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(LLMs) to analyze earnings call transcripts of S&P 500 firms, we construct novel firm-level mea-

sures of AI infrastructure. Firms with higher AI infrastructure earn quarterly alphas of 0.4% to

0.9% relative to firms with low AI infrastructure, after controlling for standard risk factors and

anomalies. These firms are generally larger, exhibit higher Tobin’s Q and R&D spending, and

maintain lower future leverage. Our findings suggest that markets systematically undervalue AI

infrastructure, as the expensing of intangible investments suppresses short-term earnings while

generating long-term value—consistent with the productivity J-curve (Brynjolfsson et al. (2021)).
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1 Introduction

AI infrastructure refers to the integrated ecosystem of hardware, software, and technological

resources that enable organizations to develop, deploy, and maintain AI-powered systems. It con-

sists of both tangible assets–such as servers, specialized AI chips (GPUs/TPUs), data centers, and

networking hardware–and intangible assets, including proprietary AI models, training datasets,

algorithms, MLOps platforms, cloud-based AI services, and intellectual property. Together, these

components form the foundation for scalable and efficient AI capabilities.

The rapid development of AI technologies has sparked a growing body of research into their

economic implications, particularly in labor market dynamics (e.g., Eisfeldt et al. (2024), Babina

et al. (2024)). However, one critical dimension remains underexplored: how AI infrastructure im-

pacts financial markets. This paper addresses that gap by examining the relationship between AI

infrastructure and asset pricing, with a focus on expected stock returns, future firm value (Tobin’s

Q), and R&D expenditures. We find that AI infrastructure is a robust and statistically significant

predictor of these outcomes. Specifically, the higher the AI infrastructure, the higher the expected

stock returns, firm values, and R&D expenditures.

Our study presents several important findings about AI infrastructure’s relationship with

stock returns and firm fundamentals. First, we develop a novel methodology for measuring firm-

level AI investments, providing granular insights into their impact on firm performance. Unlike

prior research, which largely examines AI’s labor market implications, we focus specifically on

the strategic role of AI infrastructure on the firm level. Second, we employ large language models

(LLMs) to analyze earnings call transcripts, using generative AI techniques to enable scalable, re-

peatable analysis across firms and quarters. Third, we uncover new evidence linking AI infrastruc-

ture to stock performance: firms with higher AI infrastructure measures consistently outperform

their peers, demonstrating not only higher returns but also greater resilience during economic

downturns. Fourth, we connect AI infrastructure measures to future stock returns and key firm

fundamentals–such as size, market valuation (Tobin’s Q), and R&D expenditure–offering a com-

prehensive view of how AI investments shape growth, competitiveness, and financial outcomes.
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Fifth, our analysis reveals that AI adoption is most prevalent among larger firms, growth-oriented

companies (with low B/M ratios), and firms with higher market valuations, while being strongly

associated with R&D intensity.

We contribute to the literature by introducing a structured LLM framework to assess corporate

AI investments. We develop the bottom-up approach which leverages prompt-engineered queries

(GPT-3.5/GPT-4) to extract insights from unstructured earnings calls. First, we develop a prompt

engineering framework that instructs LLMs to act as domain-specific analysts. Our prompts guide

the model to locate references to AI infrastructure, assess their relevance within a firm’s broader

business strategy, and benchmark these initiatives against industry norms. Second, we imple-

ment a Chain of Thought (CoT) reasoning approach that encourages the model to break down its

reasoning into logical steps, enhancing interpretability and minimizing spurious noise in its as-

sessments. Third, we utilize zero-shot learning to allow the model to perform these tasks without

labeled training data, instead relying on structured prompt templates and internal reasoning to

produce firm-level classifications. This enables scalable, repeatable analysis across thousands of

firm-quarters.

To demonstrate the value of our methodology, we apply it to S&P 500 firms’ earnings calls

from 2006 to 2024, accessed via the API Ninjas Earnings Call Transcript API. These transcripts

capture executive discussions on strategy, operations, and technology, providing rich context for

identifying AI infrastructure investments over time. We link this data to firm fundamentals from

Compustat and stock returns from CRSP to explore how AI infrastructure shapes firm perfor-

mance and investor outcomes. To ensure comparability and interpretability, we exclude firms in

financial, insurance, and real estate sectors, where AI applications tend to be software-driven and

sector-specific, often deviating from the physical and computational infrastructure focus of our

study.

Our LLM-based framework assigns a binary AI Infrastructure classification to each firm-quarter

observation, where 1 denotes firms with high AI infrastructure levels and 0 indicates firms with

low AI infrastructure levels. To deepen the analysis, we also decompose AI infrastructure into four

foundational components: Computing Hardware and Software Ecosystem (CHSE), Power and
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Energy Resources (PER), Data Storage and Management Systems (DSMS), and Technical Stan-

dards and Specifications (TSS).1 CHSE refers to the high-performance processors; distributed

and edge computing resources; cloud infrastructure; and specialized software tools that enable

firms to develop, deploy, and manage AI systems efficiently across operations. PER encom-

passes energy-efficient architectures; advanced cooling systems; renewable energy integration;

and backup solutions, all of which contribute to the sustainability, reliability, and performance

of firms’ AI infrastructure. DSMS includes secure and scalable storage solutions; data pipelines;

caching mechanisms; version control tools; and distributed storage systems, all of which support

the effective management of large datasets and ensure low-latency access across industries. TSS

covers standardization efforts such as model interchange formats; data structures; API specifi-

cations; performance benchmarks; security and privacy protocols; and hardware compatibility

metrics, which collectively facilitate efficient, secure, and sustainable AI adoption.

Descriptive patterns indicate that 9.2% of S&P 500 firms qualified as high-AI-infrastructure

investors during our sample period, with adoption rates doubling to 19.1% during the 2022-2024

generative AI boom. Notably, investments were most concentrated in computing and power in-

frastructure—the foundational enablers of advanced AI deployment—reflecting industry priori-

tization of these capability domains. Firms with higher AI infrastructure scores tend to be larger,

more growth-oriented, and hold higher market valuations. These firms also invest more heavily

in R&D, rely more on intangible capital, and interestingly, employ more labor—suggesting that

AI infrastructure may complement, rather than substitute for, skilled human capital. Case stud-

ies of top-scoring firms such as Apple, Microsoft, and NVIDIA reveal concentrated strengths in

foundational infrastructure, while low-scoring firms are primarily in traditional, capital-intensive

industries with limited AI integration.

We empirically examine whether AI infrastructure is associated with superior stock perfor-

mance. Using portfolio sorts from 2014 to 2024 based on binary classifications derived from Chat-

GPT, we find that firms with high AI infrastructure consistently outperform their low-AI peers.

1There are two additional components — Communication Networks (CN) and Security Protocols and Systems (SPS)
— which are excluded from the main decomposition because they represent relatively mature and standardized tech-
nologies, and thus are less likely to explain cross-sectional differences in firms’ AI infrastructure.
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The high-minus-low return spread ranges from 0.435% to 0.930% per quarter and remains signif-

icant across CAPM, Carhart-4, and Fama-French 5-factor models. These results hold even when

excluding technology firms, indicating that AI infrastructure provides a generalizable advantage

beyond the tech sector. Furthermore, return differentials widen during periods of economic weak-

ness—measured by CFNAI, GDP, industrial production, and the S&P 500 index—highlighting the

countercyclical resilience of firms with robust AI infrastructure. This return premium persists

across various model specifications, suggesting that AI infrastructure is a priced firm characteris-

tic not fully captured by traditional asset pricing frameworks. These findings imply that markets

may systematically underprice AI infrastructure, potentially overlooking its strategic importance

for future firm performance. Specifically, AI infrastructure’s intangible investment costs are ex-

pensed, suppressing short-term earnings (consistent with the productivity J-curve), while gen-

erating long-term rents (aligned with the resource-based view). This mispricing contributes to

persistent alpha, supporting intangible investment models.

Further analysis using Fama-MacBeth regressions shows that AI infrastructure is a strong

and robust predictor of next-quarter stock returns. This relationship holds across the full sample

(2011–2024) and is particularly pronounced during the recent generative AI boom. Disaggregating

AI infrastructure into its four key subcomponents—CHSE, PER, DSMS, and TSS—we find that

DSMS and TSS are the strongest predictors of future returns, suggesting that data readiness and

interoperability are especially valued by investors. Regression results also show that firms with

higher AI infrastructure earn 30–40 basis points higher returns in the following quarter, even after

controlling for standard risk factors and anomalies. This return premium persists across different

model specifications, further suggesting that AI infrastructure is a priced firm characteristic not

fully captured by traditional asset pricing frameworks. These findings imply that markets may

systematically underprice AI infrastructure, potentially overlooking its strategic importance for

future firm performance.

Furthermore, we examine whether firms with high AI infrastructure experience distinct changes

in corporate fundamentals over time. We find that firms with high AI infrastructure tend to ex-

perience faster growth, reduced leverage, higher market valuation (Tobin’s Q), and stronger R&D
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investment. These findings suggest that AI infrastructure drives long-term growth, financial disci-

pline, and innovation, although its benefits are often not reflected in short-term earnings or book

values, leading to market underreaction. This implies that AI infrastructure acts as a forward-

looking signal of firm quality, which markets may underprice due to its intangible nature.

Next, we assess how AI infrastructure influences future firm performance during the gener-

ative AI boom (2006–2024). Using ChatGPT-generated scores to classify firms by high or low AI

infrastructure, the analysis shows that various components, including CHSE, PER, DSMS, and

TSS, impact corporate fundamentals. Results reveal that CHSE and PER positively affect firm

growth and market valuation, with DSMS having the strongest impact on Tobin’s Q, highlighting

the market’s valuation of robust data management. TSS also influences both valuation and R&D,

underscoring the role of technical standards in driving innovation. Overall, firms with strong

AI infrastructure, particularly in data management and technical standards, are better positioned

for long-term growth, emphasizing the importance of investing in these areas to enhance value

creation during the AI boom.

Finally, our analysis of AI infrastructure determinants reveals that larger firms, growth-oriented

companies (low B/M ratio), and those with higher market valuations (Tobin’s Q) are significantly

more likely to adopt AI. R&D-intensive firms also show greater AI adoption, whereas traditional

intangible assets do not consistently predict AI investment. Notably, AI infrastructure exhibits

strong persistence over time. These findings align with prior evidence that AI adoption con-

centrates among large firms, innovative startups, and tech hubs, often alongside other advanced

technologies.

In the context of AI infrastructure, the insights of Brynjolfsson et al. (2021) on the ”Productivity

J-Curve” are highly relevant. They formalize the concept that the emergence of general-purpose

technologies (GPTs) like AI requires significant intangible investments, including those in AI mod-

els, data management systems, and MLOps platforms. Brynjolfsson et al. (2021) argue that such

investments initially result in a decline in measured productivity due to the early-stage costs of ac-

quiring and integrating these intangible assets. This aligns with the findings of this paper, where

high-AI firms initially experience suppressed short-term earnings and market mispricing due to

5



the high upfront costs and the productivity J-curve effect. McElheran et al. (2024) show that early

AI adoption—though limited to fewer than 6% of firms—is concentrated among large firms and

high-growth startups, clustering with other emerging technologies (e.g., cloud computing) in ’su-

perstar’ hubs. Over time, however, as these investments mature and AI capabilities scale, the

firms benefit from superior stock returns, stronger firm fundamentals (such as increased R&D in-

vestment and higher Tobin’s Q), and resilience, particularly during economic downturns. This

delayed return on intangible assets also contributes to persistent alpha generation, supporting the

idea that firms with high AI infrastructure are underpriced in the short term but ultimately out-

perform in the long term, as predicted by the J-curve framework. Unlike Cochrane (1991), where

stock returns reflect rational expectations of investment-driven productivity shocks, our results

suggest systematic mispricing: the market underestimates the lagged payoff of AI intangibles due

to the J-curve effect (Brynjolfsson et al. 2021). These dynamics are further corroborated by Czar-

nitzki et al. (2023) and, who find positive and significant associations between the use of AI and

firm productivity.

Building on these insights, this study is the first to develop a scalable and interpretable frame-

work for measuring firm-level AI infrastructure investments using a prompt-engineered, zero-

shot LLM-based approach with Chain of Thought (CoT) reasoning, applied to earnings call tran-

scripts. We define AI infrastructure broadly, encompassing both tangible assets (e.g., servers,

GPUs, data centers) and intangible assets (e.g., AI models, datasets, MLOps platforms), and de-

compose it into key components: Computing Hardware and Software Ecosystem (CHSE), Power

and Energy Resources (PER), Data Storage and Management Systems (DSMS), and Technical

Standards and Specifications (TSS). Our findings show that firms with high AI infrastructure

not only outperform in the stock market but also demonstrate stronger fundamentals and greater

resilience during downturns, suggesting that AI infrastructure is an important, yet often under-

priced, firm characteristic in market valuations. Consistent with theories linking imperfect in-

formation to resource misallocation (e.g., David et al. (2016)), our findings suggest that firms in-

vesting in AI infrastructur–particularly in data storage and technical standard–improve internal

information processing capabilities, driving superior productivity, valuation, and stock perfor-
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mance.

We also contribute to the emerging literature examining the revolutionary impact of ChatGPT

and other LLMs on financial markets, corporate behavior, and decision-making. Recent research

highlights the predictive and analytical power of LLMs across financial domains. Eisfeldt et al.

(2024) show that firms more exposed to Generative AI saw stock price gains after ChatGPT’s

launch, driven by labor-technology substitution. Kim et al. (2024b) find GPT-4 outperforms hu-

man analysts in earnings prediction and improves trading performance. Chen et al. (2025) show

ChatGPT uniquely predicts stock market and macroeconomic trends from news, outperforming

other models. Lopez-Lira and Tang (2023) demonstrate that LLMs predict stock returns from

news headlines, particularly for smaller firms and negative news, due to information-processing

advantages. Fedyk et al. (2025) show that GPT-4 mirrors human investment preferences but also

reveals biases when demographic information is absent. Li et al. (2024) use LLMs to map ana-

lysts’ views on corporate culture and link them to stock recommendations and firm value. Kim

et al. (2024a) find that ChatGPT-generated summaries of corporate disclosures enhance investor

understanding and market reactions. Kim and Nikolaev (2024) show that LLMs integrating narra-

tive context into financial metrics improve profitability predictions and asset pricing models. Kim

and Nikolaev (2025) demonstrate that combining narrative and numeric data improves forecasts

of firm performance, especially when accounting information is noisy. Jha et al. (2024) develop a

ChatGPT-based investment score predicting firms’ future capex and linking disclosure sentiment

to short- and long-term returns. Building on this emerging literature, our study extends the use

of LLMs to measure AI infrastructure investments from earnings calls, offering a scalable frame-

work to link AI capabilities to stock returns, firm valuation, and R&D activity, thereby uncovering

a new priced intangible asset in financial markets.

More broadly, our study relates to the expanding literature exploring how broader techno-

logical changes reshape firm dynamics, labor markets, and economic inequality. Acemoglu and

Restrepoe (2022) document that 50–70% of changes in the U.S. wage structure over the past four

decades are driven by automation-induced displacement, particularly among workers special-

ized in routine tasks. Kogan et al. (2021) show that higher rates of industry innovation increase
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top workers’ earnings while raising labor income risk, with significant welfare losses and hedging

demands emerging in response to innovation shocks. Relatedly, Autor et al. (2020) find that the de-

cline in labor’s share of GDP is closely linked to the rise of ”superstar firms,” characterized by high

markups, low labor shares, and increasing market concentration, a dynamic further intensified by

globalization and technological progress. Complementing these trends, Tambe et al. (2020) high-

light that firms’ investments in IT-related intangible assets, termed ”digital capital,” have risen

substantially since the 1990s, now accounting for a large share of firm assets and predicting fu-

ture productivity growth. Similarly, Begenau et al. (2018) show that big data disproportionately

benefits large firms by lowering their cost of capital, facilitating further growth and consolidation.

Finally, Cockburn et al. (2018) emphasize that AI, particularly deep learning, represents a new

general-purpose ”method of invention,” reshaping R&D activities and creating powerful incen-

tives for firms to race for control over critical datasets and algorithms.

The remainder of the paper is organized as follows: Section 2 outlines the methodology used

in this study, including our data sources and the LLM framework employed. Section 3 details the

data collection process and provides summary statistics. Section 4 presents the main empirical

results. Finally, Section 5 concludes with implications for both research and practice.

