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Abstract 
In this paper, we construct a set of reverse-Mixed Data Sampling (MIDAS) models to 
forecast the daily realized covariance matrix of United States (US) state-level stock 
returns, derived from 5-minute intraday data, by incorporating the information of 
volatility of weekly economic condition indices, which serve as proxies for economic 
uncertainty. We decompose the realized covariance matrix into a diagonal variance 
matrix and a correlation matrix and forecasting them separately using a two-step 
procedure. Particularly, the realized variances are forecasted by combining 
Heterogeneous Autoregressive (HAR) model with the reverse-MIDAS framework, 
incorporating the low-frequency uncertainty variable as a predictor. While the 
forecasting of the correlation matrix relies on the scalar MHAR model and a new log 
correlation matrix parameterization of Archakov and Hansen (2021). Our empirical 
results demonstrate that the forecast models incorporating uncertainty associated with 
economic conditions outperform the benchmark model in terms of both in-sample fit 
and out-of-sample forecasting accuracy. Moreover, economic evaluation results suggest 
that portfolios based on the proposed reverse-MIDAS covariance forecast models 
generally achieve higher annualized returns and Sharpe ratios, as well as lower portfolio 
concentrations and short positions. 
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1.  Introduction 

The accurate modeling and forecasting of covariance matrices plays a critical role 

in modern portfolio theory and risk management frameworks. Traditional approaches 

in the literature, such as multivariate Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) models (see, Bauwens et al. (2006) for a review) and 

Stochastic Volatility (SV) models (Harvey et al., 1994), treat the covariance matrix as 

a latent variable but are limited in their ability to incorporate intraday information. To 

address this limitation, Andersen et al. (2003) introduced the realized covariance 

(RCOV) matrix, which leverages on high-frequency intraday trading data to provide a 

model-free representation, thus reducing computational complexity. Building on this 

foundation, numerous studies have explored RCOV forecasting methods. Chiriac and 

Voev (2011) proposed the multivariate heterogeneous autoregression (MHAR) model 

for RCOV, an extension of the (2009) univariate HAR model of Corsi (2009) to the 

multivariate domain. This model is simple, straightforward to estimate using ordinary 

least squares (OLS), and retains the structural intuition of the original HAR model, 

involving long-memory and multi-scaling properties.  

In this regard, Bauer and Vorkink (2011) employed the matrix-logarithm 

transformation to ensure positive-definite forecasts of RCOV. Oh and Patton (2016) 

utilized the DRD decomposition to separately model realized variances and realized 

correlations. Bollerslev et al. (2018) incorporated measurement errors into the scalar 

MHAR model and enhance the RCOV forecasting accuracy. Vassallo et al. (2021) 

employed the Dynamic Conditional Correlation (DCC) approach and propose a class 

of score-driven realized covariance forecasting models. Gribisch and Hartkopf (2023) 

generalized the Wishart state-space model for RCOV modeling and forecasting. Li et 

al. (2024) developed a robust estimation scheme for the scalar MHAR model, utilizing 

the multivariate least-trimmed squares method to forecast realized covariance.. Zhang 

et al. (2024) forecasted the realized covariance matrix of US equity returns by 

considering the predictive information of graphs in volatility and correlation. However, 

these studies utilize only the information related to the RCOV itself, such as its own 
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lags, and often neglect the potential role of exogenous variables. While many studies 

on realized volatility forecasting frequently incorporate external information, with the 

review of this literature beyond the scope of this paper,1  few studies extend this 

perspective to covariance matrix forecasting. Notable exceptions include Asai et al. 

(2020), who integrated geopolitical risks into the model for forecasting the realized 

covariances crude oil and gold futures. 

