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Abstract 

This paper applies returns-based style analysis (RBSA) to 27 major cryptocurrencies. Our 
analysis focuses on four key factors: market risk, monetary policy, currency fluctuations, and 
crypto-specific dynamics. Our empirical results show that although traditional financial factors, 
such as equity market performance, interest rates, and exchange rates, do influence 
cryptocurrency returns, crypto-related factors have the most significant impact. Bitcoin and 
Ethereum exhibit strong sensitivity to market risk, underscoring their integration with traditional 
financial markets. In contrast, altcoin returns are predominantly driven by crypto-specific 
dynamics. Financial tokens demonstrate greater responsiveness to interest rate shifts, while 
meme coins are largely influenced by speculative trading and investor sentiment. These findings 
highlight the dominant role of cryptocurrency-specific factors in driving returns while maintaining 
linkages to traditional financial markets. The results provide valuable insights for portfolio 
managers, policymakers, and investors managing the changing crypto market. 
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1. Introduction 

As cryptocurrencies continue to grow in popularity and achieve mainstream acceptance, 
their increasing impact on the financial system makes it increasingly important for economists, 
policymakers, and investors to understand what drives their prices. Academic interest in this 
topic has also grown significantly and the respective empirical evidence shows that 
cryptocurrency prices are influenced by factors like market-specific trends, economic 
conditions, stock performance, commodity prices, investor sentiment, and uncertainty (Nagl, 
2024). 

Researchers have used various methods to identify the factors driving cryptocurrency 
returns. In this paper, we take a different approach by applying returns-based style analysis 
(RBSA) - a traditional tool for analyzing mutual fund returns - to the study of cryptocurrencies. To 
the best of our knowledge, RBSA has not yet been employed in the context of cryptocurrency 
markets. This innovative application provides new insights into the factors influencing 
cryptocurrency performance. In our empirical analysis, we focus on four key factors to explain 
cryptocurrency returns: the general risk premium factor, the interest rate factor, the dollar factor, 
and the crypto-specific factor1.  

To capture the general risk premium factor, which reflects changes in investor risk 
appetite, we use S&P 500 returns. The interest rate factor, which captures the effects of monetary 
policy shocks on cryptocurrencies, is captured by the two-year Treasury yields, which effectively 
reflect market expectations of short- to medium-term interest rate movements and monetary 
policy shifts. Schilling and Uhlig (2019) note that cryptocurrency returns are sensitive to 
macroeconomic risks, particularly those arising from monetary policy decisions. The dollar 
factor, which captures the impact of currency fluctuations on cryptocurrency markets, is proxied 
by the daily returns of the U.S. Dollar Index (DXY), which measures the performance of the dollar 
against a basket of major global currencies and usually serves as an indicator of broader currency 
trends. According to Schilling and Uhlig (2019) and Athey et al. (2016), the coexistence and 
competition between fiat currencies and cryptocurrencies play a significant role in forming the 
latter price dynamics. Finally, the crypto-specific factor is measured using changes in the market 
capitalization of stable coins, which are regarded as safe assets within the broader digital asset 
ecosystem (see, e.g., Baur and Hoang, 2021; Grobys et al., 2021; Lyons and Viswanath-Natraj, 
2023). This factor helps differentiate between shifts driven by crypto adoption and those driven 
by risk sentiment within the crypto market. Specifically, a crypto risk sentiment shock occurs 
when investors move from volatile cryptocurrencies to safer stable coins, leading to an increase 
in stablecoin market capitalization. 

Our paper also contributes to the strand of literature that attempts to understand and 
address the limitations of RBSA and finds ways of improving the method’s accuracy and stability 
(see Rekenthaler et al., 2006 and DeRoon et al., 2004 for a relevant discussion). By using a 
Gradient Boosting Regressor (GBR) model, we address key limitations of traditional returns-
based style analysis, providing a more reliable assessment of cryptocurrencies' exposure to 
individual factors. Gradient boosting, a powerful machine learning algorithm for regression and 
classification tasks (Friedman, 2001), enhances predictive accuracy by combining multiple weak 
learners, typically decision trees. Its effectiveness in delivering robust predictive models has 
been widely recognized (Chen & Guestrin, 2016). Additionally, traditional style analysis struggles 
to distinguish between significant and insignificant style weights, complicating risk 
interpretation. While Lobosco and DiBartolomeo (1997) introduced a two-step method for 
calculating confidence intervals, our approach improves upon this by using bootstrapped 

 
1 These factors were selected after evaluating a range of alternatives (e.g., the VIX), which ultimately did not 
provide additional explanatory power. 
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confidence intervals, offering deeper insights into the stability and significance of style factor 
exposures. 