2 Methods

2.1 Generative AI Prompt Engineering

This research leverages advanced large language models to evaluate companies’ AI infras-

tructure investments and their impact on stock performance and firm fundamentals. LLMs rep-

resent a significant advancement in artificial intelligence, capable of processing and generating

human-like text by recognizing patterns in vast training datasets. These models, including GPT-

3.5 and GPT-4, have demonstrated remarkable capabilities in understanding context, executing

complex instructions with precision, and delivering context-aware, insightful responses across a

wide range of specialized fields. Our research methodology employs these language models to

analyze corporate earnings transcripts for indicators of a company’s AI infrastructure level. This

approach builds on recent studies demonstrating the effectiveness of LLMs, such as ChatGPT, in
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extracting predictive investment signals from conference calls ( Jha et al. (2024) and Kim et al.

(2024a)), finaical statements (Kim et al. (2024b) and Kim et al. (2024a)), and SEC reports (Kim and

Nikolaev (2024)).

Effective prompts serve as the critical interface between users and language models, trans-

lating human intent into actionable guidance for the model. In our research, prompts are en-

gineered to transform the language model into a financial analyst—one capable of deciphering

complex earnings call transcripts to evaluate companies’ AI infrastructure levels. When given

a prompt, the model analyzes its structure and intent, generates candidate responses, and se-

lects the output that best balances relevance, coherence, and accuracy. The model’s performance

hinges on prompt design: vague or ambiguous prompts yield unreliable results, while precise,

well-structured prompts produce actionable insights. This makes prompt engineering a founda-

tional pillar of our methodology.

2.2 Chain of Thought (CoT) Reasoning

A key innovation in our research is the application of Chain of Thought (CoT) reasoning–a

technique that significantly enhances language models’ problem-solving capabilities. Unlike sim-

ple question-answer formats, CoT prompting instructs the model to break down complex analyt-

ical tasks into a series of logical steps before arriving at a conclusion. This approach mirrors how

human experts approach multifaceted problems: by decomposing them into manageable compo-

nents, addressing each component systematically, and then synthesizing the findings into a final

assessment. For financial analysis tasks that require nuanced judgment, CoT provides several

advantages. By working through multiple logical steps, the model can handle more complex an-

alytical tasks than would be possible with direct prompting. The explicit reasoning chain makes

the model’s decision-making process visible and auditable, rather than presenting conclusions as

black-box outputs. Breaking analysis into discrete steps helps prevent logical errors and oversight

of critical factors. Additionally, the structured approach ensures that all relevant considerations

are systematically addressed for each company analyzed.

In our research, we implemented a four-step CoT framework specifically designed for evaluat-
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ing corporate AI infrastructure level. The first step involves evidence identification, systematically

identifying mentions of AI technologies, computational infrastructure, data processing capabili-

ties, and related investments within earnings transcripts. The second step is strategic significance

assessment, evaluating whether these AI investments represent core strategic initiatives or pe-

ripheral experiments within the company’s overall business model. The third step encompasses

comparative industry analysis, contextualizing the company’s AI investments relative to sector

norms and competitive benchmarks. The final step is classification synthesis, integrating insights

from the previous steps to make a final ”High” or ”Low” classification of AI infrastructure invest-

ment.

2.3 Zero-Shot Learning Application

Our methodology employs zero-shot learning, wherein the language model makes assess-

ments without receiving explicit training examples. Instead of showing the model examples of

companies with ”High” versus ”Low” AI infrastructure investments, we provide clear evaluation

criteria and rely on the model’s pre-existing knowledge of corporate finance, technology invest-

ments, and industry patterns.

The prompt we developed for this purpose guides the model through a structured analysis:

Forget all previous instructions. Pretend you are a financial expert with stock recommendation
experience. We’ll provide a description of an earnings transcript, and you need to determine
whether this company has high AI Infrastructure. Follow this structured approach before giving
your final answer:

1. Identify AI-related Investments: Scan the earnings transcript for mentions of AI Infras-
tructure, data centers, machine learning applications, or cloud computing.

2. Assess Significance: Determine whether AI is a core part of the company’s business strat-
egy or just a minor component.

3. Consider Industry Context: Compare this company’s AI investments with industry stan-
dards.

4. Final Decision: Based on the above factors, respond with ”High” if AI Infrastructure is
significant, otherwise ”Low.”

For maximum consistency and reproducibility, we set the temperature parameter of our lan-

guage model queries to 0, ensuring that identical inputs consistently produce the same analytical
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outputs. This parameter setting is crucial for maintaining methodological rigor in our research.

The integration of zero-shot learning with Chain of Thought reasoning represents a method-

ological advancement in applying language models to financial analysis. Our approach enables

systematic, transparent evaluation of companies’ AI infrastructure investments based on their

public disclosures, providing valuable insights for investment decision-making and market anal-

ysis.

The Apple example demonstrates our methodology in practice. The model first identifies Ap-

ple’s ”Apple Intelligence” initiative and related AI investments, assesses these investments as

strategically significant rather than peripheral, evaluates Apple’s AI focus relative to industry

trends, and finally classifies Apple as having ”High” AI infrastructure based on this comprehen-

sive analysis.

For example, consider the following excerpt from Apple’s (AAPL) third-quarter 2024 earnings

transcript: The transcript mentions “Apple intelligence,” which builds on years of innovation and

investment in AI and Machine Learning. Apple intelligence is described as a transformative set of

capabilities that will enrich customers’ lives through features like notification summaries, reduced

interruptions, and more.

ChatGPT’s CoT reasoning proceeds as follows:

1. Identify AI-related Investments: The transcript highlights “Apple intelligence,” empha-
sizing significant investments in AI and machine learning, including features like notifi-
cation summaries.

2. Assess Significance: AI is integral to Apple’s strategy, with Apple intelligence described
as transformative and embedded across products, indicating a core focus.

3. Consider Industry Context: Apple’s AI investments align with industry trends, where
leading tech firms prioritize AI integration, and their scale appears competitive.

4. Final Decision: Given the substantial AI investments and strategic emphasis, the AI
Infrastructure is significant. Response: High.

The integration of CoT reasoning in the prompt design represents a key methodological ad-

vancement. By requiring ChatGPT to follow defined steps—identifying investments, assessing

their role, and benchmarking against the industry—the model produces decisions that are both

11



systematic and transparent. This approach mirrors human analytical processes, enhancing the re-

liability of the classification and making it easier to understand the rationale behind each output.

2.4 Econometric Modeling

We prompt ChatGPT to evaluate each firm’s AI infrastructure capabilities based on its earn-

ings call transcripts. The output of this evaluation is translated into binary indicators: a score of

1 signifies a high level of AI-enabling infrastructure, and 0 otherwise. ChatGPT generates these

scores for an aggregate measure, labeled AI Infrastructure, as well as for four specific subcom-

ponents representing distinct technological domains: Computing Hardware and Software Ecosystem

(CHSE), Power and Energy Resources (PER), Data Storage and Management Systems (DSMS), and Tech-

nical Standards and Specifications (TSS). These subcomponents capture critical enablers for scalable

and efficient AI deployment within firms.

Using these AI-related indicators as inputs, we conduct econometric modeling in two key

steps: infrastructure signal extraction and return prediction. In the first step, ChatGPT processes

textual information to generate firm-level indicators for both the overall AI Infrastructure and its

subcomponents. In the second step, we employ these indicators to forecast future firm-level stock

returns using a cross-sectional Fama-MacBeth regression framework.

We estimate the following general model:

Reti,t+1 = β
′
Xi,t + δj + δt + ϵi,t,

where Reti,t+1 denotes stock i’s return in the subsequent quarter, and Xi,t is a firm-level AI In-

frastructure variable—either the aggregate score or one of the four subcomponents (CHSE, PER,

DSMS, TSS). The model includes industry fixed effects δj to account for sector-level heterogeneity

and year-quarter fixed effects δt to absorb time-specific macroeconomic shocks and trends. The

error term ϵi,t captures firm-level residual variation.

In extended specifications, we augment this model to include lagged stock returns and a rich

set of firm-level controls:

Reti,t+1 = β
′
Xi,t + γ

′
Zi,t + δj + δt + ϵi,t,
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where Zi,t includes standard firm characteristics such as size (SIZE), book-to-market ratio (B/M),

Tobin’s Q ( Tobin’s Q), leverage (LEV), profitability (ROA), investment (CAPEX), R&D intensity

(R&D), asset tangibility (TANG), intangible assets (INTANG), and labor inputs (LABOR). This

set of controls ensures that the estimated relationship between AI Infrastructure and future returns

is not confounded by broader firm-level economic fundamentals.

Standard errors are clustered at the firm level to account for potential autocorrelation and

heteroskedasticity in residuals across time within firms. This clustering approach enhances the re-

liability of inference by acknowledging the panel structure of the data and the non-independence

of observations across quarters for the same firm.

3 Data

In this section, we discuss the different datasets we use and the process of variable construc-

tion.

3.1 Data Sources and Sample Selection

We utilize multiple data sources. First, we use S&P 500 firms’ conference call transcripts as our

primary text source to assess their AI Infrastructure level. Second, we obtain corporate accounting

variables and stock returns from Compustat and CRSP.

Our primary text dataset includes earnings call transcripts from 2006 to 2024, obtained using

API Ninjas’ Earnings Call Transcript API2. This API provides entire transcripts of major firms’

quarterly earnings calls, with historical data available from 2006 forward. These earnings call

transcripts are the written records of the quarterly conference calls where executives of a pub-

licly traded company—typically the CEO, CFO, and sometimes other senior leaders—discuss fi-

nancial results, operational highlights, and future outlook with investors, analysts, and media.

These calls, held four times a year after quarterly earnings releases, follow a standard structure:

opening remarks summarizing key results, detailed financial discussions (revenue, profits, ex-

penses), segment-by-segment performance breakdowns, forward-looking statements (projections

2available at https://www.api-ninjas.com/api/earningscalltranscript
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and strategic plans), and a Q&A session where analysts pose direct questions. The purpose is

to provide transparency into the company’s financial health and strategy, equip investors with

insights for decision-making, and allow analysts to probe executives on performance and risks.

Transcripts are publicly available via SEC filings, investor relations pages, and financial platforms,

serving as critical resources for stakeholders to assess a company’s trajectory.

This study excludes financial, insurance, real estate, and related industries to ensure the valid-

ity and interpretability of our AI Infrastructure scoring methodology. This stems from two criti-

cal methodological considerations. First, the nature of AI Infrastructure demonstrates significant

variability across industries. In financial and insurance sectors, AI applications are predominantly

specialized, focusing on algorithmic trading, risk assessment, fraud detection, and customer an-

alytics. These applications rely primarily on proprietary models and software rather than the

physical AI Infrastructure that is the focus of our research. Similarly, real estate industries tend

to leverage AI for predictive analytics, automated property valuation, and customer engagement,

which do not necessitate the extensive computing hardware, power resources, or communication

networks central to our investigation. Second, these industries operate within unique regulatory

and technological ecosystems that would complicate our comparative analysis. Financial and

insurance firms are governed by strict regulatory frameworks—such as GDPR (General Data Pro-

tection Regulation), PSD2 (Revised Payment Services Directive), and Basel III—which profoundly

influence their AI adoption patterns in ways that may not be captured by a generalized scoring

system. Real estate firms, moreover, frequently employ localized, market-specific AI tools that

lack the standardization necessary for meaningful cross-firm comparisons. By excluding these

sectors, we aim to develop a more robust, transferable AI Infrastructure scoring methodology that

can be reliably applied across diverse non-financial industrial contexts.

3.2 Summary Statistics

Table 1 describes the Summary Statistics for the AI Infrastructure dataset for S&P 500 firms.

It provides a detailed overview of AI Infrastructure levels, firm characteristics, and firm perfor-

mance metrics.
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The upper panel of Panel A shows that the mean AI Infrastructure score for S&P 500 firms

is 0.092, which indicates that 9.2% of firms have a high AI Infrastructure level according to the

ChatGPT-generated scores. Across the whole sample, relatively few firms have high AI Infras-

tructure.

The lower panel of Panel A shows the summary statistics for the Generative AI boom sub-

sample, which includes S&P 500 firms from 2022 to 2024. The mean AI Infrastructure score for

firms during this period is 19.1%, indicating a higher level of AI Infrastructure during the Gener-

ative AI boom compared to the previous period. We also observe that certain technology-related

categories, such as the Computing Hardware and Software Ecosystem (CHSE) and Power and Energy

Resources (PER), have higher mean scores of 32.4% and 42.1%, respectively, compared to other cat-

egories. This suggests that during the Generative AI boom, AI Infrastructure investments were

particularly concentrated in CHSE and PER. In contrast, categories such as DSMS and TSS ex-

hibit significantly lower to AI Infrastructure, with mean scores ranging from 6.0% to 6.5%. This

disparity highlights a selective focus on specific technology areas during the boom period, poten-

tially reflecting strategic prioritization of critical AI-enabling components over broader infrastruc-

ture categories.

Panel B presents the summary statistics for firm characteristics. The average firm size (SIZE),

measured as the natural logarithm of total book assets, is 9.791, equivalent to approximately $17.9

billion in assets, with a median of 9.819 ($18.4 billion). The range spans from 7.703 to 11.815, rep-

resenting firms with assets between roughly $2.2 billion and $135 billion, covering both large and

small firms. The mean book-to-market ratio (B/M) is 0.329, with a median of 0.277, suggesting

that most firms in the sample are growth-oriented (with B/M less than 1), while value-oriented

firms are more concentrated in the upper percentiles. The mean Tobin’s Q, defined as the ratio

of the market value of assets (market capitalization plus debt minus current assets) to the book

value of assets, is 1.849, higher than the median of 1.348, indicating a right-skewed distribution.

The average leverage ratio (LEV), calculated as total debt divided by total debt plus market eq-

uity, is 0.206, reflecting moderate leverage across firms, while the range (0.023 to 0.489) illustrates

variability in capital structure. The mean return on assets (ROA), measured as net income over
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total assets, is 1.9%, with a relatively narrow range from −0.4% to 5%, indicating generally mod-

est profitability. The capital expenditure to sales ratio (CAPEX) has a mean of 0.182, significantly

higher than the median of 0.089, notably higher than the median of 0.089, indicating a skewed

distribution driven by a few firms with substantial physical investments. The research and de-

velopment (R&D) expenditure to total capital stock ratio averages 3.1%, with a median of 1.6%,

highlighting that R&D investment is concentrated among a few firms. The mean tangibility ra-

tio (TANG), defined as property, plant, and equipment (PP&E) over total assets, is 27.9%, with

a median of 19.2%, indicating that most firms have a moderate tangible asset base. Conversely,

the mean intangibility ratio (INTANG), representing intangible assets as a proportion of total as-

sets, is 26.7%, which is comparable to TANG but skewed toward firms with a heavy reliance on

intangible assets. The average labor intensity ratio (LABOR), defined as the natural logarithm

of employment to net PP&E, is 2.007, with a wide range from −1.070 to 3.914. Positive values

indicate labor intensity exceeding the value of physical capital, while negative values suggest the

reverse.

Panel C compares firm characteristics between high and low AI Infrastructure firms, focus-

ing on mean differences in AI Infrastructure scores. High AI Infrastructure firms exhibit sig-

nificantly larger total book assets (9.949, approximately $20.8 billion) than low AI Infrastruc-

ture firms (9.776, approximately $17.6 billion), consistent with economies of scale in AI adop-

tion (t = 5.078). Their lower book-to-market ratio (0.250 vs. 0.337, t = −11.021) aligns with

growth-oriented firm profiles, which theory associates with higher intangible investment and

innovation-driven valuation premia. The higher Tobin’s Q for high AI Infrastructure firms (2.763

vs. 1.761, t = 22.417) is consistent with market expectations of future earnings growth from AI

Infrastructure-driven productivity gains. High AI Infrastructure firms maintain lower leverage

ratios (0.147 vs. 0.212,t = −16.617), a pattern consistent with pecking-order theory, as firms with

higher equity valuations (evidenced by Tobin’s Q) may prefer equity financing. Their marginally

higher return on assets (2.2% vs. 1.9%, t = 6.000) suggests potential efficiency gains from AI

adoption, though further analysis is required to isolate causal effects. Investment patterns differ

markedly: high AI Infrastructure firms allocate a smaller share of sales to capital expenditures
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(0.153 vs. 0.185, t = −4.564), consistent with a shift from physical to intangible capital. Their R&D

intensity (5.3% vs. 2.7% of total capital stock, t = 17.563) supports the hypothesis that AI adoption

correlates with innovation-driven business models. This is further reflected in asset structure: high

AI Infrastructure firms hold fewer tangible assets (18.7% vs. 28.8%, t = −16.326) and more intan-

gible assets (29.2% vs. 26.5%, t = 4.459), consistent with prior work on technology-intensive firms.