Existing studies on forecasting the RCOV of stock market primarily consider a 

subset of stocks of the overall index (such as the Dow Jones and the S&P 500) as the 

sample (Callot et al., 2016; Opschoor et al., 2018; Pakel et al., 2021; Bauwens and 

Otranto, 2023; Alves et al., 2024; Li et al., 2024). Yet, the modeling of RCOV at the 

regional-level remains largely unexplored. This paper addresses this gap by forecasting 

the RCOV of state-level stock market indices of the US, derived from 5-minute intraday 

data. Importantly, it also examines whether the volatility of weekly state-level 

Economic Conditions Indices (ECIs), developed by Baumeister et al. (2022), provides 

predictive power.. Note that, the ECIs cover multiple dimensions namely, mobility 

measures, labor market indicators, real economic activity, expectations measures, 

financial indicators, and household indicators, and hence its volatility, can be 

considered a metric of overall macroeconomic uncertainty (Salisu et al., 2025).  

At this juncture, it must be pointed out that the nexus between RCOV and 

uncertainty can be intuitively rationalized. First, according to the present value model 

of asset prices (Shiller, 1981a, b), stock market volatility depends on the variability of 

cash flows and the discount factor, which in turn, is driven by economic uncertainty 

(Bernanke, 1983; Schwert, 1989). Second, recent empirical studies by Polat et al. (2024) 

and Cepni et al. (2024) demonstrated strong evidence of comovement (connectedness) 

not only among state-level stock returns but also among ECIs.. This suggests 

correlations across state stock markets, on its own, and also possibly due to underlying 

economic conditions, given the well-established role of the business cycle in driving 

general stock market movements (Goyal et al., 2024). Considering the impact of 

 
1 A good summary is provided in Gunnarsson et al. (2024), and Luo et al. (forthcoming). 
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economic conditions on realized volatility and realized correlation, it is reasonable to 

hypothesize that first- and second-moment movements in ECIs may have predictive 

power for RCOV. 

Econometrically speaking, to implement the mixed-frequency forecasting exercise 

involving daily RCOV with the volatility of weekly ECIs, we utilize the reverse-

MIDAS (RM) framework of Foroni et al. (2018). Specifically, we decompose the 

RCOV into a realized variances matrix (푫�) and a realized correlation matrix (푹�) using 

the DRD approach and model them separately. For the realized variances (푫� ), we 

propose a class of RM-HARX models to incorporate weekly information of the second-

moment of the ECIs to individually forecast the realized variances (RVs), the diagonal 

elements of 푫�. Particularly, these models are built on the HAR model (Corsi, 2009) 

and the RM framework. The former characterizes the long memory of RV, as 

documented by Andersen et al. (2003), in a parsimonious structure, and has gained 

popularity in realized variance forecasting. The latter enables forecasting a high-

frequency variable using the information of low-frequency variables (Foroni et al., 2018; 

2023), providing an appropriate tool for our work. Notably, the HAR model we use is 

in logarithmic form. This is to avoid generating negative forecasted 푫� and to allow 

for the applicability of standard normal distribution theory (Andersen et al., 2003). 

 Additionally, the existing body of literature on forecasting asset return volatility 

using different frequency-based exogenous variables predominantly relies on the 

GARCH-MIDAS model originally developed by Engle et al. (2013) (see, Amendola et 

al. (2024) and Segnon et al. (2024) for detailed literature reviews on the various 

extensions of this framework). However, these studies view volatility as a latent 

variable instead of the “observable” realized volatility (RV). The latter, based on 

intraday data, represents a more accurate measurement of volatility (Andersen et al., 

2001) and has become a popular proxy for the same in recent years (McAleer and 

Medeiros, 2008). 

As for the realized correlation matrix 푹�, in order to ensure generation of positive-

definite forecasted matrices, we first apply the matrix-logarithm transformation (Chiu 
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et al., 1996) to it. Then, we vectorize its lower off-diagonal elements, and use the scalar 

MHAR model to conduct forecasting. After that, we utilize the novel approach 

developed by Archakov and Hansen (2021) to reconstruct the forecasted vectors into 

logarithmic matrices. The method of Archakov and Hansen (2021) provides a mapping 

function that can transform any given 푁(푁 − 1)/2 × 1 vector into the corresponding 

N-dimensional logarithmic matrix uniquely. Followed by exponentiation, we obtain the 

forecasted 푹��. The above approach offers two advantages. Firstly, by leveraging the 

method proposed by Archakov and Hansen (2021), it ensures the acquisition of 

positive-definite forecasted realized correlation matrices without any model restrictions. 