Our empirical findings show that, while traditional financial factors like general market 
risks, interest rates, and the US dollar have varying degrees of influence on cryptocurrency 
returns, crypto-specific factors have the strongest impact. Specifically, the average risk factor 
sensitivity of 0.3463 highlights the significant role of broader market risks, while the relatively low 
sensitivity to interest rates (0.1027) suggests limited exposure to macroeconomic rate changes. 
Moderate sensitivity to the US dollar (0.1984) reflects its continued importance in crypto 
transactions despite the global nature of the market. However, the highest average sensitivity of 
0.3526 to crypto-specific factors underscores the dominant influence of technological 
advancements, regulatory developments, and ecosystem growth in shaping cryptocurrency 
performance. 

The rest of the paper is organized as follows: the next section reviews the relevant 
empirical literature. Section 3 analyzes the data and methodology employed, while section 4 
presents and discusses the empirical results. Section 5 includes the concluding remarks. 

2. Relevant Literature 

2.1 Predictability of cryptocurrency returns 

The predictability of cryptocurrency returns has been extensively explored in recent 
years, with researchers focusing on identifying key drivers and determining how these factors fit 
into prediction models. Some studies highlight the importance of cryptocurrency-specific 
information; for example, Jia et al. (2021) show that higher moments of intraday cryptocurrency 
returns can predict future returns, with extreme positive returns playing a key role in this 
predictability. Their findings suggest that cryptocurrency investors prefer lottery-like payoffs and 
are less worried about potential crashes. Liebi (2022) examines the existence of a value premium 
in crypto asset returns and investigates whether cryptocurrency prices reflect fundamentals, 
finding that while cryptocurrency with high ratios of active addresses to network value (value 
crypto assets) yield higher returns than those with low ratios (growth crypto assets), empirical 
evidence reveals the influence of non-fundamental factors despite theoretical models 
suggesting a positive relationship between network size and value. Similarly, Liu et al. (2020) 
identify three cryptocurrency risk factors: market return, size (market capitalization), and 
momentum, showing these factors explain the average cryptocurrency returns well. Separately, 
Liu et al. (2022) investigate common risk factors in cryptocurrency returns, identifying 24 
characteristics related to size, momentum, volume, and volatility that can predict returns, 
drawing on established return predictors from the stock market. 

Additionally, macroeconomic factors, stock market data, and commodities are important 
for predicting cryptocurrency returns. Liu et al. (2023) find that indicators such as the 
unemployment rate, inflation, and industrial production growth are strong predictors, while 
assets such as the equities, gold, and bonds are less effective. On the other hand, Liu & Tsyvinski 
(2021) study the exposure of cryptocurrency returns to precious metals (gold, platinum, and 
silver) and macroeconomic factors, but conclude that cryptocurrency returns can be predicted 
by factors specific to cryptocurrency markets, such as network effects, momentum, and investor 
attention. 

Finally, there are studies that show the significance of investor behavior and sentiment; 
see Almeida and Gonçalves (2023) for a comprehensive relevant discussion. Generally, existing 
empirical evidence shows that cryptocurrency returns are influenced by several factors, such as 
cryptocurrencies fundamentals, financial assets, macroeconomic indicators, investors and 
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market sentiment. Pečiulis et al. (2024) provide a systematic literature review of cryptocurrency 
forecasting, examining the relevant trends, and research themes. 

2.2 Methods for identifying cryptocurrency return drivers 

To identify the factors influencing cryptocurrency returns and their links to traditional 
financial assets, researchers have used methods like time-series analysis, factor models, and 
machine learning (ML). Many studies use machine learning to forecast cryptocurrency returns, 
with varying success and a focus on different factors. Akyildirim et al. (2021) analyze the 
predictability of returns for twelve liquid cryptocurrencies using ML algorithms, such as support 
vector machines, logistic regression, artificial neural networks, and random forests; their results 
show that the algorithms consistently achieved over 50% accuracy, suggesting predictability of 
price trends in the cryptocurrency markets. Basher & Sadorsky (2022) review the literature on 
Bitcoin price forecasting, noting that machine learning methods generally have higher predictive 
accuracy than parametric regression approaches. Cakici et al. (2024) investigate cross-sectional 
return predictability in cryptocurrency markets using a range of ML models and find that machine 
learning techniques can be successfully applied to predict returns. However, they show that the 
benefits from model complexity were limited, with simpler models outperforming more complex 
ones. Their findings also indicate that cryptocurrency returns are mainly determined by simple 
characteristics like market price, past alpha, momentum, and illiquidity. 

Goodell et al. (2023) suggest that many existing studies of forecasting cryptocurrency 
prices suffer from a lack of explanatory power and propose a new explainable AI framework that 
can improve forecasting performance and interpretability. Similarly, Liu et al. (2021) use a deep 
learning method named to predict Bitcoin prices and show that it performs better than traditional 
machine learning methods. Furthermore, Liu et al. (2023) employ machine learning models to 
predict returns for a large set of 3703 cryptocurrencies over a long period and show that the 
eXtreme Gradient Boosting model performs well, and can capture nonlinear relationships 
between features and returns, outperforming OLS. Finally, Nagl (2024) uses machine learning 
models (XGBoost and Lasso) to investigate the intricacies of cryptocurrency returns. 