Notably, high AI Infrastructure firms exhibit higher labor intensity (2.356 vs. 1.974, t = 9.012),

contradicting the hypothesis that AI Infrastructure primarily substitutes labor. Instead, this aligns

with evidence that AI Infrastructure complements high-skilled labor, as seen in firms reliant on

engineers and data scientists. In summary, high AI Infrastructure firms are larger, more growth-

oriented, and command higher market valuations. Their financial and operational profiles–lower

leverage, higher R&D, and intangible intensity–are consistent with innovation-driven firms. The

labor intensity results suggest that AI adoption, complements rather than replaces human capital,

emphasizing the role of skilled labor in AI Infrastructure implementation.

Table 2 presents a detailed comparison of S&P 500 firms based on their AI Infrastructure capa-

bilities as of September 30, 2024. It focuses on the top 10 firms with the highest and lowest AI In-

frastructure levels, excluding financial, insurance, real estate, and related industries. The firms are

evaluated based on market capitalization (in billions of U.S. dollars) and their performance across

six specific categories related to AI Infrastructure: CHSE, PER, DSMS, and TSS. Each category is

scored using ChatGPT, with a value of 1 indicating a high level of capability and 0 indicating a low

level. The table is divided into two panels: Panel A for firms with high AI Infrastructure levels

and Panel B for those with low levels, with each firm’s industry classified using the three-digit

NAICS (North American Industry Classification System) code.

In Panel A, the top 10 firms with high AI Infrastructure levels are showcased, all assigned an

overall AI score of 1, reflecting their strong capabilities in this domain. Leading the list is Ap-

ple Inc., with a market capitalization of $3,522 billion, operating in the Computer and Electronic

Product Manufacturing industry. Apple excels in CHSE , PER , and TSS (scoring 1 in each), but

scores 0 in DSMS. Microsoft Corporation follows with a market value of $3,199 billion in the Pub-

lishing Industries, achieving a perfect score of 1 across all six categories, demonstrating its robust
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AI Infrastructure. NVIDIA Corporation, valued at $2,979 billion, also in Computer and Electronic

Product Manufacturing, scores highly in CHSE , PER , and DSMS , but falls short in TSS . Other

notable firms include Amazon.com, Inc. ($1,959 billion, Nonstore Retailers), Meta Platforms, Inc.

($1,248 billion, Other Information Services), and Alphabet Inc. ($929 billion, Data Processing and

Hosting), each showing varying strengths across the categories, with Alphabet excelling in five

out of six. Tesla, Inc. ($839 billion, Transportation Equipment Manufacturing), Oracle Corporation

($472 billion, Professional Services), Advanced Micro Devices, Inc. ($266 billion), and Salesforce,

Inc. ($262 billion) round out the list, with Oracle notably scoring 1 in all categories except SPS.

In contrast, Panel B highlights the top 10 firms with low AI Infrastructure levels, each assigned

an overall AI score of 0, indicating minimal capability across the evaluated categories. Eli Lilly

and Company, with a market capitalization of $842 billion in Chemical Manufacturing, leads this

group, scoring 1 in CHSE and PER but 0 elsewhere. Broadcom Inc. ($806 billion, Computer and

Electronic Product Manufacturing) and Walmart Inc. ($649 billion, General Merchandise Retail-

ers) follow, both scoring 0 across all categories, suggesting a significant lag in AI Infrastructure

development. Exxon Mobil Corporation ($521 billion, Petroleum and Coal Manufacturing) scores

1 in PER but 0 in all other areas, while The Procter & Gamble Company ($407 billion), The Home

Depot, Inc. ($402 billion), Costco Wholesale Corporation ($393 billion), Johnson & Johnson ($390

billion), AbbVie Inc. ($349 billion), and The Coca-Cola Company ($310 billion) all score 0 across

every category. These firms, spanning industries like Chemical Manufacturing, Retail, and Food

Manufacturing, reflect a broader trend of limited investment or focus on AI Infrastructure com-

pared to their Panel A counterparts.

Overall, firms in technology-driven sectors, such as computing, software, and data services,

dominate the high AI Infrastructure group, leveraging their resources and expertise across mul-

tiple categories. Meanwhile, firms in more traditional industries like retail, manufacturing, and

chemicals lag behind, often showing little to no capability in the assessed AI Infrastructure do-

mains. Market capitalization alone does not dictate AI Infrastructure strength, as seen with high-

value firms like Eli Lilly and Broadcom appearing in Panel B, underscoring the importance of

industry focus and strategic investment in determining AI readiness.
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4 Empirical Results

4.1 Portfolio Sorting Results

Table 3 reports the performance of portfolios constructed based on a binary classification of

firms according to their AI Infrastructure levels. The AI Infrastructure level a ChatGPT-generated

score, denoted as AI Infrastructure, where a value of 1 represents firms with high AI Infrastructure

and a value of 0 represents firms with low AI Infrastructure. The portfolios are formed using both

equal-weighted (Panels A and B) and value-weighted (Panels C and D) methodologies, and their

average quarterly returns are evaluated over the period from 2014 to 2024. Panel A shows that the

equal-weighted high AI Infrastructure portfolio outperforms the low AI Infrastructure portfolio,

with an average return differential of 0.514% per quarter (statistically significant at the 5% level).

Risk-adjusted alphas (CAPM: 0.448%, Carhart-4: 0.361%, FF-5: 0.377%) are also positive and sig-

nificant, suggesting that the outperformance persists after controlling for systematic risk factors.

Panel B shows that excluding tech sectors, the high-minus-low return differential decreases to

0.435% (still significant at the 5% level), with alphas ranging from 0.278% to 0.354% (significant at

the 5% level). This indicates that the AI Infrastructure effect is robust beyond technology-driven

firms. Panel C show that the value-weighted approach amplifies the high-minus-low differential

to 0.875% (significant at the 5% level), with alphas ranging from 0.692% to 0.865% (significant at

the 5% level, and FF-5 at the 1% level). This suggests that larger firms with high AI Infrastructure

drive stronger performance. Panel D shows that excluding tech sectors, the differential increases

slightly to 0.930% (significant at the 5% level), with alphas ranging from 0.768% to 0.921% (sig-

nificant at the 5% or 1% level). This reinforces the finding that AI Infrastructure impacts returns

across industries. The results indicate that firms with higher AI Infrastructure levels exhibit su-

perior stock performance, both in raw and risk-adjusted terms, across both equal-weighted and

value-weighted portfolio constructions. The persistence of the high-minus-low differential, even

after excluding technology sectors, suggests that AI Infrastructure provides a competitive advan-

tage that is not confined to tech-specific industries. The statistical significance of the alphas across

multiple factor models further implies that this outperformance cannot be fully explained by tra-
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ditional risk factors, pointing to a potential AI-related anomaly or unpriced factor in asset pricing.

4.2 Subsample Robustness

Table 4 demonstrates the relationship between AI Infrastructure levels and future stock re-

turns during adverse market conditions over the 2014–2024 period. The analysis is based on

value-weighted portfolios and is presented separately for the full S&P 500 sample (Panel A) and

the non-tech S&P 500 sample (Panel B). The results reveal a consistent pattern: higher AI Infras-

tructure (indicated by column ”High”) is associated with significantly higher future stock returns

compared to lower AI Infrastructure (indicated by column ”Low”), particularly during periods of

economic weakness.

Macroeconomic and market conditions are assessed using four key indicators: the Chicago

Fed National Activity Index (CFNAI), Gross Domestic Product (GDP), the Industrial Production

Index (INDPRO), and the S&P 500 Index (S&P 500). The CFNAI is a composite metric derived

from 85 monthly indicators that track production, employment, and consumption. GDP measures

the total monetary value of goods and services produced domestically. INDPRO captures real

output in the manufacturing, mining, and utilities sectors, while the S&P 500 Index reflects the

market-capitalization-weighted performance of 500 leading publicly traded U.S. companies.

In Panel A, when economic conditions are below average, as measured by four key indicators

(CFNAI, GDP, INDPRO, and SP500), the return differential between high and low AI Infrastruc-

ture firms (H-L) is both economically and statistically significant. Specifically, during periods

of low Chicago Fed National Activity Index CFNAI), high AI Infrastructure firms outperform

low AI Infrastructure firms by 1.048 percentage points (t-statistic = 1.99). Similarly, during peri-

ods of below-average GDP growth, the return differential is 0.752 percentage points (t-statistic =

2.43). When industrial production (INDPRO) is weak, high AI Infrastructure firms generate 0.992

percentage points higher returns (t-statistic = 2.72). Finally, during periods of low stock market

performance (S&P 500), firms with high AI Infrastructure outperform by 1.091 percentage points

(t-statistic = 3.10).

Panel B extends the analysis by excluding technology firms to assess whether the observed

20



effects are driven solely by the tech sector. The pattern holds strongly among non-tech firms

as well. During low CFNAI, non-tech firms with high AI Infrastructure outperform their low-

AI counterparts by 1.091 percentage points (t = 1.96). The return spreads are similarly notable

during low GDP (0.839 points, t = 2.64), low INDPRO (0.872 points, t = 2.26), and low S&P 500

performance (1.240 points, t = 3.31).

These findings suggest that investments in AI Infrastructure enhance firm resilience during

economic downturns, enabling firms to sustain stronger financial performance amid broader mar-

ket challenges, and this effect is not confined to the tech sector. The statistical significance of the

return differentials reinforces the robustness of this relationship, underscoring the strategic value

of AI as a driver of resilience. Notably, the effect of AI Infrastructure on future stock returns

is more pronounced when key macroeconomic indicators—CFNAI, GDP, INDPRO, and S&P

500—are below their averages over the 2014–2024 period. The consistent pattern across these

variables points to a countercyclical return predictability associated with AI investment.

The double-sorting analysis of Table 5 reveals significant cross-sectional return predictability

based on firm characteristics. First, sorting on firm size (SIZE) reveals that among small firms,

small stocks exhibit higher average returns than large stocks: the average monthly return increases

from 1.22% in the low group to 1.63% in the high group; large firms exhibit a more substantial and

statistically significant H−L spread of 0.74 percentage points (t=2.77), with returns rising from

0.73% to 1.47% across the size spectrum. Sorting by price (PRC), we observe that the return spread

is higher among high-price firms, at 0.71 percentage points (t=2.98), compared to 0.37 percentage

points among low-price firms, which is statistically insignificant. When firms are sorted based

on book-to-market (B/M) ratio, the H−L spread among small firms is 0.50 percentage points

(t=1.70), marginally significant. Leverage-based (LEV) sorting reveals that low-leverage firms

experience a significant H−L return spread of 0.69 percentage points (t=3.19). Return on assets

(ROA) sorting shows that both low- and high-ROA firms have significant H−L spreads of 0.61

(t=2.10) and 0.53 (t=2.21) percentage points, respectively, suggesting that more profitable firms

outperform regardless of their baseline profitability level. Finally, sorting by labor intensity Labor

demonstrates that among low labor cost firms, the return spread is highest at 0.96 percentage
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points (t=2.99). These findings align with McElheran et al. (2024) who finds that AI technologies

usage concentrated among large firms, innovative startups, and in a few major tech hubs. AI

adoption correlated with other emerging technologies and growth-oriented traits.

4.3 Fama-MacBeth Regressions

Table 6 presents the results of Fama-MacBeth regressions examining the relationship between

a firm’s AI Infrastructure level and its subsequent quarterly stock returns (Rett+1). The key inde-

pendent variable, AI Infrastructure, is a binary measure generated by ChatGPT, where a score of

1 indicates a high AI Infrastructure level and 0 indicates a low level. In Table 6, we also control

for the well-established risk factors that explain cross-sectional variation in stock returns to isolate

the effect of AI Infrastructure. These risk factors include the Fama-French five factors and the mo-

mentum factor, collectively represented as MKTRF, SMB, HML, RMW, CMA, and UMD. The

MKTRF factor, or market risk premium, is the excess return of the market portfolio over the risk-

free rate, capturing the overall sensitivity of a stock to market movements. SMB (Small Minus Big)

reflects the size effect, measuring the return differential between small-cap and large-cap stocks;

a positive loading on SMB implies the stock behaves more like a small-cap firm. HML (High

Minus Low) captures the value premium by comparing returns of high book-to-market (value)

stocks to low book-to-market (growth) stocks. The RMW (Robust Minus Weak) factor accounts

for differences in profitability, distinguishing firms with robust profitability from those with weak

profitability. Similarly, CMA (Conservative Minus Aggressive) represents the investment factor,

measuring the return spread between firms that invest conservatively and those that invest ag-

gressively, based on the premise that conservative firms tend to outperform. Lastly, UMD (Up

Minus Down) is the momentum factor, capturing the tendency of stocks with strong past per-

formance (winners) to continue outperforming those with poor past performance (losers) in the

short term. Including these factors in a return regression helps isolate the effect of firm-specific

variables, such as AI-related characteristics, by accounting for common sources of risk that drive

returns across the market. In Table 6, we also control for firm characteristics (SIZE, B/M, Tobin’s

Q, LEV, ROA, CAPEX, R&D, TANG, INTANG, LABOR). Standard errors are clustered at the
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firm level to account for within-firm correlation.

We estimate the folllowing models:

Reti,t+1 = β0 + β1 · AI Infrastructurei,t + β2 · Reti,t + β3 · MKTRFt

+ β4 · SMBt + β5 · HMLt + β6 · RMWt + β7 · CMAt + β8 · UMDt

+ γj + αi + δt + ε i,t (1)

whereas ε i,t is the error term, γj is the industry fixed effect (Model 2), αi is the firm fixed effect

(included in Model 3), and δt is the year-quarter fixed effect (Models 2 and 3).

Reti,t+1 = β0 + β1 · AI Infrastructurei,t + β2 · Reti,t + β3 · MKTRFt

+ β4 · SMBt + β5 · HMLt + β6 · RMWt + β7 · CMAt + β8 · UMDt

+ β9 · SIZEi,t + β10 · B/Mi,t + β11 · Tobin’s Qi,t + β12 · LEVi,t

+ β13 · ROAi,t + β14 · CAPEXi,t + β15 · R&Di,t + β16 · TANGi,t

+ β17 · INTANGi,t + β18 · LABORi,t + αi + γj + αi + δt + ε i,t (2)

whereas ε i,t is the error term, αi is the firm fixed effect (included in Model 3), γj is the industry

fixed effect (Model 2) and δt is the year-quarter fixed effect (Models 5 and 6).

Across all six models, AI Infrastructure exhibits a statistically significant positive relationship

with future returns, with coefficients ranging from 0.003 to 0.006 and significance levels between

5% and 1%. This finding suggests that firms with more advanced AI Infrastructure tend to gener-

ate higher subsequent returns. The inclusion of additional controls and fixed effects strengthens

this result, as evidenced in Models 2 through 6, where the coefficient remains robust even after

accounting for firm characteristics.

The control variables yield mixed results. Lagged returns (Reti,t) are negatively associated

with future returns in some specifications, consistent with short-term return reversals. Market risk

(MKTRF) is strongly positive, while value (HML) and momentum (UMD) factors show varying

levels of significance. Among firm characteristics, size (SIZE) and leverage (LEV) are consistently

significant, with SIZE negatively and LEV positively related to returns. Research and develop-
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ment spending (R&D) exhibits a negative association in the most comprehensive model (Model

6).

The models progressively incorporate fixed effects to account for different sources of hetero-

geneity: Model 3 includes firm fixed effects; Models 2 and 5 add industry and year-quarter (YQ)

effects; and Model 6 combines firm and YQ effects. The explanatory power (R2) increases from

13.5% in the baseline model (Model 1) to 35.6% in the most saturated specification (Model 6), high-

lighting the importance of controlling for both firm-level and time-specific variations. While the

sample size decreases in Models 4 through 6 due to limited data on firm characteristics, the results

remain both statistically and economically significant.

In particular, Model 6—the most comprehensive specification—shows that firms with high lev-

els of AI Infrastructure experience returns approximately 0.5 percentage points higher per quarter

than those with lower levels (significant at the 1% level). This effect remains robust even after

controlling for momentum effects and firm-specific attributes, suggesting that AI Infrastructure is

an important factor in explaining cross-sectional variation in stock returns.