Few studies, such as Arias et al. (2023), Hafner and Wang (2023), and Archakov et al. 

(2024), also utilize this novel method to model the correlation matrix. Secondly, the 

scalar MHAR model produces a parsimonious structure (as documented by Bollerslev 

et al. (2018)), which is of great significance in high-dimensional scenarios. 

Our forecasting results demonstrate that, with the exception of the Least absolute 

shrinkage and selection operator (Lasso)-RM, which accounts for uncertainty of all the 

50 states in the model for realized variances (푫�), the proposed RM models generally 

surpass the benchmark models in terms of both forecast losses and portfolio 

performances. This indicates an enhancement in incorporating the information of the 

volatility of ECI into the stock covariance forecasting model. Furthermore, we apply 

the reverse-MIDAS framework to the realized correlation (푹�) forecasting model and 

propose the RM-MHARX model to incorporate the information of the weekly 

correlation of the ECIs, demonstrating that this enhances the covariance forecasting 

performance in the DRD framework. 

This paper contributes to the literature of RCOV in three aspects: Firstly, we 

develop a class of RM-HAR models to incorporate the low-frequency variables into the 

realized volatility forecasting framework. To the best of our knowledge, this is first 

study to combine the HAR model with the RM framework for forecasting daily realized 

variances. Our work differs from the only related work, Hecq et al. (2024), who utilize 

the RM model to introduce the monthly macroeconomic variables to forecast the daily 
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realized variance of the S&P 500, and indicate that most of these variables provide 

limited forecasting improvement. In contrast, the low-frequency variables employed in 

our study are at a weekly frequency and achieve significant forecasting enhancement. 

Secondly, we introduce the novel correlation matrix parameterization method of 

Archakov and Hansen (2021) into the realized correlation forecasting exercise for the 

first time. Our work diverges from prior related studies (e.g., Arias et al., 2023; Hafner 

and Wang, 2023; Archakov et al., 2024). Although these studies also utilize the novel 

method of Archakov and Hansen (2021) to model the correlation matrix, they focus on 

modeling the latent correlation matrix. In contrast, by utilizing the approach of 

Archakov and Hansen (2021) and the scalar MHAR model, we obtain the positive-

definite forecasted correlation matrix without the need for imposing any restrictive 

model restrictions. 

Finally, we investigate the role of ECI-based economic uncertainty in forecasting 

state-level RCOV of stock returns. The rationale for adopting this regional perspective 

stems from the premise that core business activities of firms often occur close to their 

headquarters (Pirinsky and Wang, 2006; Chaney et al., 2012). As a result,  equity 

prices are likely to exhibit a significant regional component, and investors tend to 

overweight local firms in their portfolios (Coval and Moskowitz, 1999, 2001; Korniotis 

and Kumar, 2013). Consequently, the forecasting analysis conducted in this study 

should be of immense value to investors, particularly in informing portfolio allocation 

decisions. 

The remainder of this paper is structured as follows. Section 2 introduces the 

realized measures, while Section 3 presents the econometric models and its estimation 

methods. Section 4 reports the data, with Section 5 devoted to the predictive forecast 

results. Sections 6 and 7 conduct robustness checks and additional analysis wherein 

dynamic correlation of ECIs are introduced into the scalar MHAR model, respectively. 