2.3 Return-Based Style Analysis 

In conclusion, our paper also contributes to the body of literature that focuses on 
understanding and addressing the limitations of Return-Based Style Analysis (RBSA) while 
exploring ways to enhance its accuracy and stability. Since Sharpe’s (1992) seminal work 
introducing the traditional RBSA model, which uses regression analysis to assess a portfolio's 
exposure to different asset classes, numerous studies have applied RBSA, offering insights into 
its applications, shortcoming, and potential improvements. Indicatively, Agarwal and Naik (2000) 
develop a generalized style analysis by relaxing the constraints of traditional RBSA, allowing for 
negative style weights and weights that do not sum to 100%, making the method more suitable 
for hedge funds that take short positions. Lobosco and DiBartolomeo (1997) focus on the issue 
of statistical significance of style weights in RBSA by proposing a method for approximating 
confidence intervals for style weights, allowing for the identification of significant risk exposures, 
while DiBartolomeo and Witkowski (1997) apply an iterative application of Sharpe’s method of 
style analysis to the classification of equity mutual funds. Swinkels and Van Der Sluis (2006) 
address the assumption of constant investment styles over time in traditional RBSA by using a 
Kalman filter to explicitly model time-varying exposures of mutual funds, which leads to more 
efficient use of data. Mason et al (2014) combine RBSA with characteristics-based style analysis 
to create a more comprehensive model and find that membership of style groups significantly 
explains the cross-sectional performance of mutual funds. Finally, Vistocco (2024) investigates 
the use of quantile regression to draw inferences on style coefficients, particularly in the 
presence of outliers. 
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3. Data and Methodology 

Our dataset initially consists of the fifty largest cryptocurrencies by market capitalization, 
based on data from Yahoo Finance as of October 2024. After applying a screening process - 
selecting only cryptocurrencies with a first trading day before March 2021 and excluding 
stablecoins - we refine our sample to 27 cryptocurrencies. Table 1 presents their respective 
market capitalizations. Bitcoin is the largest by a significant margin, with a market capitalization 
of approximately 1.5 trillion USD. It is followed, at a considerable distance, by Ethereum, with 
Binance Coin and Solana ranking next. The sample period spans from March 2021 to October 
2024. 

< Insert Table 1 about here > 

Predicting cryptocurrency returns relies on identifying key drivers and how they fit into the 
prediction model. We focus on the most common drivers from different categories. In particular, 
we analyze the daily return series of four key assets: the S&P 500 Index, two-year Treasury zero-
coupon bonds, the U.S. Dollar Index (DXY), and the total market capitalization of all stablecoins. 
Data for stablecoins is sourced from DefiLlama, while the S&P 500, DXY, and two-year interest 
rates are obtained from Yahoo Finance. 

Our empirical methodology is based on Sharpe's approach to analyzing mutual funds, 
which is called returns-based style analysis (RBSA). In simple terms, RBSA involves performing a 
constrained regression of mutual fund returns against relevant style indices (Sharpe, 1992). In 
particular, RBSA utilizes a multivariate linear regression framework where the dependent variable 
represents the historical returns of the portfolio under evaluation, and the independent variables 
correspond to the historical returns of asset class factors. This method, known as Sharpe’s style 
regression, can be written as: 

R’ = F’ × β’ + ε’ 

in which, R′ denotes a (T × 1) vector of the portfolio’s returns over T time periods, F′ is a (T × N) 
matrix containing the historical returns of N selected factors, β′ is a (N × 1) vector capturing the 
factor exposures, and ε′ represents a (T × 1) vector of residual errors. The factors are subject to 
two constraints: their values must sum up to one, and they must remain non-negative. To identify 
the optimal set of exposures that minimize the residual (or tracking) variance, a quadratic 
programming algorithm is applied, ensuring adherence to these constraints. 

In our analysis however, we use the Gradient Boosting Regressor (GBR) model to enhance 
prediction accuracy and minimize errors within the returns-based style analysis. GBR works well 
for regression tasks because it combines several simple models, usually decision trees, to create 
a stronger one (see Friedman, 2001 for details). GBR is a good fit for studying the effects on 
cryptocurrencies returns, as it can handle non-linear relationships and moderate potential 
multicollinearity issues. Because of its outstanding prediction performance in financial datasets 
and its capacity to manage non-linear interactions, GBR was chosen above other machine 
learning models including Random Forest, Neural Networks, and XGBoost. In contrast to 
Random Forest, which averages several decision trees, GBR constructs trees in a sequential 
manner to fix earlier mistakes and improve accuracy. Although comparable, XGBoost is 
computationally demanding and might not offer significant advantages for this dataset. 