Sample sizes differ between the first three models (15,762 observations) and the latter three

(8,245 observations), largely due to the availability of firm-level data. The inclusion of firm and

YQ fixed effects across several models enhances the robustness of the findings by controlling for

unobserved heterogeneity and time-specific effects. Overall, the results indicate that a firm’s AI

Infrastructure level—measured via an AI-generated metric—is a statistically and economically

significant predictor of future returns, even after accounting for the established asset pricing fac-

tors and firm-specific characteristics.

These findings suggest that markets may systematically underprice AI infrastructure, consis-

tent with recent theories in both innovation economics and strategic management. In particular,

the positive return predictability of AI Infrastructure aligns with the “productivity J-curve” hy-

pothesis, which posits that the expensing of intangible investments like AI systems depresses

short-term earnings, masking the long-run value creation potential of such investments (Brynjolf-

sson et al., 2021). At the same time, the observed alpha may reflect firms’ ability to generate sus-

tained economic rents from intangible AI-related capabilities, consistent with the resource-based
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view of competitive advantage (Barney, 1991). AI infrastructure functions as a form of intangi-

ble capital that is both strategically valuable and difficult to replicate. Because such capital is not

easily captured by conventional accounting metrics or fully internalized by market participants,

mispricing can persist until investors gradually update their beliefs about the firm’s future prof-

itability.

Table 7 presents the results of Fama-MacBeth return prediction regressions conducted over the

Generative AI Boom period, which spans from January 2022 to December 2024. The dependent

variable is the firm’s return in the quarter following the observation period, denoted as Rett+1.

The key independent variable of interest is a firm-level measure of AI Infrastructure, labeled as

AI Infrastructure, which captures the firm’s to AI-enabling technologies. Computing Hardware and

Software Ecosystem (CHSE), Power and Energy Resources (PER), Data Storage and Management Systems

(DSMS), and Technical Standards and Specifications (TSS) are ChatGPT-generated scores, assigned

as 1 if ChatGPT determines that the firm has a high level and 0 otherwise. These four components

capture the foundational elements necessary for the deployment and scaling of AI technologies.

Specifically, they reflect a firm’s capabilities in computation, energy efficiency, data handling, and

adherence to technical protocols that support AI implementation. The regressions also control for

the firm-specific characteristics measured at time t as in Table 6. The decomposition of AI Infras-

tructure into four distinct dimensions reveals heterogeneous effects across technological domains,

each contributing uniquely to firms’ return predictability during the Generative AI boom.

We estimate the folllowing models for Models 1 to 5:

Reti,t+1 = β0 + β1 · Xi,t + β2 · Reti,t + γj + δt + ε i,t (3)

whereas X is AI Infrastructurei,t for Model 1, CHSEi,t for Model 2, PERi,t for Model 3, DSMSi,t for

Model 4, and TSSi,t for Model 5, ε i,t is the error term, γj is the industry fixed effect, and δt is the
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year-quarter fixed effect. We estimate the folllowing models for Models 6 to 10:

Reti,t+1 = β0 + β1 · Xi,t + β2 · Reti,t + β3 · SIZEi,t + β4 · B/Mi,t + β5 · Tobin’s Qi,t

+ β6 · LEVi,t + β7 · ROAi,t + β8 · CAPEXi,t + β9 · R&Di,t + β10 · TANGi,t

+ β11 · INTANGi,t + β12 · LABORi,t + γj + δt + ε i,t (4)

whereas X is AI Infrastructurei,t for Model 6, CHSEi,t for Model 7, PERi,t for Model 8, DSMSi,t

for Model 9, and TSSi,t for Model 10, ε i,t is the error term, γj is the industry fixed effect, and δt

is the year-quarter fixed effect3. All regressions include industry and year-quarter fixed effects to

control for unobserved heterogeneity across sectors and time. Standard errors are clustered at the

firm level to account for within-firm correlation in the error terms.

Across specifications, the AI Infrastructure variable is positively and significantly associated

with future returns, with coefficients of 0.007 and t-statistics of 3.80 and 2.89 in Models 1 and

6, respectively. The categorical AI measures also show statistically significant positive effects on

returns: CHSE and PER are significant at the 5% and 1% levels in Models 2 and 3, respectively;

DSMS is significant at the 1% and 5% levels in Models 4 and 9; and TSS is significant at the 5%

and 10% levels in Models 5 and 10. Among control variables, book-to-market consistently shows a

negative and highly significant relationship with future returns, while firm size has a weakly pos-

itive and marginally significant effect in some specifications. Other firm characteristics, including

Tobin’s Q, leverage, ROA, CAPEX, R&D, and intangibles, generally do not exhibit statistically

significant relationships with returns. However, labor input appears positively associated with

returns in some models, reaching significance at the 1% level. The R2 values across models range

from approximately 21.7% to 24.9%, indicating a moderate degree of explanatory power.

To deepen this analysis, we decompose AI infrastructure into four foundational components:

Computing Hardware and Software Ecosystem (CHSE), Power and Energy Resources (PER),

Data Storage and Management Systems (DSMS), Technical Standards and Specifications (TSS).

Computing Hardware and Software Ecosystem (CHSE): encompasses the hardware and software

3In unreported robustness checks, we replace the year-quarter fixed effects with standard asset pricing risk fac-
tors (as specified in Table 6) to account for cross-sectional variation in returns. The results remain qualitatively and
quantitatively similar, suggesting our findings are robust to alternative specifications of systematic risk.
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ecosystem that power AI systems. High-performance processors such as GPUs, TPUs, and CPUs,

optimized for parallel processing and matrix computations, play a critical role in firm daily op-

erational tasks. Distributed computing systems allow firms to process large-scale datasets across

multiple machines, while memory architectures optimized for AI workloads manage computa-

tionally intensive tasks. Edge computing resources support real-time analysis closer to where

data is generated, and cloud computing infrastructure offers scalable solutions to meet varying

computational demands efficiently. Complementing this infrastructure are software tools and

platforms that facilitate AI adoption and implementation. Machine learning frameworks such

as TensorFlow and PyTorch enable the development of AI models. Machine Learning Operations

(MLOps) tools streamline deployment, monitoring, and updating of AI systems across firm oper-

ations. Data preprocessing and analysis tools ensure the preparation of high-quality inputs, while

model optimization and compression tools enhance computational efficiency.

Power and Energy Resources (PER) underscores the importance of sustainable and reliable en-

ergy solutions in AI Infrastructure. Energy-efficient computing architectures reduce operational

costs and environmental impact while supporting high-performance computing tasks. Advanced

cooling systems maintain the reliability of AI hardware under intensive workloads, such as in pre-

dictive maintenance or personalized marketing algorithms. Renewable energy integration reflects

firms’ growing focus on sustainability, and backup power systems ensure continuity of operations

in critical scenarios, such as manufacturing or retail during power outages.

Data Storage and Management Systems (DSMS) emphasizes the organization and handling of

data, including secure and scalable storage systems, data pipelines, and tools for managing data

versions and latency. It focuses on the effective organization and handling of data across diverse

industries. Distributed storage systems support the secure and scalable management of large

datasets, while data lakes and warehouses enable structured storage and retrieval of both opera-

tional and customer data. Caching systems reduce latency in accessing frequently used datasets,

such as sales records or sensor data in manufacturing. Version control systems track updates to

datasets and AI models, ensuring reproducibility and transparency. Data pipelines streamline

data movement and transformation, facilitating tasks like demand prediction, trend analysis, and
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operational monitoring.

Technical Standards and Specifications (TSS) focus on standardization and interoperability in

AI adoption, enabling firms to integrate AI efficiently. This includes standardized model inter-

change formats and data structures that facilitate cross-platform compatibility, APIspecifications

for seamless system communication, and performance benchmarking standards to assess AI ca-

pabilities. Additionally, security and privacy standards safeguard proprietary and customer data,

while hardware compatibility and energy efficiency metrics support cost-effective and sustainable

AI implementation.

The Computing Hardware & Software Ecosystem (CHSE) exhibits a coefficient of 0.004–0.006 (p <

0.05) in our analysis, indicating that firms specializing in AI-optimized processors—such as GPUs

(e.g., NVIDIA, AMD) and TPUs (e.g., Google’s custom accelerators)–or foundational software

frameworks (e.g., PyTorch, TensorFlow, CUDA) realize 40–60 basis points higher quarterly re-

turns, on average, compared to peers. CHSE companies possess significant competitive advan-

tages through both hardware specialization and software ecosystem development. The integrated

nature of AI computing platforms creates natural barriers to entry, as competitors must excel in

both specialized hardware design and complex software framework development. This dual ex-

pertise requirement limits the competitive landscape and enhances the strategic positioning of

established players. The risk-adjusted returns of CHSE firms reflect their pivotal influence within

a market environment characterized by constrained computational capacity and heightened de-

mand for AI Infrastructure. Empirical evidence from Huang (2025) and Huang (2024) identifies a

scarcity premium associated with advanced computational resources, particularly during periods

of intensified training for LLMs.

The Power & Energy Resources (PER) shows a coefficient of 0.004–0.005 (p < 0.05), reflecting

the growing capital intensity of AI operations. As Le Monde (2024) documents, training a single

frontier model now requires approximately 50 GWh of electricity–an amount comparable to the

annual electricity consumption of 4,000 average U.S. households. Meta’s LLaMA 3 model was

trained over 50 days consuming an estimated 41.67 GWh. These figures underscore the substantial

energy demands of training large-scale AI models, which indeed approach the annual electricity
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consumption of some small countries. Firms with proprietary energy infrastructure or renewable

portfolios (e.g., hyperscale data center operators) thus command valuation premiums, particularly

during periods of grid capacity constraints Agency (2024).

The Data Storage & Management Systems (DSMS) demonstrates the largest effect size (a coeffi-

cient of 0.010–0.011, p < 0.01). Firms with petabyte-scale curated datasets or distributed storage

architectures (e.g., vector databases) appear to be especially well-positioned to generate alpha in

the Generative AI era. This finding underscores the critical role of data infrastructure as a strategic

asset: high-quality, scalable, and efficiently managed data systems are not only essential for train-

ing and fine-tuning large AI models but also serve as a source of durable competitive advantage.

DSMS enables firms to leverage advanced AI workflows–such as retrieval-augmented generation

(RAG), real-time analytics, and multi-modal inference–which in turn may enhance productivity,

innovation capacity, and ultimately, market valuation. The strong positive association between

DSMS and future returns suggests that investors reward firms that invest in robust data capabili-

ties, recognizing them as foundational to long-term AI-driven value creation4.

The Technical Standards & Specifications (TSS) shows a coefficient of 0.008 (p < 0.10), with

weaker statistical robustness. Firms that actively contribute to technical standardization processes–

such as developing or aligning with API standards, interoperability protocols, or obtaining certifi-

cations like those aligned with the NIST (National Institute of Standards and Technology) AI Risk

Management Framework (RMF)– benefit from network effects. These effects arise when stan-

dard participation enhances compatibility, trust, and scalability, encouraging broader adoption

and ecosystem participation.

The results provide compelling evidence that firms with stronger AI Infrastructure are more

likely to experience higher stock returns in the subsequent quarter during the Generative AI Boom

period (2022–2024). The consistently positive and statistically significant coefficients on the AI

Infrastructure variable suggest that the market may be rewarding firms that are strategically posi-

tioned within the AI infrastructure level. This finding supports the view that AI capabilities repre-

4We thank Professor William Gropp at the National Center for Supercomputing Applications (NCSA) and UIUC for
in-depth discussion about this.
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sent a new form of intangible capital that is increasingly being priced by investors. Moreover, the

binary indicators for subcomponents of AI Infrastructure–CHSE, PER, DSMS, and TSS–further

reinforce this conclusion. These components highlight the diverse channels through which AI

readiness can enhance firm value. For instance, firms with robust computing ecosystems (CHSE)

or superior data management systems (DSMS) appear to command a return premium, which

could reflect either higher expected growth, competitive advantage, or investor enthusiasm for

AI-aligned assets.

The evidence continues to suggest systematic market underpricing of firms with strong AI

infrastructure. Specifically, the positive return predictability of AI Infrastructure aligns with the

“productivity J-curve” hypothesis, which posits that intangible investments—such as advanced

computing ecosystems (CHSE) and data management platforms (DSMS)—are expensed rather

than capitalized, thereby suppressing short-term earnings and concealing long-term value cre-

ation (Brynjolfsson et al. (2021)). At the same time, the observed alpha is consistent with the

resource-based view of competitive advantage, which emphasizes the role of rare, valuable, and

hard-to-imitate resources in sustaining economic rents (Barney (1991)). CHSE captures firms’

control over specialized AI chips and proprietary software frameworks—assets that create deep

integration and high switching costs—while DSMS reflects scalable data architectures critical to

differentiated AI capabilities. Although power and energy resources (PER) represent tangible in-

frastructure, they are increasingly scarce and strategically valuable in the context of AI’s rising

energy demands, making them a source of competitive advantage as well. Finally, participation

in technical standards and specification development (TSS) enhances interoperability, trust, and

ecosystem influence, reinforcing network effects and further entrenching firms’ strategic positions.

Because these capabilities are often overlooked by conventional financial metrics, mispricing may

persist until investors gradually update expectations about the firm’s future profitability.

4.4 Further Robustness Check

Table 8 presents the results of Fama-MacBeth return prediction regressions over the full sample

period from January 2006 to December 2024. The regressions include an extensive set of controls
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for well-established return predictors and anomaly variables, including measures of financial dis-

tress (DRP and OOS), equity issuance (NSI and CEI), operating efficiency (NOA, Pro f , ROA),

firm investment behavior (AG, ItoA), and other standard firm characteristics. Model 1 includes

no fixed effects, Model 2 controls for time-varying macroeconomic shocks through year-quarter

fixed effects, Model 3 incorporates industry fixed effects to account for sector-specific differences,

and Model 4 includes both year-quarter and industry fixed effects for a fully saturated specifica-

tion.

Across all four model specifications, the coefficient on the AI Infrastructure variable is positive

and statistically significant at the 5% level, with point estimates ranging from 0.003 to 0.004. This

suggests that firms classified as having high AI Infrastructure levels earn, on average, between

30 and 40 basis points higher returns in the following quarter, relative to their counterparts with

lower AI infrastructure scores. Importantly, this return premium persists even after controlling

for a broad array of anomaly variables and risk factors, indicating that AI Infrastructure not fully

accounted for in traditional asset pricing frameworks.

The explanatory power of the models increases substantially with the inclusion of fixed effects:

while Models 1 and 3 have R2 values below 2%, Models 2 and 4 reach over 30%, reflecting the

significant role of time and industry variation in explaining return dynamics. The persistence

of the AI Infrastructure effect across these varying specifications demonstrates its robustness to

alternative modeling choices.

The explanatory power of the models increases substantially with the inclusion of time fixed

effects. Model 1, which includes no fixed effects, and Model 3, which controls for industry fixed ef-

fects, both show R2 values below 2%. However, Model 2, which controls for time-varying macroe-

conomic shocks through year-quarter fixed effects, achieves an R2 of over 30%. The inclusion of

both year-quarter and industry fixed effects in Model 4 does not lead to a significant increase in

R2 , indicating that time variation, rather than industry variation, plays the key role in explaining

return dynamics. Despite these variations, the persistence of the AI Infrastructure effect across all

models underscores its robustness.

Among control variables, several findings are noteworthy. The Distress Risk Probability vari-
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able is strongly and negatively associated with future returns across all models (p < 0.01), con-

sistent with prior evidence that distress-prone firms earn lower subsequent returns due to default

risk and investor aversion Campbell et al. (2008). Net Operating Assets also shows a robust nega-

tive relationship with future returns, echoing the findings of Hirshleifer et al. (2004) that asset bloat

can signal inefficient investment or earnings management. Profitability, ROA, and Investment-to-

Assets show weaker and less consistent effects, with significance depending on the model specifi-

cation.

Overall, these results provide compelling empirical support for the view that AI Infrastructure

constitutes a priced firm characteristic that is not fully captured by existing return predictors. The

consistent significance of this variable, even after accounting for standard anomalies and firm fun-

damentals, suggests that AI-related capabilities introduce a distinct dimension of economic value

that traditional asset pricing models may overlook—particularly due to their intangible, forward-

looking, and often firm-specific nature. This persistent return premium implies that markets may

be systematically underestimating the strategic importance of AI infrastructure in driving future

firm performance.