Finally, Section 8 concludes. 
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2.  Realized measures 

2.1.  Realized covariance matrix 

Realized covariance, as proposed by Andersen et al. (2003), is a key concept in 

financial econometrics, particularly in the risk analysis involving high-frequency 

trading data. It refers to the empirical estimate of the covariance between the returns of 

financial assets over a given time period. Unlike traditional covariance measures, which 

typically rely on daily or lower-frequency data, realized covariance leverages high-

frequency data to capture the dynamic co-movement of asset prices with greater 

precision. For a given data sampling frequency △ (e.g., 5 min), 1/△ observations 

can be obtained within a trading day. The daily realized covariance matrix 푺�  is 

defined as: 

푺� = ∑ 풓�����∙△
�/△
��� 풓�����∙△

� ,      (1) 

where 풓� = 100 × (푙표푔푷� − 푙표푔푷��△) denotes the log return vector of 푁 assets, and 

푷�  is the price vector. This measure is computed by summing the product of 

contemporaneous returns across the high-frequency intervals within the time period of 

interest. The high-frequency nature of the data allows us to capture intraday information, 

providing a more accurate estimate of the covariance. 

2.2.  Realized variance, jump and semivariance 

Realized variance is actually the element on the diagonal of the aforementioned 

realized covariance matrix 푺� . Likewise, it is computed as 푅푉� = ∑ 푟�����∙△
��/△

���  , 

within 푟�  denotes the log return. According to Barndorff-Nielsen and Shephard (2004), 

as the sample frequency △→ 0 , the realized variance converges into a continuous 

component and a discontinuous one. This is expressed as: 

lim
△→�

푅푉� = ∫ 휎�(푠)푑푠���
� + ∑ 휅�(푠)������� .    (2) 

On the right-hand side of the equation, the first term, the continuous component, is 

related to the realized bipower variation, which is defined as: 

퐵푉� = 휇�
�� ∑ �푟�����∙△��푟����(���)∙△��/△

��� ,     (3) 

where 휇� = �2/휋. When △→ 0, there are 퐵푉� → ∫ 휎�(푠)푑푠���
� . The discontinuous 
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component (jump) can therefore be estimated as: 

lim
△→�

(푅푉� − 퐵푉�) = ∑ 휅�(푠)������� .     (4) 

Barndorff-Nielsen and Shephard (2004) proposed truncating jump measurements to 

zero to avoid negative values in empirical implementation: 

퐽� = max(푅푉� − 퐵푉� , 0).       (5) 

However, this measure can produce many insignificant jumps, which can lead to 

noise. Andersen et al. (2007) use the 푍-statistic test of Huang and Tauchen (2005) to 

screen out “large” jumps, denoted as 퐶퐽� in literatures. Specifically, the 푍-statistic is 

computed as: 

푍� = ��/△(�������)���
��

�(��
������

����)∙���(�,���/���
�)

,      (6) 

where 푇푄�  is the standardized realized tripower quarticity measure, 

푇푄� =△�� 휇�/�
�� ∑ �푟�����∙△�

�/�
�푟����(���)∙△�

�/�
�푟����(���)∙△�

�/�
,�/△

���  (7) 

where 휇�/� = 2�/�Γ(7/6)Γ(1/2)��. Then 퐶퐽� is represented by: 

퐶퐽� = (푅푉� − 퐵푉�) ∙ 퐼(푍� > Φ�),     (8) 

where Φ� is some critical value under the significance level 훼, and 퐼(∙) denotes the 

indicator function that takes the value of 1 if 퐼(∙) is true and 0 if 퐼(∙) is false. Then, 

the other component of the total realized variance is measured by: 

퐶푉� = 푅푉� − 퐶퐽� = 푅푉� ∙ 퐼(푍� < Φ�) + 퐵푉� ∙ 퐼(푍� > Φ�),  (9) 

which is continuous. 

Additionally, Barndorff-Nielsen et al. (2010) decompose the realized variance into 

two components, the positive semivariance and the negative semivariance. We also 

consider using these components in the next section. The positive realized semivariance 

estimator is written as: 

푃푆푉� = ∑ 푟�����∙△
��/△

��� 퐼(푟�����∙△ > 0),    (10) 

and the negative semivariance estimator is defined as: 

푁푆푉� = ∑ 푟�����∙△
��/△

��� 퐼�푟�����∙△ < 0�.    (11) 
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3.  Forecasting methodology 

3.1.  The DRD approach for forecasting realized covariance matrix 

Inspired by the dynamic condition correlation (DCC) model of Engle (2002), Oh 

and Patton (2016) proposed a two-step procedure, named DRD approach, to forecast 

the realized covariance matrix, in which the realized variance and realized correlation 

matrix are modeled separately. This method has two advantages. Firstly, the 

computational complexity can be reduced under high dimension conditions since the 

realized variances can be treated as univariate linear forecasting problem rather than 

vector modeling problem. Secondly, exogenous predictors can be considered in 

covariance matrix forecasting by incorporating them into the variance forecasting 

model. To this end, we adopt the DRD approach to investigate the importance of the 

economic conditions in covariance matrix forecasting in US state-level stock markets. 