The pseudo-code for the GBR algorithm, adapted from Friedman (2001), is as follows: 

Input: training set {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛 , differentiable loss function 𝐿(𝑦, 𝐹(𝑥)) and number of iterations 

M 

Output: trained GBR model  𝐹𝑚(𝑥) 

Steps: 
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Step 1. Initialize model with a constant value:  

𝐹0(𝑥) = 𝑎𝑟𝑔 min
𝛾

∑ 𝐿(𝑦𝑖 , 𝛾)

𝑛

𝑖=1

 

Step 2. For m = 1 to M repeat the following: 

2.1 Compute the pseudo-residuals: 𝑟𝑖𝑚 = − [
𝜗𝐿(𝑦𝑖,𝐹(𝑥𝑖))

𝜗𝐹(𝑥𝑖)
]

𝐹(𝑥)=𝐹𝑚−1(𝑥)
, for i = 1,2, …, n 

2.2 Fit a base learner ℎ𝑚(𝑥) to pseudo-residuals: train ℎ𝑚(𝑥) on the training set 
{(𝑥𝑖 , 𝑟𝑖𝑚)}𝑖=1

𝑛  

2.3 Compute multiplier ρm by solving the following one-dimensional optimization 
problem: 𝑟𝑖𝑚 = 𝑎𝑟𝑔 min

𝜌
∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + 𝜌ℎ𝑚(𝑥𝑖)𝑛

𝑖=1  

2.4 Update the model: 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾𝑚  𝑤ℎ𝑒𝑟𝑒 𝛾𝑚 =  𝜌𝑚ℎ𝑚(𝑥) 

Step 3. Get the final model: 𝐹𝑚(𝑥) 

We employ the squared error as the loss function: 𝐿(𝑦, 𝐹) =
1

2
(𝑦 − 𝐹)2 

The corresponding pseudo-residual (anti-gradient) is calculated as: 

𝑟𝑖𝑚 = − [
𝜗𝐿(𝑦𝑖 , 𝐹(𝑥𝑖))

𝜗𝐹(𝑥𝑖)
]

𝐹(𝑥)=𝐹𝑚−1(𝑥)

= 𝑦𝑖 − 𝐹𝑚−1(𝑥𝑖) 

The optimal value of γm is determined using the mean squared error with Friedman’s improvement 
score: 𝛾𝑚 = mean

𝑖=1,2,...,𝑁
{

𝑦𝑖−𝐹𝑚−1(𝑥𝑖)

ℎ𝑚(𝑥𝑖)
} 

Weights are assigned as: 𝑤𝑖 = |ℎ𝑚(𝑥𝑖)| 

All computations are executed using Python’s Scikit-learn library (Pedregosa et al., 2011). 

A separate Gradient Boosting Regressor (GBR) model was trained for each 
cryptocurrency, using the returns of four factors as input features. The training process consisted 
of the following steps: 

- Model Initialization: Each GBR model was initialized with 100 decision trees, and a fixed 
random state was set to ensure reproducibility of the results. 

- Model Training: The models were trained on the returns of individual cryptocurrencies, with 
the four factor returns serving as input features. The GBR algorithm minimizes prediction 
errors through gradient descent in a stage-wise process, where each new tree corrects the 
residuals left by the previous trees. 

- Feature Importance Extraction: Once training was complete, feature importance scores were 
extracted from each model. These scores measure the impact of each factor on predicting 
cryptocurrency returns. 

Additionally, we apply bootstrapped confidence intervals to assess the stability and 
significance of each factor's contribution to cryptocurrency returns. By creating numerous 
bootstrap samples, these intervals help evaluate the variability and reliability of the estimated 
factor exposures. They provide a range within which each factor's contribution to cryptocurrency 
returns is likely to fall, offering a specified level of confidence in the results. 
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4. Empirical Results 

The returns-based style analysis results, presented in Table 2 and illustrated in Figure 1, 
provide insights into the sensitivity of the 27 cryptocurrencies under review to four key factors: 
market risk, interest rates, the US dollar, and crypto-specific influences. 

< Insert Table 2 and Figure 1 about here > 

When analyzing the average factor sensitivities across all cryptocurrencies under review 
(illustrated in Figure 2) interesting trends emerge. The average risk factor sensitivity stands at 
0.3463, highlighting the significant influence of general market risks on the crypto asset class as 
a whole. The average interest rates factor sensitivity is relatively low at 0.1027, showing that most 
cryptocurrencies are less affected by changes in macroeconomic interest rates. The average 
dollar factor sensitivity is 0.1984, demonstrating moderate exposure to changes in the US dollar. 
This is because, while cryptocurrencies are traded in many currencies, most cryptocurrency 
transactions and valuations are still primarily anchored to the US dollar despite the international 
scope of the crypto ecosystem. The average crypto factor sensitivity is the highest among the four, 
at 0.3526, reinforcing the idea that crypto-specific developments, such as technological 
innovations, regulatory shifts, and ecosystem growth, play a dominant role in driving the returns 
of these digital assets. This suggests that while traditional financial factors still influence 
cryptocurrencies, their unique ecosystem dynamics remain the most critical drivers of 
performance. 