4.5 Firm Performance

Table 9 reports the results of Fama-MacBeth regressions examining whether firms identified

as having high AI infrastructure exhibit systematically different changes in key corporate funda-

mentals in the subsequent period. The analysis spans the full sample period from January 2006

to December 2024, and includes firm-level controls, industry fixed effects, and year-quarter (YQ)

fixed effects to account for sector-specific and temporal variations. The AI Infrastructure variable

is based on a ChatGPT-generated binary score, equal to 1 if the firm is assessed as having high AI

infrastructure capabilities at time t, and 0 otherwise. The dependent variables reflect the change

in corporate fundamentals from t to t + 1, allowing us to assess the forward-looking impact of AI

infrastructure.

In Model 1, the dependent variable is the change in firm size (∆SIZE), measured as the log

difference in market capitalization. The coefficient on AI Infrastructure is positive and statistically

32



significant at the 1% level (0.015, t = 3.77), indicating that firms with high AI infrastructure tend to

grow more rapidly in size over the subsequent period. This finding suggests that AI-enabled firms

experience greater scalability, likely due to enhanced operational efficiency and digital leverage,

consistent with the notion that AI facilitates automation and process optimization.

Model 2 uses the change in leverage (∆LEV) as the dependent variable. Here, the coefficient

on AI Infrastructure is negative and significant at the 10% level (−0.002, t = −1.78), implying

that high-AI firms reduce their leverage more than their low-AI counterparts. This may reflect

the ability of AI-intensive firms to internally finance growth through efficiency gains or higher

margins, reducing reliance on external capital—a dynamic that may not be immediately visible to

investors relying on traditional balance sheet indicators.

Model 3, the dependent variable is the change in Tobin’s Q (∆Q), a forward-looking valuation

ratio capturing market expectations of future profitability. The coefficient on AI Infrastructure is

again positive and statistically significant at the 5% level (0.077, t = 2.53), suggesting that the mar-

ket progressively prices in the long-term advantages associated with AI adoption. The increase

in Tobin’s Q further indicates a reassessment of firm value, consistent with the hypothesis that AI

functions as an intangible growth driver that is gradually recognized over time.

Model 4 focuses on the change in R&D intensity (∆R&D), with a highly significant and posi-

tive coefficient on AI Infrastructure (0.006, t = 3.37). This finding provides direct evidence that AI

infrastructure complements rather than substitutes for innovation: firms with advanced AI capa-

bilities continue to invest in research and development, potentially leveraging AI to enhance the

efficiency and success rate of R&D initiatives. Rather than crowding out innovation, AI appears

to reinforce the firm’s commitment to technological progress.

Taken together, the results across all four models paint a coherent picture: firms with high AI

infrastructure systematically outperform in dimensions central to long-term value creation—growth,

financial discipline, market valuation, and innovation. These improvements, however, are not

necessarily reflected in contemporaneous earnings or book values, which can cause markets to

underreact in the short term. This underreaction aligns with recent theories emphasizing the mis-

pricing of intangible capital, particularly in the context of AI and digital transformation. The fact
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that AI Infrastructure predicts changes in fundamentals rather than simply correlating with their

levels further strengthens the interpretation that markets gradually update their beliefs about the

value implications of AI over time.

These results provide micro-level validation for the idea that AI infrastructure serves as a

forward-looking signal of firm quality that is not immediately incorporated into market prices. In

this sense, AI infrastructure functions not only as a technological asset, but as a predictive indica-

tor of future corporate health—reinforcing the broader narrative that markets may systematically

underprice AI-intensive firms, particularly when their value stems from intangible, non-rival, and

hard-to-measure sources.

Table 10 presents the Fama-MacBeth regression results examining the relationship between AI

infrastructure levels and various corporate fundamentals. The analysis measures AI infrastructure

using ChatGPT-generated scores, which classify firms as having high (1) or low (0) AI infrastruc-

ture. This includes key subcomponents: Computing Hardware and Software Ecosystem (CHSE), Power

and Energy Resources (PER), Data Storage and Management Systems (DSMS), and Technical Standards

and Specifications (TSS). The regressions control for firm characteristics at time t, with standard

errors clustered at the firm level and year-quarter fixed effects included. The sample spans from

January 2006 to December 2024.

Panels A, B, C, and D collectively provide a consistent story regarding the importance of AI

infrastructure in predicting future corporate performance. Panel A shows that CHSE significantly

correlates with future firm growth in size and market valuation, as indicated by the positive co-

efficients for ∆ SIZE (0.010, p < 0.01) and ∆ Tobin’s Q (0.058, p < 0.05). Panel B focuses on PER,

which also has a positive effect on firm fundamentals, with a notable impact on Tobin’s Q (0.082,

p < 0.01) and CAPEX (0.030, p < 0.01). This panel highlights the role of energy and power

resources in shaping firm performance during the AI boom.

Panel C shifts the focus to DSMS, where the results show the strongest effects, particularly on

Tobin’s Q (0.264, p < 0.10), indicating that robust data management systems are especially valued

by the market. Panel D concludes with the results for TSS, which significantly impact Tobin’s Q

(0.152, p < 0.10) and R&D (0.006, p < 0.05), signaling the importance of technical standards and
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interoperability for both valuation and innovation.

Across all four panels, AI infrastructure consistently predicts firm performance, with DSMS

and TSS emerging as the most influential components for Tobin’s Q. The findings suggest that

firms with stronger data management capabilities and technical standards are perceived as better

positioned for long-term growth and market success. In contrast, CHSE and PER are foundational

but contribute less significantly to valuation, perhaps because they represent essential infrastruc-

ture rather than unique differentiators in the rapidly evolving AI landscape.

Overall, the analysis underscores the multi-dimensional nature of AI infrastructure as a driver

of corporate growth and market value. Firms with robust AI capabilities—particularly in data

systems and technical standards—are likely to achieve superior performance, both in terms of

size and market valuation, during the generative AI boom. These results have important implica-

tions for firms and policymakers, who should prioritize investments in data governance, technical

interoperability, and AI infrastructure to maximize long-term value creation.

4.6 The Determinants of AI Infrastructure Level

Table 11 reports the results of Fama-MacBeth regressions that examine the determinants of a

firm’s AI infrastructure level at time t + 1. The dependent variable, AI Infrastructure, is a binary

indicator generated by ChatGPT, where a value of 1 indicates a high level of AI infrastructure

and 0 otherwise. The independent variables include a set of corporate fundamentals measured

at time t, firm fixed effects, and year-quarter fixed effects. Model 2 additionally controls for the

firm’s AI infrastructure score at time t, allowing the analysis to isolate changes over time. Stan-

dard errors are clustered at the firm level to correct for within-firm correlation, and the analysis

spans a broad sample from January 2006 to December 2024. In both specifications, SIZE is pos-

itively and significantly associated with AI infrastructure, suggesting that larger firms are more

likely to have advanced AI infrastructure. Book-to-market ratio (B/M) has a statistically sig-

nificant negative coefficient, indicating that growth-oriented firms (i.e., firms with low B/M ra-

tios) are more likely to adopt or invest in AI infrastructure. Tobin’s Q also enters with a positive

and statistically significant coefficient, implying that firms with higher market valuations rela-
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tive to their assets tend to exhibit greater AI infrastructure readiness. Among investment-related

variables, R&D is positively and significantly associated with AI infrastructure, consistent with

the notion that innovation-driven firms are more inclined to build AI capabilities. Conversely,

INTANG has a negative and highly significant relationship with AI infrastructure, suggesting

that not all intangible-heavy firms invest in AI, or that traditional measures of intangibility may

not capture AI-specific capabilities. Other firm characteristics—such as leverage (LEV), return

on assets (ROA), capital expenditures (CAPEX), asset tangibility (TANG), and labor intensity

(LABOR)—do not appear to be robust predictors, as their coefficients are statistically insignificant

across both models. Model 2 incorporates lagged AI Infrastructure as a control variable, which en-

ters positively and significantly, with a coefficient of 0.281 (t=9.58), suggesting strong persistence

in AI infrastructure levels over time. The inclusion of this lagged variable increases the model’s

explanatory power, as indicated by the rise in R2 from 19.9% in Model 1 to 26.1% in Model 2.

Overall, the results indicate that firm size, market-based valuation metrics, and R&D investments

are key predictors of future AI infrastructure, while there is persistence in infrastructure levels

across time. These results are consistent with McElheran et al. (2024), who find that AI adoption

is more prevalent among large enterprises, highly innovative startups, and firms located in major

technology hubs. Moreover, AI integration often accompanies the use of advanced technologies

and firm characteristics indicative of strong growth potential.

5 Conclusion

This study introduces several key innovations in understanding the role of AI infrastructure

in firm performance and stock valuation. First, we develop a novel methodology for measuring

firm-level AI investments, offering detailed insights into their impact on firm outcomes. Unlike

previous research that largely focuses on AI’s effects on the labor market, our work centers on

the strategic importance of AI infrastructure within firms, emphasizing its role in driving growth,

competitiveness, and financial performance. Second, we apply large language models (LLMs) to

analyze earnings call transcripts, enabling scalable and repeatable analysis across diverse sectors.

This approach broadens the focus from AI-creating firms to include AI-adopting firms, enhancing
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our understanding of AI’s strategic value across various industries. Third, our study uncovers

new evidence linking AI infrastructure with superior stock performance. We find that firms with

high AI infrastructure consistently outperform their peers, achieving not only higher returns but

also greater resilience during economic downturns. This highlights the long-term value of AI

investments. Fourth, we establish strong connections between AI infrastructure and key firm fun-

damentals—such as market valuation, size, R&D investment, and growth—demonstrating how

these investments influence both short-term and long-term performance.

Our methodology introduces a structured LLM-based framework for assessing AI infrastruc-

ture in firms. By leveraging prompt-engineered queries, Chain of Thought (CoT) reasoning, and

zero-shot learning, we provide a scalable and repeatable approach to classify firms based on their

AI infrastructure levels. This method enables us to decompose AI infrastructure into four key

components: computing hardware and software ecosystems, power and energy resources, data

storage and management systems, and technical standards and specifications. This decomposition

allows for a deeper understanding of how each component contributes to the overall performance

of AI investments.

Empirical evidence reveals that firms with higher AI infrastructure are generally larger, more

focused on growth, and invest more heavily in R&D. These firms also exhibit better market val-

uations and tend to rely more on intangible capital. Interestingly, these firms also employ more

labor, suggesting that AI infrastructure complements rather than replaces skilled human capital.

Furthermore, our analysis shows that firms with high AI infrastructure outperform their peers in

stock returns, especially during economic downturns. This resilience is driven by AI infrastruc-

ture’s ability to generate long-term value, with markets often underpricing these investments due

to their intangible nature.

The study identifies the systematic underpricing of AI infrastructure. The intangible benefits

of AI investments—such as innovation and growth—are often overlooked in short-term earnings

assessments. This mispricing results in persistent alpha, aligning with the resource-based view of

the firm, where AI infrastructure acts as a forward-looking signal of firm quality and long-term

competitiveness. This study demonstrates the significant impact of AI infrastructure on firm per-
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formance. It introduces a novel framework for quantifying and analyzing AI infrastructure at

the firm level, shedding light on how AI adoption shapes firm growth, market valuation, and re-

silience. Moreover, the study uncovers a gap in asset pricing models: the systematic underpricing

of AI infrastructure by markets. This suggests that traditional models may not fully capture the

long-term strategic value of intangible assets like AI infrastructure, opening up avenues for future

research on the role of intangible investments in firm valuation and stock performance. By consid-

ering AI-adopting firms across diverse sectors, the study expands the scope of AI research beyond

just tech firms, prompting future research into how different industries adopt and integrate AI

infrastructure, and the varying impacts these investments have on firm outcomes.

For business leaders, this study underscores the critical role AI infrastructure plays in driv-

ing long-term performance. Firms investing in high-quality AI infrastructure—particularly in

computing hardware, energy resources, and data management systems—are better positioned for

sustained growth and market resilience. The findings suggest that companies should prioritize

investments in these foundational areas to enhance their competitiveness and profitability. The

study also holds important implications for investors, suggesting that markets may systematically

undervalue firms with strong AI infrastructure due to the intangible nature of these investments.

Investors should factor AI infrastructure into their assessments of firm fundamentals, particularly

for R&D-intensive firms. Doing so may offer opportunities for alpha generation, as firms with

strong AI infrastructure may be underpriced relative to their long-term potential. From a man-

agerial perspective, integrating AI infrastructure into corporate strategy is vital. Firms should

not only focus on AI technologies but also on the foundational infrastructure that supports them,

such as energy-efficient systems, data storage solutions, and technical standards. This holistic ap-

proach will maximize the potential returns from AI investments and enable firms to leverage AI

for sustainable growth. Finally, firms should recognize that while AI infrastructure investments

may not immediately reflect in short-term earnings, they are crucial for long-term innovation and

growth. By emphasizing R&D and intangible capital, firms can strengthen their ability to adapt to

technological advancements and maintain a competitive edge in the marketplace.

38



References

Acemoglu, Daron, David Autor, Jonathon Hazell, and Pascual Restrepo (2022), “Artificial Intelli-

gence and Jobs: Evidence from Online Vacancies,” Journal of Labor Economics, vol. 40, S293–S340.

Acemoglu, Daron and Pascual Restrepoe (2022), “Tasks, Automation, and the Rise in U.S. Wage

Inequality,” Econometrica, vol. 90, 1973–2016.

Agency, International Energy (2024), “World Energy Outlook 2024,” Tech. rep., International En-

ergy Agency, accessed: 2025-04-09.

Autor, David, David Dorn, Lawrence F Katz, Christina Patterson, and John Van Reenen (2020),

“The Fall of the Labor Share and the Rise of Superstar Firms*,” The Quarterly Journal of Economics,

vol. 135, 645–709.

Babina, Tania, Anastassia Fedyk, Alex He, and James Hodson (2024), “Artificial intelligence, firm

growth, and product innovation,” Journal of Financial Economics, vol. 151, 103745.

Barney, Jay (1991), “Firm resources and sustained competitive advantage,” Journal of Management,

vol. 17, 99–120.

Begenau, Juliane, Maryam Farboodi, and Laura Veldkamp (2018), “Big Data in Finance and the

Growth of Large Firms,” Journal of Monetary Economics, vol. 97, 71–87.

Brynjolfsson, Erik, Daniel Rock, and Chad Syverson (2021), “The Productivity J-Curve: How In-

tangibles Complement General Purpose Technologies,” American Economic Journal: Macroeco-

nomics, vol. 13, 333–372.

Campbell, John Y., Jens Hilscher, and Jan Szilagyi (2008), “In Search of Distress Risk,” The Journal

of Finance, vol. 63, 2899–2939.

Chen, Jian, Guohao Tang, Guofu Zhou, and Wu Zhu (2025), “ChatGPT and Deepseek: Can They

Predict the Stock Market and Macroeconomy,” Working Paper.

Chen, Long, Robert Novy-Marx, and Lu Zhang (2014), “An Alternative Three-Factor Model,”

Working Paper.

Cochrane, John H. (1991), “Production-Based Asset Pricing and the Link Between Stock Returns

and Economic Fluctuations,” The Journal of Finance, vol. 46, 209–237.

39



Cockburn, Iain, Rebecca Henderson, and Scott Stern (2018), “The Impact of Artificial Intelligence

on Innovation,” NBER Working Paper.

Cooper, Michael J., Huseyin Gulen, and Michael J. Schill (2008), “Asset Growth and the Cross-

Section of Stock Returns,” The Journal of Finance, vol. 63, 1609–1651.

Czarnitzki, Dirk, Gastón P. Fernández, and Christian Rammer (2023), “Artificial Intelligence and

Firm-level Productivity,” Journal of Economic Behavior and Organization, vol. 211, 188–205.

Daniel, Kent and Sheridan Titman (2006), “Market Reactions to Tangible and Intangible Informa-

tion,” The Journal of Finance, vol. 61, 1605–1643.

David, Joel M., Hugo A. Hopenhayn, and Venky Venkateswaran (2016), “Information, Misalloca-

tion, and Aggregate Productivity,” The Quarterly Journal of Economics, vol. 131, 943–1005.

Dichev, Ilia D. (1998), “Is the Risk of Bankruptcy a Systematic Risk,” The Journal of Finance, vol. 53,

1131–1147.

Donangelo, Andres (2014), “Labor Mobility: Implications for Asset Pricing,” The Journal of Finance,

vol. 69, 1321–1346.

Eisfeldt, Andrea, Gregor Schubert, Bledi Taska, and Miao Ben Zhang (2024), “The Labor Impact of

Generative AI on Firm Values,” Working Paper.

Fama, Eugene F. and Kenneth R. French (2006), “Profitability, Investment, and Average Returns,”

Journal of Financial Economics, vol. 82, 491–518.