According to Oh and Patton (2016), the realized covariance matrix 푺�  can be 

decomposed into the DRD form as:  

푺� = 푫�
�/�푹�푫�

�/�,       (12) 

where 푫� is a diagonal matrix with the elements of the realized variances for all assets, 

i.e., 푫� = 푑푖푎푔(푺�) = 푑푖푎푔(�푅푉�,��
���
�

) , and 푹� = 푫�
��/�푺�푫�

��/�  denotes the 

realized correlation matrix. We forecast 푫�  and 푹�  separately with different 

approaches to get their forecasts 푫�� and 푹��, and then the realized covariance forecasts 

푺�� can be obtained through 푺�� = 푫��
�/�푹��푫��

�/�. 

3.2.  Forecasting 푫풕 with reverse- MIDAS framework 

Since 푫�  is a diagonal matrix with the elements of realized variances for the 

given 푁 assets, we can individually forecast the 푁-dimensional univariate realized 

variances to obtain the forecast 푫�� . In particular, we propose several RM-HARX 

models by combining the reverse-MIDAS (RM) framework of Foroni et al. (2018) and 

the HAR model of Corsi (2009) with exogenous variables (HARX) together to forecast 

univariate realized variances. The proposed models allow us to employ the volatility of 
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the weekly state-level ECIs to forecast daily realized variances in US state-level stock 

markets. In addition, following Andersen et al. (2007), we employ the logarithm HAR-

type models to avoid generating negative variance forecasts. The realized variance 

forecasts can then be recovered via the exponential function. Finally, given the 

forecasted realized variances 푅푉��,�  for 푛 -th state-level stock market index, we can 

obtain the realized variance matrix forecasts as 푫�� = 푑푖푎푔(�푅푉��,��
���
�

). The several 

proposed univariate variance forecasting models within the RM-HARX class are 

introduced as follows.  

3.2.1.  RM-HARX model 

The first proposed reverse-MIDAS univariate realized variance forecasting model 

is constructed by integrating the logarithm HAR model into the reverse-MIDAS 

framework. Assuming the forecast horizon is ℎ, which is relative to the last timestamp 

of high-frequency observations, the RM-HARX model is expressed as: 

log (푅푉�� �
���

�
) = 훽�,� + 훽�,� log (푅푉

�� �
�

� ) + 훽�,� log (푅푉
�� �

�

� ) + 훽�,� log (푅푉
���

�

� ) +

훼� log (푉표푙�
��� ) + 휀�� �

���
�

, 푡 = 0,1, … , 푇 − 1, 푙 = 1,2, … , 퐿, (13) 

where 푇  denotes the total number of observations of the low frequency variable 

푉표푙�
���, and 퐿 represents the number of observations of high frequency variable during 

a low frequency period. The daily, weekly and monthly realized variance (푅푉�
�, 푅푉�

�, 

and 푅푉�
� ) are computed as, 푅푉�

� = 푅푉� , 푅푉�
� = �

�
∑ 푅푉���

�
���  , 푅푉�

� =

�
��

∑ 푅푉���
��
���  . In the empirical section, 푉표푙�

���  denotes the volatility of the 

corresponding state’s ECI, which is extracted through the GARCH model (see, 

Appendix A). Additionally, we specify 퐿 = 5  since 푉표푙�
���  is at weekly frequency 

while the forecasted realized variance is at daily frequency. 

