVaR. 

Table 4. Optimal portfolios with ESG constraints by taking 70th percentile 

NDX 100 

 Mean Volatility CVaR 
Sharpe 

Ratio 

Sortino 

Ratio 

MV 0.0097 0.0298 -0.062 0.3265 0.6015 

Max. SR 0.0196 0.0391 -0.072 0.5002 1.063 

Max. SoR 0.0196 0.0409 -0.066 0.4792 1.132 

CVaR 0.0142 0.0369 -0.048 0.3846 0.9551 

M-CVaR 0.0181 0.0424 -0.052 0.4261 1.1462 

SX 50E 

 Mean Volatility CVaR 
Sharpe 

Ratio 

Sortino 

Ratio 

MV 0.0115 0.035 -0.063 0.3273 0.6703 

Max. SR 0.0148 0.0381 -0.063 0.388 0.8332 

Max. SoR 0.0148 0.0389 -0.064 0.3801 0.831 

CVaR 0.0125 0.0379 -0.057 0.3289 0.7184 

M-CVaR 0.0151 0.0432 -0.06 0.3509 0.7904 

Source: own elaboration. 

Table 5 further tightens the constraint by selecting only the top 20% (≥80th percentile) of 

ESG-compliant firms. As expected, this leads to a marginal decline in mean returns and risk-

adjusted performance, due to reduced diversification. However, in this case, the NDX100 

portfolio still maintains a Sharpe Ratio above 0.45 for Max SR, and the Sortino Ratio stays 

close to 1. The SX50E results show resilience in the M-CVaR strategy, which achieves the 

highest mean return (0.0162) and a reasonable Sortino Ratio (0.7327), despite the stricter 

ESG filter. 

 



Overall, the results suggest that ESG integration through percentile-based filtering preserves 

portfolio efficiency, especially when using strategies that explicitly target risk-adjusted 

returns (Max. SR, Max. SoR, M-CVaR). While there is some trade-off between ESG 

strictness and diversification, the performance remains robust even at the 80th percentile. 

Table 5. Optimal portfolios with ESG constraints by taking 80th percentile 

NDX 100 -  

 Mean Volatility CVaR 
Sharpe 

Ratio 

Sortino 

Ratio 

MV 0.0094 0.0321 -0.067 0.2934 0.5368 

Max. SR 0.0188 0.0414 -0.079 0.4549 0.9199 

Max. SoR 0.0188 0.0425 -0.072 0.4427 0.9701 

CVaR 0.014 0.0392 -0.054 0.3575 0.8267 

M-CVaR 0.0186 0.0453 -0.063 0.4096 0.964 

SX 50E 

 Mean Volatility CVaR 
Sharpe 

Ratio 

Sortino 

Ratio 

MV 0.0115 0.0382 -0.07 0.3015 0.6091 

Max. SR 0.0146 0.0422 -0.069 0.3464 0.7379 

Max. SoR 0.0146 0.0424 -0.07 0.3445 0.7421 

CVaR 0.0137 0.0444 -0.064 0.3081 0.6769 

M-CVaR 0.0162 0.0485 -0.07 0.3349 0.7327 

Source: own elaboration. 

 

Finally, Figure 2 illustrates the shift of the efficient frontiers (EFs) as higher ESG criteria are 

applied—specifically by raising the selection threshold from the 60th to the 70th and 80th 

percentiles. The analysis is performed separately for the NDX100 and SX50E indices, and 

for three optimization frameworks: Mean-Variance, Mean-Semivariance, and M-CVaR. As 

expected, increasing the ESG threshold reduces the number of eligible companies, 

concentrating the portfolio in ESG leaders. This narrowing of the investment universe leads 

to:  

i. Reduced diversification: As the pool of assets decreases, the opportunity to balance 

risk across sectors and risk profiles diminishes. 

ii. Higher portfolio risk: The EFs shift downward and to the right in the portfolio models, 

reflecting higher volatility and tail risk for a given level of expected return. 

 

These results highlight a critical trade-off between ESG integration and portfolio efficiency. 

Portfolios constrained at the 60th percentile offer a better balance of ESG quality and 

diversification. However, at higher percentiles, although the ESG quality of the portfolio 



improves, the concentration in a few leaders reduces the ability to mitigate risk, shifting the 

frontier unfavourably.  

 

Figure 2. Efficient-Frontiers for the portfolio models 

NDX 100 SX 50E 

a. Mean-Variance 

 

a. Mean-Variance 

 

b. Mean- Semivariance 

 

b. Mean- Semivariance 

 

c. Mean- CVaR 

 

c. Mean- CVaR 

 

Source: own elaboration. 

 



4. Conclusions  

This research offers a comprehensive analysis of optimal portfolio construction by 

incorporating downside risk measures and ESG criteria within European equity markets. 

Using a comparative framework across Mean-Variance, Mean-Semivariance (Sortino), 

CVaR, and M-CVaR optimization models, and applying ESG constraints based on percentile 

thresholds, we evaluate their impact on portfolio performance and efficient frontiers using 

the SX 50E and NDX 100 indices as benchmarks. 

The findings reveal that while downside risk measures such as semivariance and CVaR 

provide better risk control for loss-averse investors, the integration of ESG constraints—

particularly at higher thresholds (e.g., 80th percentile)—results in reduced diversification, 

higher volatility, and ultimately lower risk-adjusted returns. Specifically, ESG portfolios tend 

to exhibit inferior Sharpe and Sortino ratios compared to their unconstrained counterparts, 

highlighting a trade-off between sustainability goals and financial performance. The 

sensitivity analysis confirms that portfolios under higher ESG scores become concentrated 

in a small number of leading companies, which increases idiosyncratic risk and undermines 

the benefits of diversification. In this context, moderate ESG constraints (e.g., 60th or 70th 

percentile) may offer a more balanced approach, preserving the sustainability profile without 

severely compromising portfolio efficiency. 

 

By systematically comparing downside risk models within an ESG-integrated framework, 

this study contributes to the growing academic discourse on sustainable investing and offers 

relevant insights for institutional investors navigating the tensions between ethical 

considerations and return optimization. Future work could advance this analysis in several 

directions. First, incorporating higher-order moments, such as skewness and kurtosis, into 

the optimization process (e.g., MVSK models) would provide a more robust treatment of 

asymmetric and fat-tailed return distributions, especially relevant for concentrated ESG 

portfolios. Second, leveraging advanced techniques, such as robust or Bayesian optimization 

(e.g., Meucci’s entropy pooling), and machine learning models, including autoencoders, 

variational inference, or Kolmogorov-Arnold Networks (KAN), could help uncover non-

linear patterns in ESG-risk relationships and improve out-of-sample performance. Finally, 

testing the robustness of the results using alternative ESG data providers (e.g., Refinitiv, 

Sustainalytics, MSCI) and accounting for transaction costs and turnover will enhance the 

practical applicability of these findings for long-term, sustainability-oriented investors. 
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