Fama, Eugene F. and Kenneth R. French (2008), “Dissecting Anomalies,” The Journal of Finance,

vol. 63, 1653–1678.

Fedyk, Anastassia, Ali Kakhbod, Peiyao Li, and Ulrike Malmendier (2025), “ChatGPT and Percep-

tion Biases in Investments: An Experimental Study,” Working Paper.

Griffin, John M. and Michael L. Lemmon (2002), “Book-to-Market Equity, Distress Risk, and Stock

Returns,” The Journal of Finance, vol. 57, 2317–2336.

Hirshleifer, David, Kewei Hou, Siew Hong Teoh, and Yinglei Zhang (2004), “Do Investors Over-

value Firms with Bloated Balance Sheets?” Journal of Accounting and Economics, vol. 38, 297–331.

40



Huang, Jensen (2024), “GTC 2024 Keynote,” https://www.nvidia.com/en-us/on-demand/

session/gtc24-s62542/, nVIDIA GTC Keynote Presentation.

Huang, Jensen (2025), “GTC 2025 Keynote,” https://www.nvidia.com/gtc/keynote/, nVIDIA

GTC Keynote Presentation.

Jha, Manish, Jialin Qian, Michael Weber, and Baozhong Yang (2024), “ChatGPT and Corporate

Policies,” Chicago Booth Research Paper No. 23-15, Fama-Miller Working Paper , University of

Chicago, Becker Friedman Institute for Economics Working Paper No. 2023-103.

Kim, Alex G., Maximilian Muhn, and Valeri V. Nikolaev (2024a), “Bloated Disclosures: Can Chat-

GPT Help Investors Process Information?” Working Paper.

Kim, Alex G., Maximilian Muhn, and Valeri V. Nikolaev (2024b), “Financial Statement Analysis

with Large Language Models,” Working Paper.

Kim, Alex G. and Valeri Nikolaev (2024), “Profitability Context and the Cross-Section of Stock

Returns,” Working Paper.

Kim, Alex G. and Valeri Nikolaev (2025), “Context-Based Interpretation of Financial Information,”

Journal of Accounting Research.

Kogan, Leonid, Dimitris Papanikolaou, Lawrence D. W. Schmidt, and Jae Song (2021), “Techno-

logical Innovation and Labor Income Risk,” NBER Working Paper.

Le Monde (2024), “ChatGPT: ”The Achilles heel of artificial intelligence is its energy consump-

tion”,” Accessed: 2025-04-09.

Li, Kai, Feng Mai, Rui Shen, Chelsea Yang, and Tengfei Zhang (2024), “Dissecting Corporate Cul-

ture Using Generative AI–Insights from Analyst Reports,” Working Paper.

Lopez-Lira, Alejandro and Yuehua Tang (2023), “Can ChatGPT Forecast Stock Price Movements?

Return Predictability and Large Language Models,” Working Paper.

Loughran, Tim and Jay R. Ritter (1995), “The New Issues Puzzle,” The Journal of Finance, vol. 50,

23–51.

McElheran, Kristina, J. Frank Li, Erik Brynjolfsson, Zachary Kroff, Emin Dinlersoz, Lucia Foster,

and Nikolas Zolase (2024), “AI adoption in America: Who, what, and where,” Journal of Eco-

nomics & Management Strategy, pages 375–415.

41

https://www.nvidia.com/en-us/on-demand/session/gtc24-s62542/
https://www.nvidia.com/en-us/on-demand/session/gtc24-s62542/
https://www.nvidia.com/gtc/keynote/


Novy-Marx, Robert (2013), “The Other Side of Value: The Gross Profitability Premium,” Journal of

Financial Economics, vol. 108, 1–28.

Ritter, Jay (1991), “The Long-Run Performance of Initial Public Offerings,” The Journal of Finance,

vol. 46, 3–27.

Tambe, Prasanna, Lorin Hitt, Daniel Rock, and Erik Brynjolfsson (2020), “Digital Capital and Su-

perstar Firms,” NBER Working Paper.

Titman, Sheridan, K. C. John Wei, and Feixue Xie (2004), “Capital investments and stock returns,”

Journal of Financial and Quantitative Analysis, vol. 39, 677–700.

Xing, Yuhang (2008), “Interpreting the Value Effect Through the Q-Theory: An Empirical Investi-

gation,” Review of Financial Studies, vol. 21, 1767–1795.

42



Table 1: Summary Statistics

This table presents the summary statistics. Panel A reports the summary statistics of AI Infrastructure levels
for S&P 500 firms5 with quarterly earnings call transcripts. The AI Infrastructure dataset covers quarterly
earnings transcripts from S&P 500 firms from 2006 to 2024, while the dataset for the six categories focuses
on the Generative AI boom period, spanning quarterly earnings transcripts from 2022 to 2024. The AI In-
frastructure is a ChatGPT-generated score, assigned as 1 if ChatGPT determines that the firm has a high AI
Infrastructure level, and 0 if it determines that the firm has a low AI Infrastructure level. Similarly, ChatGPT
generates scores for four additional categories: Computing Hardware and Software Ecosystem (CHSE), Power
and Energy Resources (PER), Data Storage and Management Systems (DSMS), Technical Standards and Specifica-
tions (TSS). Each category-specific score is assigned as 1 if ChatGPT determines that the firm has a high level
in that category and 0 otherwise. Ret represents the quarterly return in the percentage format of each firm
in the S&P 500 index. Panel B reports the summary statistics for firm characteristics. SIZE represents the
natural logarithm of total book assets. B/M represents the book-to-market ratio. Tobin’s Q is defined as the
ratio of a firm’s market value of assets to its book value of assets. The market value of assets is calculated
as the sum of the firm’s market capitalization and the book value of debt, minus current assets. LEV is the
ratio of a firm’s total debt to the sum of its total debt and market equity value. ROA represents the return
on assets, defined as net income divided by total assets. CAPEX is capital expenditures scaled by sales.
R&D is the ratio of Research and Development (R&D) expenditures to Total Capital Stock. Total Capital
Stock represents the value of a firm’s long-term investments and assets used for production. TANG is de-
fined as the ratio of Property, Plant, and Equipment (PP&E) to Total Assets, representing asset tangibility.
INTANG is defined as the ratio of intangible asset to Total Assets, representing asset intangibility. LABOR
is defined as the natural logarithm of the ratio of employment to the net value of PP&E, following Eisfeldt
et al. (2024) and Donangelo (2014). Panel C reports the mean differences for each firm characteristic across
two subsamples, categorized by the ChatGPT AI Infrastructure score. The low (high) subsample consists
of earnings call transcripts with a ChatGPT AI Infrastructure score of 0 (1). The sample includes S&P 500
firms with earnings conference call transcripts and non-missing financial variables from 2006 to 2024. All
continuous variables are winsorized at the 1% and 99% levels to limit the influence of outliers.

Panel A: Full Sample (2006–2024)

Variable Mean Median Std. Dev. 5% 25% 75% 95% Obs.

AI Infrastructure 0.092 0 0.289 0 0 0 1 19,596

Ret 1.069 1.256 4.561 −6.947 −1.641 4.002 8.319 19,596

Generative AI Boom Subsample (2022–2024)

Variable Mean Med. Std. Dev. 5% 25% 75% 95% Obs.

AI Infrastructure 0.191 0 0.393 0 0 0 1 3,676

Comput. Hard. and Soft. Eco. (CHSE) 0.324 0 0.468 0 0 1 1 3,676
Power and Energy Res. (PER) 0.421 0 0.494 0 0 1 1 3,676
Data Stor. and Mgmt Sys. (DSMS) 0.065 0 0.246 0 0 0 1 3,676
Technical Stand. and Spec. (TSS) 0.060 0 0.238 0 0 0 1 3,676
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Panel B: The Summary Statistics for Firm Characteristics

Variable Mean Med. Std. Dev. 5% 25% 75% 95% Obs.

SIZE 9.791 9.819 1.213 7.703 8.921 10.646 11.815 15,785
B/M 0.329 0.277 0.286 0.011 0.145 0.436 0.852 15,433
Tobin′sQ 1.849 1.348 1.602 0.401 0.847 2.255 5.127 15,432
LEV 0.206 0.176 0.142 0.023 0.101 0.287 0.489 15,785
ROA 0.019 0.017 0.017 −0.004 0.009 0.028 0.050 15,786
CAPEX 0.182 0.089 0.249 0.016 0.043 0.196 0.737 15,782
R&D 0.031 0.016 0.045 0.000 0.004 0.037 0.114 8,560
TANG 0.279 0.192 0.224 0.045 0.101 0.433 0.739 15,786
INTANG 0.267 0.220 0.220 0.000 0.071 0.441 0.672 15,947
LABOR 2.007 2.414 1.495 −1.070 1.221 3.079 3.914 15,696

Panel C: The Firm-Level Comparison bt. High AI Infrastructure and Low AI Infrastructure Firms

Variable High AI Infrastructure Low AI Infrastructure Difference t-statistics

SIZE 9.949 9.776 0.174 5.078
B/M 0.250 0.337 −0.088 −11.021

Tobin′sQ 2.763 1.761 1.002 22.417
LEV 0.147 0.212 −0.065 −16.617
ROA 0.022 0.019 0.003 6.000

CAPEX 0.153 0.185 − 0.032 −4.564
R&D 0.053 0.027 0.026 17.563

TANG 0.187 0.288 −0.101 −16.326
INTANG 0.292 0.265 0.027 4.459
LABOR 2.356 1.974 0.382 9.012
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Table 3: Equal-weighted and Value-weighted Portfolios Sorted by AI Infrastrucure Levels

This table presents the average quarterly returns of equal-weighted and value-weighted binary
portfolios sorted by AI Infrastructure level. The AI Infrastructure level is measured by AI Infras-
tructure, a ChatGPT-generated score where 1 indicates firms with high AI Infrastructure levels
and 0 indicates firms with low AI Infrastructure levels. We report average raw returns, Capi-
tal Asset Pricing Model (CAPM) alphas, Carhart four-factor (Carhart-4) alphas, and Fama-French
five-factor (FF-5) alphas for each portfolio. Panel A (Panel C) reports equal (value) weight port-
folio results for S&P 500 firms with earnings conference call transcripts and complete financial
variables from 2014 to 2024. Panel B (Panel D) reports equal (value) weight portfolio results re-
sults for the sample that excludes firms in tech sectors, specifically NAICS 51 (Information) and
NAICS 54 (Business Services), following the approach of Acemoglu et al. (2022) and Eisfeldt et al.
(2024). The sample period is from January 2014 to December 2024. t-statistics are shown in paren-
theses. ∗p < 0.1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01.

Panel A: Equal-weighted Full S&P 500 Sample

Low High High−Low

Average Return 1.019 1.531 0.512**
(2.44) (3.43) (2.61)

CAPM Alpha 0.125 0.573 0.448**
(0.76) (3.87) (2.42)

Carhart Alpha 0.210 0.571 0.361**
(1.69) (4.78) (2.54)

FF5 Alpha 0.170 0.547 0.377**
(1.48) (4.47) (2.54)

Panel B: Equal-weighted Non-Tech S&P 500 Sample

Low High High−Low

Average Return Excluding Tech 1.018 1.453 0.435**
(2.40) (3.15) (2.19)

CAPM Alpha Excluding Tech 0.117 0.471 0.354**
(0.62) (3.00) (1.96)

Carhart Alpha Excluding Tech 0.198 0.480 0.282**
(1.42) (3.16) (1.96)

FF5 Alpha Excluding Tech 0.151 0.429 0.278**
(1.18) (3.17) (1.96)
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Panel C: Value-weighted Full S&P 500 Sample

Low High High−Low

Average Return 0.870 1.745 0.875**

(2.26) (3.64) (2.42)

CAPM Alpha 0.036 0.901 0.865**

(0.31) (2.45) (1.98)

Carhart Alpha -0.031 0.661 0.692**

(-0.28) (3.21) (2.58)

FF5 ALPHA -0.069 0.663 0.732***

(-0.80) (3.16) (2.85)

Panel D: Value-weighted Non-Tech S&P 500 Sample

Low High High−Low

Average Return Excluding Tech 0.880 1.810 0.930**

(2.22) (3.49) (2.22)

CAPM Alpha Excluding Tech 0.029 0.950 0.921**

(0.23) (2.20) (2.53)

Carhart Alpha Excluding Tech −0.041 0.727 0.768**

(−0.36) (2.97) (2.05)

FF5 Alpha Excluding Tech −0.078 0.731 0.809***

(−0.75) (3.20) (2.97)
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Table 4: Value-weighted Portfolios Sorted by AI Infrastrucure Levels During the Adverse Mar-
ket Conditions

This table presents the average quarterly returns of value-weighted binary portfolios sorted by AI Infras-
tructure level during adverse market conditions. Macroeconomic and market conditions are characterized
by the Chicago Fed National Activity Index (CFNAI), Gross Domestic Product (GDP), the Industrial Pro-
duction Index (INDPRO), and the S&P 500 Index (S&P500). The CFNAI is a composite measure derived
from 85 monthly indicators encompassing production, employment, and consumption. GDP represents
the total monetary value of all goods and services produced within a country. INDPRO measures the
real output of the manufacturing, mining, and utilities sectors. The S&P 500 Index reflects the market
capitalization-weighted performance of 500 leading publicly traded U.S. companies. In Panels A and B, the
CFNAI, GDP, INDPRO, and S&P 500 are below their respective means during the sample period. Panel
A reports value weight portfolio results for S&P 500 firms with earnings conference call transcripts and
complete financial variables from 2014 to 2024. Panel B reports value weight portfolio results results for
the sample that excludes firms in tech sectors, specifically NAICS 51 (Information) and NAICS 54 (Business
Services), following the approach of Acemoglu et al. (2022) and Eisfeldt et al. (2024). The AI Infrastruc-
ture level is measured by AI Infrastructure, a ChatGPT-generated score where 1 denotes firms with high
AI Infrastructure levels and 0 denotes firms with low AI Infrastructure levels. Average raw returns are
reported. The sample period is from January 2014 to December 2024. t-statistics are shown in parentheses.
∗p < 0.1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01.

Panel A: Value-weighted Full S&P 500 Sample

Low High High−Low

Low CFNAI 0.052 1.100 1.048**
(0.40) (2.21) (1.99)

Low GDP 0.972 1.724 0.752**
(2.53) (3.63) (2.43)

Low INDPRO 1.750 2.742 0.992**
(3.64) (4.93) (2.72)

Low S&P500 0.479 1.570 1.091***
(1.00) (3.18) (3.10)

Panel B: Value-weighted Non-Tech S&P 500 Sample
Low High High−Low

Low CFNAI Excluding Tech 0.031 1.122 1.091**
(0.22) (1.98) (1.96)

Low GDP Excluding Tech 0.943 1.782 0.839**
(2.40) (3.53) (2.64)

LowINDPRO Excluding Tech 1.799 2.671 0.872**
(3.55) (4.52) (2.26)

Low SP500 Excluding Tech 0.428 1.668 1.240***
(0.87) (3.18) (3.31)
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Table 5: Equal-Weighted Portfolios Double-Sorted by Firm Characteristics and AI Infrastruc-
ture Levels

This table presents the average quarterly returns of equal-weighted binary portfolios double-
sorted by firm characteristics and AI Infrastructure levels. SIZE represents the natural logarithm
of total book assets. PRC represents the price of the stock. B/M represents the book-to-market ra-
tio. LEV is the ratio of a firm’s total debt to the sum of its total debt and market equity value.
ROA represents the return on assets, defined as net income divided by total assets. LABOR
is defined as the natural logarithm of the ratio of employment to the net value of PP&E, fol-
lowing Eisfeldt et al. (2024) and Donangelo (2014). The AI Infrastructure level is measured by
AI Infrastructure, a ChatGPT-generated score where 1 denotes firms with high AI Infrastructure
levels and 0 denotes firms with low AI Infrastructure levels. Average raw returns are reported.
The sample period is from January 2014 to December 2024. t-statistics are shown in parentheses.
∗p < 0.1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01.