3.2.2. RM-HARJX model 

Given the nonparametric measurements of the jump component mentioned above, 

the corresponding time series (퐽�) can be directly included as an additional explanatory 

variable, resulting in the RM-HARJX model, which is described as:  
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log (푅푉�� �
���

�
) = 훽�,� + 훽�,� log �푅푉

���
�

� � + 훽�,� log �푅푉
�� �

�

� � + 훽�,� log �푅푉
���

�

� � +

훾�,� log �퐽�� �
�

+ 1� + 훼� log(푉표푙�
���) + 휀���

���
�
.    (14) 

3.2.3.  RM-HARCJX model 

Following Andersen et al. (2007), we construct an additional RM-HARCJ model 

that takes into account the truncated continuous and jump components, as mentioned in 

Section 2.2. The model is represented as: 

log (푅푉�� �
���

�
) = 훽�,� + 훽�,� log �퐶푉

�� �
�

� � + 훽�,� log �퐶푉
�� �

�

� � + 훽�,� log �퐶푉
���

�

� � +

훾�,� log �퐶퐽
�� �

�

� + 1� + 훾�,� log �퐶퐽
���

�

� + 1� + 훾�,� log �퐶퐽
���

�

� + 1� +

훼� log(푉표푙�
��� ) + 휀���

���
�

.          (15) 

3.2.4. RM-HARRSX model 

Patton and Sheppard (2015) and Sévi (2014) introduce the positive and negative 

semivariance developed in Barndorff-Nielsen et al. (2010) into the HAR model. As 

such, we propose the RM-HARRSX as follows: 

log (푅푉�� �
���

�
) = 훽�,� + 훽�,� log �푃푆푉

���
�

� � + 훽�,� log �푃푆푉
���

�

� � + 훽�,� log �푃푆푉
���

�

� � +

훾�,� log �푁푆푉
���

�

� � + 훾�,� log �푁푆푉
���

�

� � + 훾�,� log �푁푆푉
���

�

� � + 훼� log(푉표푙�
��� ) +

휀���
���

�
.                (16) 

The semivariances are also assumed to have heterogeneous structure. 
3.2.5. PCA-RM-HARX model 

For forecasting realized variance in a certain state's stock market, the above models 

described above only account for the volatility of the ECI of that state. To explore the 

predictability of uncertainty emanating from other states, we incorporate the economic 

condition data from all fifty states into the above realized variance forecasting models. 

Given the substantial increase in the number of exogenous variables, we employ 

dimension reduction techniques, specifically Principal Component Analysis (PCA), to 

mitigate the risk of overfitting. The following is the proposed PCA-RM-HARX model: 

log (푅푉�� �
���

�
) = 훽�,� + 훽�,� log (푅푉

�� �
�

� ) + 훽�,� log (푅푉
�� �

�

� ) + 훽�,� log (푅푉
���

�

� ) +
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훼�퐹푎푐푡표푟� + 휀�� �
���

�
, 푡 = 0,1, … , 푇 − 1, 푙 = 1,2, … , 퐿,  (17) 

where 퐹푎푐푡표푟�  is the first principal component extracted from the log volatilities of 

ECIs for all fifty states, i.e., (log(푉표푙�,�
��� ))���,�,…,��. Similarly, we can obtain the PCA 

versions of the RM-HARJX, RM-HARCJX, and RM-HARRSX models. For the sake 

of brevity, we omit the corresponding descriptions here. 

3.2.4. Lasso-RM-HARX models 

We also employ the Lasso approach introduced by Tibshirani (1996) to perform 

variable selection and alleviate the over-fitting problem. Particularly, we apply the 

Lasso approach to shrink the low frequency variables, rather than all independent 

variables. 

Let 푦� = log (푅푉�) , 풁� = (1, log (푅푉�
�),log (푅푉�

�), log(푅푉�
�))′ , and 푿�  

contains (log(푉표푙�,�
��� ))���,�,…,�� indicating the log volatility of ECI of all fifty states. 