< Insert Figure 2 about here > 

When examining the factor sensitivities of specific cryptocurrencies, Bitcoin and tokens 
backed by Bitcoin (such as Wrapped Bitcoin and Bitcoin BEP2) exhibit the highest sensitivity to 
the risk factor, with coefficients around 0.44, suggesting their strong correlation with broad 
market movements and traditional financial risks. In contrast, tokens like UNUS SED LEO and 
OKB display much lower risk factor sensitivities, suggesting a degree of separation from general 
market volatility. Crypto-specific factors have the most substantial impact on the returns of 
altcoins, such as TRON and Dogecoin, suggesting that these crypto-assets are heavily influenced 
by developments within the cryptocurrency ecosystem. In contrast, Bitcoin-related assets, such 
as Wrapped Bitcoin, exhibit lower crypto factor sensitivities, reflecting a degree of diversification 
from purely crypto-centric events. Regarding the interest rate factor, UNUS SED LEO stands out 
with a coefficient of 0.3142, significantly higher than most other cryptocurrencies. This finding 
suggests that the particular token is more affected by shifts in interest rates, likely due to its 
financial service-related use. On the other hand, cryptocurrencies such as Polkadot and Cardano 
show minimal sensitivity to interest rate changes, suggesting that they do not perform as 
traditional financial instruments. Finally, the dollar factor sensitivity is highest for Solana, Ripple, 
and Uniswap, indicating that the returns of these cryptocurrencies are more influenced by 
fluctuations in the value of the US dollar. On the contrary, TRON and Dogecoin show relatively low 
sensitivity to the dollar factor, highlighting their detachment from traditional currency 
movements, perhaps due to their speculative nature. 

The R-squared values reported in Table 2, which represent the proportion of return 
variance explained by the four factors, vary significantly across cryptocurrencies under review. 
For TRON, Ethereum Classic, and OKB we find the highest R-squared values (at around 60%), 
indicating that the specific factors effectively capture the majority of the return variability of these 
cryptos. In contrast, for NEAR Protocol and Fetch.ai we find the lowest R-squared values 
(approximately 45%), suggesting the returns of these cryptocurrencies are mainly driven by 
idiosyncratic factors. Generally, the average R-squared value of 53.33% suggests that just over 
half of the return variability of the cryptocurrencies under examination can be explained by these 
four factors. This indicates a moderate explanatory power, highlighting the relevance of both 
traditional financial factors and crypto-specific dynamics, while also pointing to the presence of 
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other unique, idiosyncratic influences that contribute to the performance of these assets. 
According to these data, speculative trading and ecosystem-specific events are the main drivers 
of some cryptocurrencies, such as meme coins and altcoins, whereas other cryptocurrencies, 
like Bitcoin and Ethereum, show high correlations with macroeconomic issues. Investors must 
take asset-specific risk exposures into account when building bitcoin portfolios, which have 
important ramifications. 

Overall, the analysis highlights the diverse risk profiles and factor sensitivities of different 
cryptocurrencies. Bitcoin, Ethereum and their related tokens are heavily influenced by market 
risk, while altcoins like TRON and Dogecoin are more affected by crypto-specific factors. 
Financial service tokens such as UNUS SED LEO exhibit higher sensitivity to interest rates, 
reflecting their exposure to macroeconomic conditions. The variation in R-squared values further 
underscores the heterogeneous nature of the crypto market, where some assets are tightly linked 
to macroeconomic and crypto-specific factors, while others are driven by distinct, project-
specific dynamics. 

< Insert Figure 3 about here > 

Bootstrapped confidence intervals are presented in Table 2, with their graphical 
representations shown in Figure 3. These 95% confidence intervals offer valuable insights into 
the stability and reliability of the estimated factor contributions for each cryptocurrency, 
indicating the range within which the true contribution of each factor is likely to fall with a high 
degree of confidence. Smaller intervals indicate greater confidence in the consistency of the 
estimated factor contributions, whereas larger intervals reflect higher uncertainty or fluctuations 
in the estimates. Cryptocurrencies such as Bitcoin, Ethereum, and their related tokens exhibit 
relatively narrow confidence intervals for the risk factor (e.g., Bitcoin’s range from 0.3049 to 
0.4669 and Ethereum’s from 0.3089 to 0.4688), indicating strong stability and a high degree of 
confidence in the robustness of their risk sensitivity estimates. This suggests that the 
contribution of market risk to their returns is consistent and less prone to variability over time. 
Conversely, altcoins display wider confidence intervals, particularly concerning the crypto-
specific factor. For instance, TRON’s crypto factor ranges from 0.3282 to 0.7389, and Dogecoin’s 
from 0.3064 to 0.6572, indicating greater uncertainty in the exact magnitude of their sensitivity to 
crypto market dynamics. This variability may stem from their reliance on market sentiment, 
speculative trading behavior, and ecosystem-specific developments, which are inherently more 
volatile. In the case of financial tokens (like UNUS SED LEO), the interest rate factor shows a 
particularly wide confidence interval (0.1062 to 0.5176), reflecting significant uncertainty in 
estimating how macroeconomic interest rate changes influence its returns. Meanwhile, meme 
and speculative coins, such as Dogecoin and Stacks, demonstrate both high upper bounds and 
wide intervals for the crypto factor, underscoring the speculative and sentiment-driven nature of 
their price movements. 