SIZE Low High High−Low

Small 1.220 1.630 0.41
(2.69) (2.87) (1.53)

Large 0.730 1.470 0.74***
(1.89) (3.40) (2.77)

PRC Low High High−Low

Low 1.090 1.460 0.37
(2.38) (2.94) (1.57)

High 0.940 1.650 0.71***
(2.35) (3.54) (2.98)

B/M Low High High−Low

Small 1.120 1.620 0.50*
(2.70) (3.07) (1.70)

Large 0.840 1.170 0.33
(1.91) (2.40) (1.44)

LEV Low High High−Low

Low 1.030 1.730 0.69***
(2.48) (3.44) (3.19)

High 0.940 1.130 0.19
(2.11) (2.36) (0.79)

ROA Low High High−Low

Low 0.830 1.430 0.61**
(1.84) (3.00) (2.10)

High 1.150 1.680 0.53**
(2.83) (3.43) (2.21)

LABOR Low High High−Low

Low 0.840 1.800 0.96***
(2.04) (4.05) (2.99)

High 1.140 1.350 0.21
(2.50) (2.61) (0.94)
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Table 6: Fama-MacBeth Return Prediction Regression for the Full Sample Period

This table presents the Fama-MacBeth regression results from regressing Rett+1 on the AI Infrastructure level measure,
AI Infrastructure, at time t, controlling for asset pricing factors and firm characteristics at time t. Rett+1 represents the
firm’s return in the first quarter following the observation of the quarterly return Rett. AI Infrastructure is a ChatGPT-
generated score, assigned as 1 if ChatGPT determines that the firm has a high AI Infrastructure level, and 0 if it de-
termines that the firm has a low AI Infrastructure level. The asset pricing factors are defined in Section 4.3. The firm
characteristics are defined in Table 1. Standard errors are clustered at the firm level to account for potential within-
firm correlation. The sample period is from January 2006 to December 2024. t-statistics are shown in parentheses.
∗p < 0.1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

AI Infrastructure 0.003** 0.004*** 0.003** 0.005*** 0.006*** 0.005***
(2.10) (2.93) (2.43) (2.99) (3.79) (2.79)

Rett −0.072*** −0.010 −0.029*** −0.068*** −0.009 −0.022
(−8.06) (−1.02) (−3.03) (−5.38) (−0.65) (−1.53)

MKTRF 0.681*** 2.164 4.262* 0.748*** 9.185*** 6.375***
(33.02) (0.97) (1.85) (25.77) (32.75) (20.66)

SMB 0.157*** 4.201 7.734 0.171*** −12.407*** −7.575***
(6.04) (0.82) (1.51) (4.96) (−26.26) (−14.95)

HML −0.305*** 5.161 10.621 −0.373*** 15.247*** 12.249***
(−12.46) (0.70) (1.50) (−10.38) (42.82) (24.28)

RMW 0.115*** 5.397 8.480* 0.195*** −0.734*** 0.492**
(3.99) (1.07) (1.70) (4.65) (−3.28) (2.13)

CMA 0.456*** −3.967 −9.99 0.406*** −2.232*** −2.340***
(12.28) (−0.57) (−1.47) (7.24) (−11.87) (−10.46)

UMD −0.130*** 3.536 7.626 −0.174***
(−8.98) (0.72) (1.54) (−7.56)

SIZE −0.002*** −0.002*** −0.007***
(−4.51) (−3.94) (−3.61)

B/M −0.001* 0.001 0.001
(−1.80) (0.83) (0.69)

Tobin’s Q 0.001 0.001 −0.002***
(0.61) (0.25) (−3.21)

LEV 0.015** 0.011* 0.043***
(2.32) (1.70) (3.75)

ROA 0.034 0.024 0.059*
(0.99) (0.73) (1.94)

CAPEX 0.001 −0.010** −0.009**
(0.08) (−2.42) (−2.31)

R&D −0.003 −0.004 −0.008***
(−0.75) (−1.09) (−5.84)

TANG −0.005 0.002 0.022*
(−1.36) (0.44) (1.77)

INTANG −0.008*** −0.006* −0.006
(−2.79) (−1.94) (−0.84)

LABOR 0.001 0.000 0.005*
(1.30) (0.36) (1.87)

Constant 0.004*** 0.104 0.218 0.022*** −0.172*** −0.074***
(11.34) (0.74) (1.57) (4.16) (−15.94) (−2.97)

N 15,762 15,762 15,762 8,245 8,245 8,245

R2 13.5% 30.8% 32.4% 15.3% 32.9% 35.6%

Firm FE No No Yes No No Yes
Industry FE No Yes No No Yes No

YQ FE No Yes Yes No Yes Yes
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Table 8: Fama-MacBeth Regression Results: Return Prediction Controlling for Standard
Anomalies

This table presents the Fama-MacBeth regression results from regressing Rett+1 on the AI Infrastructure level measure,
AI Infrastructure, at time t, controlling for asset pricing factors and firm characteristics at time t. Rett+1 represents the
firm’s return in the first quarter following the observation of the quarterly return Rett. AI Infrastructure is a ChatGPT-
generated score, assigned as 1 if ChatGPT determines that the firm has a high AI Infrastructure level, and 0 if it de-
termines that the firm has a low AI Infrastructure level. DRP (Distress Risk Probability) as introduced by Campbell
et al. (2008) quantifies a firm’s likelihood of failure as a percentage, derived through a dynamic logistic regression
model. This model integrates both financial accounting measures and market-based indicators, including stock price
behavior, the book-to-market ratio, return volatility, firm size relative to the S&P 500 Index, and cumulative abnormal
returns over the same benchmark. In contrast, OOS (Ohlson’s O-score) (Griffin and Lemmon (2002); Dichev (1998)) is
based on a static framework relying solely on accounting ratios such as net income over total assets, working capital
relative to market-valued assets, and the ratio of current liabilities to current assets. NSI (Net stock issuance) (Ritter
(1991); Loughran and Ritter (1995)) is computed as the annual logarithmic change in the number of outstanding shares,
adjusted for corporate actions like stock splits, following the methodology of Fama and French (2008). Similarly, CEI
(Composite equity issuance) (Daniel and Titman (2006)) reflects the difference between the 12-month change in market
capitalization and the firm’s stock return over the same period. NOA (Net operating assets) (Hirshleifer et al. (2004))
represent the difference between a firm’s operating assets and liabilities, normalized by lagged total assets. Regarding
profitability, both ROA (Return on Assets) (Fama and French (2006); Chen et al. (2014))—net income divided by total as-
sets—and Prof (Profitability) (Novy-Marx (2013))—gross profits over current assets—serve as common indicators. AG
(Asset growth), as discussed by Cooper et al. (2008), captures the year-over-year percentage change in total assets. Fi-
nally, ItoA (Investment-to-assets) (Titman et al. (2004); Xing (2008)) measures annual investment activity by computing
the change in gross property, plant, and equipment plus inventory, scaled by prior-period total assets. The sample pe-
riod is from January 2006 to December 2024. t-statistics are shown in parentheses. ∗p < 0.1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01.

Model 1 Model 2 Model 3 Model 4

AI Infrastructure 0.004** 0.003** 0.004** 0.003**
(2.05) (2.22) (2.00) (2.01)

DRP −0.024*** −0.024*** −0.024*** −0.024***
(6.58) (7.75) (6.62) (7.80)

OOS 0.001 0.001 0.001 0.002
(1.55) (1.49) (1.54) (1.51)

NSI 0.002 0.001 0.004 0.002
(0.97) (0.42) (1.50) (0.83)

CEI 0.003 0.001 0.003 0.001
(0.90) (0.51) (0.89) (0.44)

NOA −0.009*** −0.008*** −0.009*** −0.008***
(3.35) (3.49) (2.84) (3.00)

Prof 0.003 0.005** 0.000 0.004
(1.11) (2.12) (0.01) (1.37)

AG 0.005 0.004 0.005 0.005
(1.17) (1.18) (1.04) (1.41)

ROA 0.001 0.011* 0.001 0.011*
(0.09) (1.82) (0.19) (1.69)

ItoA −0.010* −0.003 −0.012* −0.006
(1.78) (0.59) (1.96) (1.19)

Constant 0.027*** 0.037*** 0.034*** 0.045***
(5.76) (5.00) (2.87) (3.81)

N 9,648 9,648 9,648 9,648

R2 0.8% 30.6% 1.4% 31.1%

Industry FE No No Yes Yes
YQ FE No Yes No Yes
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Table 9: AI Infrastructure Level as a Predictor of Corporate Fundamentals for the Full Sample
Period

This table presents the Fama-MacBeth regression results from regressing the change in corporate
fundamental variables from time t to t + 1 on the level of AI Infrastructure., AI Infrastructure, at
time t, controlling for firm characteristics at time t. AI Infrastructure at t is a ChatGPT-generated
score, assigned as 1 if ChatGPT determines that the firm has a high AI Infrastructure level, and 0
if it determines that the firm has a low AI Infrastructure level. The firm characteristics are defined
in Table 1. Standard errors are clustered at the firm level to account for potential within-firm
correlation. The sample period is from January 2006 to December 2024. t-statistics are shown in
parentheses. ∗p < 0.1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01.

Model 1 Model 2 Model 3 Model 4

∆SIZE ∆ LEV ∆ Tobin’s Q ∆ R&D

AI Infrastructure 0.015*** −0.002* 0.077** 0.006***
(3.77) (1.78) (2.53) (3.37)

SIZE −0.015***
(10.30)

LEV −0.081***
(16.94)

Tobin’s Q −0.035***
(3.59)

R&D −0.264***
(16.44)

Constant 0.162*** 0.003 −0.120** 0.009***
(8.53) (0.26) (2.44) (2.73)

N 15,762 14,584 15,408 7,639

R2 4.2% 12.9% 4.9% 29.5%

Industry FE Yes Yes Yes Yes
YQ FE Yes Yes Yes Yes
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Table 10: AI Infrastructure Level as a Predictor of Corporate Fundamentals for the Generative
AI Boom Period

This table presents the Fama-MacBeth regression results from regressing corporate fundamental variables at t+ 1 on the AI Infrastruc-
ture level measure, AI Infrastructure, at time t, controlling for firm characteristics at time t. AI Infrastructure at t is a ChatGPT-generated
score, assigned as 1 if ChatGPT determines that the firm has a high AI Infrastructure level, and 0 if it determines that the firm has
a low AI Infrastructure level. Computing Hardware and Software Ecosystem (CHSE), Power and Energy Resources (PER), Data Storage and
Management Systems (DSMS), and Technical Standards and Specifications (TSS) are ChatGPT-generated scores, assigned as 1 if ChatGPT
determines that the firm has a high level and 0 otherwise. The firm characteristics are defined in Table 1. Standard errors are clustered
at the firm level to account for potential within-firm correlation. The sample period is from January 2006 to December 2024. t-statistics
are shown in parentheses. ∗p < 0.1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01.

Panel A Model 1 Model 2 Model 3 Model 4 Model 5

∆ SIZE ∆ LEV ∆ ROA ∆ Tobin’s Q ∆ R&D

CHSE 0.010*** −0.003** 0.002** 0.058** 0.004**
(3.38) (2.54) (2.08) (2.41) (2.13)

SIZE −0.005***
(3.86)

LEV −0.005
(1.62)

ROA −0.321***
(6.34)

Tobin’s Q 0.034
(1.45)

R&D −0.141**
(2.31)

CAPEX

Constant 0.048*** 0.015*** 0.007*** −0.286*** 0.002*
(3.79) (10.06) (4.91) (4.46) (1.73)

N 3,019 3,019 2,988 2,947 1,523

R2 1.9% 8.3% 16.0% 5.8% 26.9%

Industry FE Yes Yes Yes Yes Yes
YQ FE Yes Yes Yes Yes Yes

Panel B Model 1 Model 2 Model 3 Model 4 Model 5

∆ SIZE ∆ LEV ∆ Tobin’s Q ∆ CAPEX ∆ R&D

PER 0.008*** −0.002** 0.082*** 0.030*** 0.002**
(3.00) (2.09) (2.65) (3.63) (2.12)

SIZE −0.005***
(4.02)

LEV −0.009***
(2.68)

ROA

Tobin’s Q 0.037
(1.54)

R&D −0.203***
(4.17)

CAPEX −0.295***
(4.52)

Constant 0.052*** 0.014*** −0.307*** 0.079*** 0.003**
(3.99) (10.65) (4.34) (10.16) (2.26)

N 3,019 2,965 2,947 2,987 1,389

R2 1.7% 9.4% 6.1% 42.1% 45.1%

Industry FE Yes Yes Yes Yes Yes
YQ FE Yes Yes Yes Yes Yes
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Panel C Model 1 Model 2 Model 3 Model 4

∆ SIZE ∆ LEV ∆ Tobin’s Q ∆ R&D

DSMS 0.018** −0.004** 0.264* 0.004***
(2.03) (2.25) (1.92) (3.12)

SIZE −0.005***
(4.04)

LEV −0.009***
(2.85)

Tobin’s Q 0.089***
(5.12)

R&D −0.187***
(3.71)

Constant 0.053*** 0.013*** −0.281*** 0.004**
(4.16) (10.78) (6.40) (2.55)

N 3,019 2,965 2,828 1,466

R2 1.8% 9.4% 17.0% 40.3%

Industry FE Yes Yes Yes Yes
YQ FE Yes Yes Yes Yes

Panel D Model 1 Model 2 Model 3

∆ SIZE ∆ Tobin’s Q ∆ R&D

TSS 0.023*** 0.152* 0.006**
(2.64) (1.96) (2.52)

SIZE −0.005***
(4.03)

Tobin’s Q 0.090***
(4.72)

R&D −0.189***
(3.75)

Constant 0.054*** −0.271*** 0.004***
(4.13) (6.49) (2.68)

N 3,019 2,828 1,466

R2 2.0% 16.0% 40.7%

Industry FE Yes Yes Yes
YQ FE Yes Yes Yes
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Table 11: Determinants of AI Infrastructure Level

This table presents the Fama-MacBeth regression results from regressing AI Infrastructure level measure,
AI Infrastructure, at time t + 1 on corporate fundamental variables at t , controlling for AI Infrastructure, at
time t and firm characteristics at time t. AI Infrastructure is a ChatGPT-generated score, assigned as 1 if
ChatGPT determines that the firm has a high AI Infrastructure level, and 0 if it determines that the firm has
a low AI Infrastructure level. The firm characteristics are defined in Table 1. Standard errors are clustered
at the firm level to account for potential within-firm correlation. The sample period is from January 2006 to
December 2024. t-statistics are shown in parentheses. ∗p < 0.1; ∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01..

Model 1 Model 2

AI Infrastructure 0.281***
(9.58)

SIZE 0.035*** 0.025***
(4.02) (4.20)

B/M −0.001*** −0.001***
(−2.74) (−2.67)

Tobin’s Q 0.014** 0.010**
(2.45) (2.35)

LEV −0.108 −0.071
(−1.43) (−1.25)

ROA −0.304 −0.188
(−1.43) (−1.15)

CAPEX 0.051 0.038
(1.06) (1.01)

R&D 0.058** 0.054**
(2.01) (2.57)

TANG −0.141 −0.112
(−1.39) (−1.48)

INTANG −0.150*** −0.113***
(−3.55) (−3.70)

LABOR −0.004 −0.003
(−0.26) (−0.29)

Constant −0.325*** −0.231***
(−2.61) (−2.66)

N 8,273 8,273

R2 19.9% 26.1%

Industry FE Yes Yes
YQ FE Yes Yes
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Appendix A: Classifying Technology infrastructure Components Using
APICalls and Chain of Thought (CoT)

0. API Call and CoT Examples for Classifying AI Infrastructure Level

API Call for Classifying AI Infrastructure Level

We make an APIcall to OpenAI’s GPT model to classify a company’s AI Infrastructure level

based on its third-quarter 2024 earnings transcript. First, We initialize a request to GPT-3.5-turbo,

specifying a temperature of 0, which ensures the response is as deterministic and consistent as

possible. Then, We define the system role by using the system message to instruct the AI to act

as a financial expert with experience in stock recommendations. The prompt tells the model to

evaluate the earnings transcript and classify the company’s AI Infrastructure level.

We use zero-shot prompting combined with Chain of Thought (CoT) reasoning to improve the

model’s decision-making process. The prompt reads as follows:

Forget all previous instructions. Pretend you are a financial expert with stock recom-

mendation experience. We’ll provide a description of an earnings transcript, and you

need to determine whether this company has high AI Infrastructure. Follow this struc-

tured approach before giving your final answer:

1. Identify AI-related Investments: Look for mentions of AI Infrastructure, data cen-

ters, machine learning applications, or cloud computing.

2. Assess Significance: Determine whether AI is a core part of the company’s busi-

ness strategy or just a minor component.

3. Consider Industry Context: Compare this company’s AI investments with indus-

try standards.

4. Final Decision: Based on the above factors, respond with ”High” if AI Infrastruc-

ture is significant, otherwise ”Low.”

The AI is guided to follow these logical steps before making a decision.

AI Infrastructure CoT Classification for Apple (AAPL)

Identify AI-related Investments:

• The transcript mentions “Apple intelligence,” which builds on years of innovation and in-

vestment in AI and Machine Learning.
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• Apple intelligence is described as a transformative set of capabilities that will enrich cus-

tomers’ lives through features like notification summaries, reduced interruptions, and more.

Assess Significance:

• AI is a core part of Apple’s business strategy, as they have made significant investments in

AI and Machine Learning over the years.

• The rollout of Apple intelligence is a major focus, with features designed to enhance user

experiences across various apps and services.

Consider Industry Context:

• Apple’s focus on AI aligns with industry trends where tech companies are increasingly inte-

grating AI into their products and services.

• The level of investment and emphasis on AI at Apple is significant compared to industry

standards, showcasing a strong commitment to AI Infrastructure.

Final Decision: Based on the above analysis, We would classify Apple as having High AI Infras-

tructure. The significant investments in AI, the core integration of Apple intelligence into various

products, and the strategic importance placed on AI technology indicate a strong commitment to

AI Infrastructure within the company.

1. API Call and CoT Examples for Classifying Computing Hardware and
Software Ecosystem (CHSE) Level

API Call for Classifying CHSE Level

We make an APIcall to OpenAI’s GPT model to classify a company’s CHSE level based on its

third-quarter 2024 earnings transcript. First, We initialize a request to GPT-3.5-turbo, specifying

a temperature of 0, which ensures the response is as deterministic and consistent as possible. We

then define the system role by using the system message to instruct the AI to act as a financial

expert with experience in stock recommendations. The prompt tells the model to evaluate the

earnings transcript and classify the company’s Computing Hardware and Software Ecosystem level.

We use zero-shot prompting combined with Chain of Thought (CoT) reasoning to guide the

model’s decision-making process. The prompt is structured as follows:
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Forget all previous instructions. Pretend you are a financial expert with stock recom-

mendation experience. We’ll provide a description of an earnings transcript, and you

need to determine whether this company has high CHSE. Follow this structured ap-

proach before giving your final answer:

1. Identify Key Components of CHSE: The AI is instructed to look for mentions of

high-performance processors such as GPUs, TPUs, and CPUs optimized for par-

allel processing and matrix computations. It is also told to check for references

to distributed computing systems, memory architectures designed for AI work-

loads, edge computing resources, or cloud computing infrastructure.

2. Evaluate AI-Related Software: The AI is asked to look for software tools and plat-

forms that facilitate AI, such as machine learning frameworks (e.g., TensorFlow,

PyTorch) and MLOps tools that streamline the deployment and monitoring of AI

systems. It should also check for mentions of data preprocessing and analysis

tools, along with model optimization and compression tools designed to enhance

computational efficiency.

3. Assess Significance: The model is guided to determine whether these hardware

and software systems are critical to the company’s operations or if they represent

only a small part of the company’s overall technology stack. The AI must consider

whether these systems are central to the company’s strategic direction or not.

4. Industry Context: The AI is prompted to compare the company’s investments in

computing hardware and software with industry standards. The model should

assess whether the company is keeping pace with industry trends or leading in

its sector when it comes to computing infrastructure.

5. Final Decision: Based on the above steps, the model is instructed to make its final

decision. It should respond with ”High” if the company’s Computing Hardware

and Software Ecosystem is significant and advanced, and ”Low” if the infrastruc-

ture does not meet the required standard.

Through this structured Chain of Thought approach, the AI is guided to logically ana-

lyze and make a well-informed decision before providing the final classification.

CHSE CoT Classification for Apple (AAPL)

Identify Key Components of CHSE:
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• The transcript mentions Apple’s significant investments in AI and Machine Learning, re-

ferred to as Apple intelligence.

• Apple highlights the transformative capabilities of Apple intelligence across various plat-

forms, emphasizing on-device processing and private cloud compute.

• The company discusses the integration of ChatGPT into experiences within iPhone, Mac,

and iPad, showcasing a broad base of world knowledge.

Evaluate AI-Related Software:

• Apple emphasizes the rollout of Apple intelligence features, such as notification summaries

and reduced interruptions, which are positively received by developers.

• The company plans a staggered launch of Apple intelligence features, starting with US En-

glish in the fall and expanding to more functionalities over the next year.

Assess Significance:

• Apple’s focus on Apple intelligence and AI-related software tools is a core part of their op-

erations, with significant investments and a commitment to innovation in AI and Machine

Learning.

• The company’s dedication to enhancing user experiences through AI and machine learning

technologies indicates the importance of these systems in their ecosystem.

Industry Context:

• Apple’s investments in AI and Machine Learning technologies align with industry trends

where companies are increasingly leveraging AI to enhance user experiences and drive in-

novation.

• The company’s focus on AI and Machine Learning is in line with the tech industry’s empha-

sis on developing intelligent systems to improve products and services.

Final Decision: Based on the analysis of the earnings transcript, Apple demonstrates a high level

of commitment and investment in CHSE. The significant focus on Apple intelligence, AI-related

software tools, and the integration of AI capabilities across various devices indicate that Comput-

ing Hardware and Software Ecosystem is significant and advanced for Apple.
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Therefore, the classification for Apple based on the provided earnings transcript is **High**

for CHSE. Apple’s strategic emphasis on AI and Machine Learning technologies positions them

as a leader in this space within the industry.

2. API Call and CoT Examples for Classifying Power and Energy Re-
sources (PER) Level

API Call for Classifying PER Level

We make an APIcall to OpenAI’s GPT model to classify a company’s PER level based on its

third-quarter 2024 earnings transcript. First, We initialize a request to GPT-3.5-turbo, specifying

a temperature of 0, which ensures the response is as deterministic and consistent as possible. We

then define the system role by using the system message to instruct the AI to act as a financial

expert with experience in stock recommendations. The prompt tells the model to evaluate the

earnings transcript and classify the company’s Power and Energy Resources level.

We use zero-shot prompting combined with Chain of Thought (CoT) reasoning to guide the

model’s decision-making process. The prompt is structured as follows:

Forget all previous instructions. Pretend you are a financial expert with stock rec-

ommendation experience. We’ll provide a description of an earnings transcript, and

you need to determine whether this company has high PER. Follow this structured

approach before giving your final answer:

1. Identify Key Components of PER: Look for mentions of energy-efficient comput-

ing architectures that reduce operational costs and environmental impact. Check

for references to power-efficient hardware designs, optimized data center energy

usage, and innovative power management solutions.

2. Evaluate Cooling and Power infrastructure: Determine whether the company im-

plements advanced cooling systems to maintain AI hardware reliability under

intensive workloads. Look for mentions of liquid cooling, immersion cooling, or

other energy-saving temperature regulation methods.

3. Assess Renewable Energy Integration: Identify whether the company integrates

renewable energy sources such as solar, wind, or hydroelectric power into its AI

Infrastructure. Analyze if they use battery storage or grid-balancing strategies to

enhance sustainability.
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4. Examine Backup and Resilience Systems: Check whether the company has robust

backup power solutions, such as uninterruptible power supplies (UPS) or on-site

energy storage, to ensure operational continuity during outages.

5. Industry Context: Compare the company’s investment in PER to industry bench-

marks. Wes the company leading in sustainable AI Infrastructure, or is it lagging

behind competitors?

6. Final Decision: Based on the above factors, respond with Ḧighı̈f the company’s

Power and Energy Resources (PER) are significant and advanced, otherwise ”Low”.

Through this structured Chain of Thought approach, the AI is guided to logically ana-

lyze and make a well-informed decision before providing the final classification.

PER CoT Classification for Apple (AAPL)

Identify Key Components of PER: The transcript does not contain specific mentions of energy-

efficient computing architectures, power-efficient hardware designs, or innovative power man-

agement solutions related to PER.

Evaluate Cooling and Power infrastructure: There is no information provided regarding ad-

vanced cooling systems like liquid cooling or immersion cooling that could indicate a focus on

energy-saving temperature regulation methods.

Assess Renewable Energy Integration: The transcript mentions Apple’s commitment to oper-

ating all data centers on 100% renewable energy, which aligns with renewable energy integration

practices in PER.

Examine Backup and Resilience Systems: There is no explicit mention of backup power solu-

tions like uninterruptible power supplies (UPS) or on-site energy storage in the transcript.

Industry Context: Apple’s dedication to using 100% renewable energy in its data centers is in

line with industry benchmarks for sustainable AI Infrastructure.

Final Decision: Based on the analysis, Apple demonstrates a significant commitment to renew-

able energy integration in its AI Infrastructure. While specific details on power-efficient hardware

designs and backup power solutions are lacking, the emphasis on renewable energy usage in data

centers positions Apple at a high level of PER).

Therefore, the final classification is **High** for Apple’s PER in its AI Infrastructure. Apple’s

strong focus on renewable energy integration sets it apart as a leader in sustainable AI Infrastruc-

ture within the industry.
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3. API Call and CoT Examples for Classifying Data Storage and Man-
agement Systems (DSMS) Level

API Call for Classifying DSMS Level

We make an APIcall to OpenAI’s GPT model to classify a company’s DSMS level based on its

third-quarter 2024 earnings transcript. First, We initialize a request to GPT-3.5-turbo, specifying

a temperature of 0, which ensures the response is as deterministic and consistent as possible. We

then define the system role by using the system message to instruct the AI to act as a financial

expert with experience in stock recommendations. The prompt tells the model to evaluate the

earnings transcript and classify the company’s Data Storage and Management Systems level.

We use zero-shot prompting combined with Chain of Thought (CoT) reasoning to guide the

model’s decision-making process. The prompt is structured as follows:

Forget all previous instructions. Pretend you are a financial expert with stock recom-

mendation experience. We’ll provide a description of an earnings transcript, and you

need to determine whether this company has high DSMS. Follow this structured ap-

proach before giving your final answer:

1. Identify Key Components of DSMS: Look for mentions of secure and scalable

storage systems, including distributed storage solutions, cloud storage, and on-

premise data centers.

2. Evaluate Data Processing and Management: Determine whether the company

uses data lakes, data warehouses, or caching systems to optimize data retrieval

and latency.

3. Assess Version Control and Data Integrity: Identify whether the company imple-

ments version control systems to track dataset and AI model updates, ensuring

transparency and reproducibility.

4. Examine Data Pipelines and Transformation: Check whether the company has

automated data pipelines that streamline data movement, transformation, and in-

tegration for tasks like trend analysis, demand forecasting, and operational mon-

itoring.

5. Industry Context: Compare the company’s investment in DSMS to industry bench-

marks. Wes the company leading in efficient data storage and management, or is

it lagging behind competitors?
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6. Final Decision: Based on the above factors, respond with ”High” if the company’s

Data Storage and Management Systems (DSMS) are significant and advanced,

otherwise ”Low”.

Through this structured Chain of Thought approach, the AI is guided to logically ana-

lyze and make a well-informed decision before providing the final classification.

DSMS CoT Classification for Apple (AAPL)

Identify Key Components of DSMS: The transcript does not contain explicit mentions of secure

and scalable storage systems, distributed storage solutions, cloud storage, or on-premise data

centers.

Evaluate Data Processing and Management:The focus of the transcript is on the launch of

Apple intelligence, which leverages AI and Machine Learning to enhance user interactions with

technology. However, there is no specific mention of data lakes, data warehouses, or caching

systems for optimizing data retrieval and latency.

Assess Version Control and Data Integrity: There is no direct mention of version control sys-

tems to track dataset and AI model updates for ensuring transparency and reproducibility.

Examine Data Pipelines and Transformation: The transcript does not discuss automated data

pipelines for streamlining data movement, transformation, and integration for tasks like trend

analysis, demand forecasting, or operational monitoring.

Industry Context: The focus of the discussion is on Apple’s financial results, product launches,

and services growth. There is no comparison of Apple’s investment in DSMS to industry bench-

marks related to efficient data storage and management.

Final Decision: Based on the analysis of the earnings transcript, it is evident that the discus-

sion primarily revolves around Apple’s financial performance, product launches, and services

growth, with minimal emphasis on the key components of Data Storage and Management Sys-

tems (DSMS) in their AI Infrastructure. Therefore, the company’s Data Storage and Management

Systems (DSMS) do not appear to be significant and advanced based on the provided transcript.

Final Classification: Low. Reasoning: The lack of specific mentions related to DSMS compo-

nents and industry benchmarks indicates that Apple’s focus in the earnings transcript is not on

highlighting advanced data storage and management systems within their AI Infrastructure.
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4. API Call and CoT Examples for Classifying Technical Standards and
Specifications (TSS) Level

API Call for Classifying TSS Level

We make an APIcall to OpenAI’s GPT model to classify a company’s TSS level based on its

third-quarter 2024 earnings transcript. First, We initialize a request to GPT-3.5-turbo, specifying

a temperature of 0, which ensures the response is as deterministic and consistent as possible. We

then define the system role by using the system message to instruct the AI to act as a financial

expert with experience in stock recommendations. The prompt tells the model to evaluate the

earnings transcript and classify the company’s Technical Standards and Specifications level.

We use zero-shot prompting combined with Chain of Thought (CoT) reasoning to guide the

model’s decision-making process. The prompt is structured as follows:

Forget all previous instructions. Pretend you are a financial expert with stock rec-

ommendation experience. We’ll provide a description of an earnings transcript, and

you need to determine whether this company has high TSS. Follow this structured

approach before giving your final answer:

1. Identify Key Components of TSS: Look for mentions of standardized model inter-

change formats and data structures that enable cross-platform AI compatibility.

Check for references to APIspecifications that facilitate seamless system integra-

tion and interoperability.

2. Evaluate Performance and Benchmarking Standards: Determine if the company

follows industry-standard benchmarks to assess AI model performance, accuracy,

and efficiency. Look for mentions of compliance with widely accepted AI evalua-

tion metrics or regulatory standards.

3. Assess Security and Privacy Standards: Identify whether the company adheres

to established security and privacy protocols in AI applications. Check for refer-

ences to encryption standards, data protection measures, or AI governance frame-

works ensuring compliance with industry regulations.

4. Examine Hardware Compatibility and Energy Efficiency: Look for the company’s

commitment to hardware standardization and energy-efficient AI deployment.

Determine if they follow energy efficiency metrics and design AI systems that are

cost-effective and sustainable.
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5. Industry Context: Compare the company’s adherence to TSS against industry

benchmarks. Wes the company a leader in AI standardization and interoperabil-

ity, or does it struggle with compatibility and compliance?

6. Final Decision: Based on the above factors, respond with ”High” if the company’s

Technical Standards and Specifications (TSS) are significant and advanced, other-

wise ”Low”. Provide a short reasoning followed by your final classification.”

Through this structured Chain of Thought approach, the AI is guided to logically ana-

lyze and make a well-informed decision before providing the final classification.

TSS CoT Classification for Apple (AAPL)

Identify Key Components of TSS:

• The transcript does not explicitly mention data encryption methods for securing data at rest

and in transit.

• There is a mention of ”on-device processing that does not collect users’ data” which indicates

a focus on privacy.

Identify Key Components of TSS:

• The company mentions the rollout of ”Apple intelligence” which builds on years of innova-

tion and investment in AI and Machine Learning.

• References to on-device processing, private cloud compute, and integration with ChatGPT

across various platforms like iPhone, Mac, and iPad.

Evaluate Performance and Benchmarking Standards:

• The company emphasizes the transformative capabilities of Apple intelligence, indicating a

focus on enhancing user experience through AI.

• While specific industry benchmarks are not mentioned, the company highlights the positive

reception and potential value of Apple intelligence for users.

Assess Security and Privacy Standards: The company emphasizes privacy through on-device

processing and private cloud compute, aligning with established security and privacy protocols

in AI applications.

Examine Hardware Compatibility and Energy Efficiency:

67



• The company highlights the use of Apple silicon in devices like iPhone 15 Pro and Pro Max,

Macs, and iPads to leverage AI capabilities efficiently.

• References to energy-efficient AI deployment are not explicitly mentioned in the transcript.

Industry Context:

• Apple is known for its high standards in technology and innovation, often setting industry

benchmarks for user experience and product integration.

• The company’s focus on AI innovation and privacy aligns with its reputation for leading

technological advancements.

Final Decision: Based on the evaluation, the company demonstrates a high level of Technical

Standards and Specifications (TSS) in its AI Infrastructure. The emphasis on privacy, on-device

processing, and integration of AI across platforms showcases a commitment to advanced AI tech-

nology standards and user experience. Therefore, the classification for this company would be

High in terms of Technical Standards and Specifications (TSS) in its AI Infrastructure.
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