Generally, narrower confidence intervals for major cryptocurrencies indicate more 
reliable factor estimates, likely reflecting their stable market behavior and close integration with 
traditional financial systems. In contrast, wider intervals seen in altcoins and speculative assets 
indicate greater sensitivity to unexpected events, higher volatility, and unpredictable market 
conditions. These findings emphasize the importance of considering both point estimates and 
the associated confidence intervals when evaluating the factor exposures of cryptocurrencies, 
as they provide a clearer picture of both the magnitude and reliability of these relationships. 

The methodology employed aims to identify the fixed exposures that best explain the 
returns of cryptocurrencies over the specified period, resulting in an average style analysis. 
However, to capture the time-varying nature of crypto market dynamics, we also apply a rolling 
style analysis. Specifically, we estimate the GBR algorithm using a fixed number of historical 
return observations for the four largest cryptocurrencies by market capitalization: Bitcoin, 
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Ethereum, Binance Coin, and Solana. Given the availability of daily data spanning a four-year 
period (March 2021 to October 2024), we implement a rolling estimation window of 30 
observations. 

< Insert Figures 5-8 about here > 

The rolling estimation style analysis results for Bitcoin, Ethereum, Binance Coin, and 
Solana, presented in Figures 5 through 8, offer valuable insights into the time-varying behavior of 
factor exposures for these leading cryptocurrencies over the period from March 2021 to October 
2024. For Bitcoin (illustrated in Figure 5), the factor exposures exhibit relatively stable patterns, 
particularly in relation to market risk, which consistently shows strong influence over time. This 
stability aligns with Bitcoin’s established role as a mature asset within the crypto ecosystem and 
its strong correlation with broader financial markets. While there are fluctuations, they tend to be 
moderate, indicating that Bitcoin’s sensitivity to external factors remains fairly consistent despite 
market volatility. In contrast, Ethereum (illustrated in Figure 6), the second largest 
cryptocurrency, exhibits greater variability across the identified factors than Bitcoin, particularly 
with respect to the crypto-specific factor, reflecting the dynamic nature of the Ethereum 
ecosystem. Binance Coin (illustrated in Figure 7) exhibits even greater fluctuations in factor 
exposures, particularly regarding interest rates and crypto-specific factors, which maybe the 
result of its close association with the activity of the Binance exchange. Finally, Solana (illustrated 
in Figure 8) demonstrates the highest degree of volatility in its factor exposures among the four 
cryptocurrencies under review. This heightened variability most likely indicates the relative 
immaturity of Solana’s ecosystem compared to more established crypto assets, such as Bitcoin 
and Ethereum. 

In conclusion, the rolling analysis shows that factor sensitivities vary and change over 
time across major cryptocurrencies. Bitcoin has relatively stable exposures, reflecting its role as 
a digital store of value, while Ethereum, Binance Coin, and Solana are more dynamic due to their 
evolving ecosystems and technology. Our empirical findings highlight the need to consider 
changing factor exposures when analyzing cryptocurrency performance, as static models may 
miss important shifts caused by market events and ecosystem developments. 

5. Conclusion 

In this paper, we analyze cryptocurrency returns by applying a returns-based style 
analysis (RBSA) using four factors: the conventional risk premium factor (proxied by S&P 500 
returns), the monetary policy factor (proxied by two-year interest rates), the currency factor 
(proxied by U.S. Dollar Index returns), and the crypto-specific factor (proxied by the market 
capitalization of stablecoins). Furthermore, the application of the Gradient Boosting Regressor 
model enhances the traditional RBSA by improving the accuracy and stability of factor exposure 
estimates. 

Our empirical results show that Bitcoin, Ethereum, and their related tokens exhibit strong 
sensitivity to market risk, highlighting their close connection to traditional financial markets, 
while demonstrating moderate sensitivity to other factors, such as interest rates, the US dollar, 
and crypto-specific influences. In contrast, altcoins display high exposure to crypto-specific 
factors indicating that their returns are heavily influenced by developments within the 
cryptocurrency ecosystem. Financial tokens, often linked to DeFi platforms or exchange-based 
services, demonstrate higher sensitivity to interest rates, likely due to their dependence on 
conditions that affect lending and borrowing within decentralized finance. Meme and speculative 
coins, such as Dogecoin, exhibit a different dynamic, characterized by high sensitivity to crypto-
specific factors but low sensitivity to interest rates, suggesting that their performance is largely 
driven by speculative trading behavior and investor sentiment rather than traditional economic 
indicators. 
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Additionally, the rolling style analysis further shows the time-varying nature of factor 
sensitivities, with Bitcoin maintaining relatively stable exposures, while Ethereum, Binance Coin, 
and Solana show more dynamic shifts in response to crypto ecosystem developments and 
macroeconomic changes. These findings emphasize the importance of considering both static 
and time-varying models when analyzing cryptocurrency returns in order to capture the full 
spectrum of factors influencing performance. 

In conclusion, our study contributes to the growing literature on cryptocurrency return 
drivers by offering a comprehensive analysis of both traditional financial and crypto-specific 
factors. It also demonstrates the value of integrating machine learning techniques with traditional 
empirical models to enhance predictive accuracy and provide robust insights into the evolving 
dynamics of cryptocurrency markets. Future research could expand on this work by incorporating 
additional fundamental factors, such as inflation expectations or liquidity. Additionally, 
investigating the efficacy of different machine learning techniques, such as reinforcement 
learning and deep learning, may improve prediction accuracy. Finally, further insightful 
information could be obtained by researching how regulatory changes and developments in 
decentralized finance affect cryptocurrencies returns.  
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Table 1. Market Capitalization of Selected Cryptocurrencies 

Cryptocurrency Name Symbol Market Cap ($) 
Bitcoin BTC 1.424T 
Ethereum ETH 316.642B 
Binance Coin BNB 85.700B 
Solana SOL 81.830B 
Ripple XRP 29.493B 
Staked Ether STETH 25.713B 
Dogecoin DOGE 25.107B 
TRON TRX 14.693B 
Cardano ADA 12.594B 
Wrapped Bitcoin WBTC 10.582B 
Avalanche AVAX 10.476B 
Wrapped Ether WETH 8.898B 
Chainlink LINK 7.605B 
Bitcoin Cash BCH 7.398B 
Polkadot DOT 6.156B 
UNUS SED LEO LEO 5.603B 
Litecoin LTC 5.355B 
NEAR Protocol NEAR 5.113B 
Uniswap UNI7083 4.735B 
Bitcoin BEP2 BTCB 4.7B 
Fetch.ai FET 3.225B 
Monero XMR 2.956B 
Ethereum Classic ETC 2.873B 
Stellar XLM 2.776B 
Stacks STX4847 2.583B 
OKB OKB 2.341B 
Aave AAVE 2.246B 

Notes: This table includes the market capitalization in US dollars (as of October 31, 2024) of the 27 
cryptocurrencies used in the empirical analysis. 
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Table 2. Style Analysis results  

  Risk factor Interest Rates factor Dollar factor Crypto factor R2 

  
Lower 
Bound 

Mean 
Upper 
Bound 

Lower 
Bound 

Mean 
Upper 
Bound 

Lower 
Bound 

Mean 
Upper 
Bound 

Lower 
Bound 

Mean 
Upper 
Bound 

  

Bitcoin 0.3049 0.4275 0.4669 0.0782 0.1579 0.2660 0.1455 0.2046 0.2690 0.1903 0.2100 0.3265 52% 

Ethereum 0.3089 0.4156 0.4688 0.0720 0.1146 0.2024 0.1288 0.1746 0.2575 0.2101 0.2951 0.3926 56% 

Binance Coin 0.2381 0.3533 0.4148 0.0555 0.1027 0.1585 0.1269 0.1764 0.2712 0.2933 0.3676 0.4760 53% 

Solana 0.2592 0.3075 0.4083 0.0549 0.0849 0.1359 0.1954 0.2947 0.3591 0.2335 0.3129 0.4053 47% 

Ripple 0.1546 0.2376 0.3950 0.0402 0.0433 0.1694 0.1140 0.2885 0.5113 0.2093 0.4307 0.6386 59% 

Staked Ether 0.2871 0.4270 0.4788 0.0604 0.1037 0.1981 0.1264 0.1590 0.2725 0.2063 0.3102 0.3854 54% 

Dogecoin 0.1722 0.2780 0.4065 0.0503 0.0943 0.1632 0.0785 0.1169 0.2748 0.3064 0.5108 0.6572 60% 

TRON 0.1184 0.2167 0.3447 0.0465 0.0770 0.2078 0.0579 0.1065 0.2476 0.3282 0.5998 0.7389 61% 

Cardano 0.3182 0.4166 0.4630 0.0516 0.0591 0.1308 0.1575 0.2316 0.3110 0.2034 0.2927 0.3977 50% 

Wrapped Bitcoin 0.3015 0.4434 0.4753 0.0812 0.1600 0.2658 0.1398 0.1937 0.2711 0.1873 0.2030 0.3317 52% 

Avalanche 0.2874 0.4321 0.4570 0.0477 0.0709 0.1405 0.1324 0.1943 0.2716 0.2616 0.3027 0.4313 49% 

Wrapped Ether 0.3104 0.4174 0.4695 0.0743 0.1052 0.2048 0.1275 0.1747 0.2640 0.2041 0.3027 0.3988 55% 

Chainlink 0.2531 0.3674 0.4267 0.0565 0.0805 0.1527 0.1548 0.1859 0.3460 0.2364 0.3663 0.4379 50% 

Bitcoin Cash 0.2104 0.3410 0.4626 0.0621 0.0920 0.1925 0.1270 0.2138 0.3790 0.2171 0.3532 0.4413 51% 

Polkadot 0.2851 0.3749 0.4349 0.0487 0.0581 0.1360 0.1279 0.2139 0.2617 0.2847 0.3531 0.4507 51% 

UNUS SED LEO 0.1070 0.1578 0.3352 0.1062 0.3142 0.5176 0.1050 0.1851 0.3258 0.1835 0.3429 0.4950 55% 

Litecoin 0.2420 0.3138 0.3968 0.0690 0.0976 0.1667 0.1483 0.2471 0.2975 0.2792 0.3414 0.4353 54% 

NEAR Protocol 0.2841 0.4076 0.4556 0.0539 0.0684 0.1241 0.1408 0.1812 0.2813 0.2447 0.3428 0.4204 45% 

Uniswap 0.2577 0.3233 0.4340 0.0602 0.0949 0.1718 0.1374 0.2967 0.3877 0.2091 0.2851 0.3864 51% 

Bitcoin BEP2 0.3041 0.4183 0.4694 0.0869 0.1718 0.2750 0.1458 0.2016 0.2775 0.1859 0.2084 0.3368 51% 

Fetch.ai 0.2546 0.4244 0.4295 0.0792 0.1178 0.1908 0.1578 0.1822 0.3174 0.2134 0.2756 0.3755 45% 

Monero 0.1941 0.2563 0.3976 0.0488 0.0586 0.1517 0.1294 0.2041 0.3301 0.2990 0.4809 0.5676 55% 

Ethereum Classic 0.2065 0.3708 0.4205 0.0488 0.1137 0.2093 0.1173 0.1614 0.4080 0.2363 0.3541 0.4643 61% 

Stellar 0.1793 0.3435 0.4261 0.0534 0.0750 0.1579 0.1292 0.2097 0.5062 0.1858 0.3718 0.4694 54% 

Stacks 0.1773 0.3634 0.5831 0.0368 0.0716 0.2025 0.0841 0.1571 0.3041 0.1869 0.4079 0.6854 57% 

OKB 0.1103 0.1591 0.2911 0.0420 0.0823 0.1598 0.1186 0.1801 0.3788 0.3430 0.5785 0.6673 61% 

Aave 0.2638 0.3549 0.4174 0.0734 0.1041 0.1731 0.1456 0.2219 0.2916 0.2361 0.3190 0.4128 52% 

Notes: This table displays the results of the style analysis for each cryptocurrency. The confidence intervals 
are derived from bootstrapped feature importances, with the lower bound representing the 2.5th percentile 
and the upper bound representing the 97.5th percentile. The R-squared value reflects the proportion of 
return variance explained by the four factors (risk, interest rates, the dollar and crypto). The analysis covers 
the sample period from March 2021 to October 2024. 
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Figure 1. Graphical Representation of Style Analysis Coefficients for Each Cryptocurrency 

 
Notes: This figure graphically illustrates the style analysis coefficients for each of the four factors across all 
cryptocurrencies. 
 

Figure 2. Average Contribution of Each Factor 

 
Notes: This figure displays the average coefficients of the four factors across all 27 cryptocurrencies 
analyzed, illustrating their varying levels of exposure to market risk, interest rates, currency fluctuations, 
and crypto-specific influences. 
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Figure 3. Graphical Representation of Confidence Intervals for Each Cryptocurrency 

 
Notes: This figure graphically presents the confidence intervals for each of the four factors across all 
cryptocurrencies. The lower bound represents the 2.5th percentile, and the upper bound represents the 
97.5th percentile of the bootstrapped feature importances. 
 
 

Figure 4. Average Confidence Interval Ranges 

 
Notes: This figure graphically presents the average confidence interval coefficients for each of the four 
factors across all 27 cryptocurrencies under review. The confidence intervals for each factor are 
determined using the bootstrapped feature importances aggregated from all iterations. 
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Figure 5. Rolling estimation Style Analysis results for Bitcoin (BTC) 

 

Notes: This figure plots the style analysis results for Bitcoin for the period March 2021 – October 2024 using 
a rolling estimation window of 30 observations. 
 
 

Figure 6. Rolling estimation Style Analysis results for Ethereum (ETH) 

 
Notes: This figure plots the style analysis results for Ethereum for the period March 2021 – October 2024 
using a rolling estimation window of 30 observations. 
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Figure 7. Rolling estimation Style Analysis results for Binance Coin (BNB) 

 
Notes: This figure plots the style analysis results for Binance Coin for the period March 2021 – October 2024 
using a rolling estimation window of 30 observations. 
 

 

Figure 8. Rolling estimation Style Analysis results for Solana (SOL) 

 
Notes: This figure plots the style analysis results for Solana for the period March 2021 – October 2024 using 
a rolling estimation window of 30 observations. 
 