Then the RM-HARX model can be re-written as: 

푦�� �
���

�
= 휷�

�풁�� �
�

+ 휶�푿� + 휀�� �
���

�
,     (18) 

where 휷� = (훽�,� , 훽�,� , 훽�,� , 훽�,�)′. Noteworthy, the coefficients of exogenous variables 

are denoted as 휶� , distinct from the previously mentioned 훼� , since 푿� now includes 

fifty exogenous variables, rather than just one. The parameter estimates of the model 

obtained through the Lasso method are given by: 

(휷� , 휶�) = 푎푟푔푚푖푛 ∑ �푦�� �
���

�
− 휷� ′풁���

�
− 휶�푿��

�
���
��� + 휆�(|휶�|), (19) 

where the tune parameter 휆�  is chosen by tenfold cross-validation via the glmnet R 

package (Friedman et al., 2010) in our empirical part. We refer to this model as Lasso-

RM-HARX. The specifications of the Lasso-RM-HARJX model, the Lasso-RM-

HARCJX model, and the Lasso-RM-HARRSX model are similar to that of the Lasso-

RM-HARX model, the only difference is that 풁� includes different realized measures 

(e.g., jumps and realized semivariances). We also omit them here. 

3.3.  Forecasting 푹풕 with the scalar MHAR model and a new parameterization of 

Archakov and Hansen (2021) 

We employ the scalar MHAR to model the realized correlation matrix, which has 
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been adopted in previous literature such as Bollerslev et al. (2018) and Li et al. (2024). 

The HAR model of Corsi (2009) has become the most widely used framework in the 

univariate realized volatility forecasting. It was first extended to a multivariate setting 

by Chiriac and Voev (2010) and later formalized as scalar multivariate HAR (MHAR) 

model in Bollerslev et al. (2018). However, using the scalar MHAR model to forecast 

correlation matrix without imposing restrictions may result in non-positive definite 

matrices.  

For the purpose to guarantee the positive definiteness of the forecasted realized 

correlation matrices 푹��, we can utilize the matrix logarithm of Chiu et al. (1996) to 

model the lower triangular part of log (푹�) , including the diagonal, and then 

reconstruct it by matrix exponentiation. However, this method does not guarantee that 

the diagonal elements of the reconstructed correlation matrix will be equal to one. For 

an 푁-dimensional correlation matrix 푹�, there are 푁 × (푁 − 1)/2 unique elements 

whereas log (푹�)  contains (푁 + 1) × 푁/2  original parameters. When 푁 = 2 , 

finding a determinate mapping function between ℝ(���)×�/�  and ℝ�×(���)/�  is 

relatively straightforward, but it becomes significantly more challenging when 푁 > 2. 

For example, applying the matrix-logarithm to an 2 × 2  correlation matrix gives, 

log �
1 휌
휌 1� = �

�
�

log (1 − 휌�) �
�

푙표푔 ���
���

�
�

푙표푔 ���
���

�
�

log (1 − 휌�)
� . Archakov and Hansen (2021) 

developed a novel method for correlation matrix parameterization, which effectively 

resolves this issue. Their approach enables the reconstruction of the 푁-dimensional 

correlation matrix from any given vector in ℝ�×(���)/� using a mapping function. For 

further details, refer to Archakov and Hansen (2021). 

We combine the novel reconstruction method of Archakov and Hansen (2021) and 

the scalar MHAR model to get the forecasted positive definite correlation matrices as 

the following steps. Firstly, by employing the 푣푒푐ℎ operator, we stack the lower off-

diagonal elements of an 푁-dimensional log correlation matrix 푨� = log (푹�) into an 

푁(푁 − 1)/2 × 1  vector 푣푒푐ℎ(푨�) . Secondly, modeling and forecasting 푣푒푐ℎ(푨�) 

with the scalar MHAR model as: 
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푣푒푐ℎ(푨���) = 풄 + 휃�푣푒푐ℎ(푨�
�) + 휃�푣푒푐ℎ(푨�

�) + 휃�푣푒푐ℎ(푨�
�) + 흐���, (20) 

where 풄 is an 푁(푁 − 1)/2 × 1 vector denoting the intercept term, 휃� , 휃� and 휃� 

are scalar parameters. Moreover, 푨�
� = log (푹�

�), and 푨�
�, 푨�

� are similarly, and 푹�
�, 

푹�
� , 푹�

�  are decomposed from the daily, weekly, and monthly realized covariance 

matrices based on the DRD decomposition, e.g., 푹�
� = 푫�

� ��/�푺�
�푫�

� ��/ퟐ. Noteworthy, 

푡  represents high-frequency time here (i.e., daily in this paper) rather than low-

frequency time as in the aforementioned reverse-MIDAS models. Finally, the forecasts 

of the correlation matrix, 푹�� , can be uniquely reconstructed from the forecasts of 

푣푒푐ℎ(푨���) using the mapping function of Archakov and Hansen (2021). The above 

correlation matrix forecasting framework ensures the generation of positive definite 

matrices forecasts, in the meantime, without imposing any restrictions. To the best of 

our knowledge, this study is the first to integrate the novel parameterization method of 

Archakov and Hansen (2021) into the realized correlation matrix modeling and 

forecasting. 

[Insert Figure 1 here] 

For clarity, we plot the above RCOV forecasting procedure in Figure 1. As 

illustrated, after getting the forecasts of 푫� and 푹�, the covariance forecasts 푺�� can 

be obtained through the combination of 푫�� and 푹�� such that 푺�� = 푫��
�/�푹��푫� �

�/�. It is 

important to note that when the forecast horizon is greater than one, we use the direct 

forecast approach instead of the iterated one, as in Bollerslev et al. (2018) and Wilms 

et al. (2022). The advantage of this approach is that the direct approach is more robust 

when dealing with model mis-specifications (Marcellino et al., 2006). Specifically, for 

the forecast horizon ℎ, the dependent variable in the univariate HAR model (realized 

variance) and the dependent variable in the scalar MHAR model (realized correlation 

matrix) are both derived using the DRD approach from the average of the covariance 

matrix over the future ℎ days. For clarity, we denote the covariance forecasting model 

as RM-HARX-DRD, which is constructed through the two-step forecasting process 

based on the variance forecast model RM-HARX and the correlation matrix forecasting 

model scalar MHAR. Other extended models are denoted similarly. Table 1 presents a 
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summary of the composition of all realized covariance matrix forecasting models. The 

descriptions of all the forecasting models mentioned above are presented in Table B1 

in Appendix B. 

[Insert Table 1 here] 

 

 

4. Data 

We source the US state-level stock market indices data at a 5-minute frequency 

from the Bloomberg database. These indices are constructed by Bloomberg as 

capitalization-weighted aggregates of equities domiciled in each respective state. Then, 

we use the aforementioned realized measures to construct various daily-frequency 

variables. The weekly ECIs of the US states, on which we apply the GARCH model, 

are based on the work of Baumeister et al. (2024).2 These authors derive the indices 

from mixed-frequency Dynamic Factor Models (DFMs) with weekly, monthly, and 

quarterly variables that cover multiple dimensions of the aggregate and the state 

economies. Specifically, Baumeister et al. (2024) group variables into six broad 

categories: mobility measures, labor market indicators, real economic activity, 

expectations measures, financial indicators, and household indicators. The indexes are 

scaled to 4-quarter growth rates of US real Gross Domestic Product (GDP) and 

normalized such that a value of zero indicates national long-run growth. The range of 

our data covers the period from April 04, 2016, to June 30, 2024. Since our reverse-

MIDAS models require a fixed frequency mismatch 퐿 = 5, we follow the approach of 

Hecq et al. (2024) and interpolate additional values for any missing daily observations 

on workdays (Monday to Friday), resulting in 2150 and 430 observations for each daily 

and weekly variables, respectively. Moreover, we follow the approach of Callot et al. 

(2017) and Alves et al. (2024) to deal with the extreme values in the daily realized 

covariance matrices. Specifically, we flag for censoring any covariance matrix where 

 
2 Table 1 in their paper summarize the state-level data that they use in the construction of the weekly ECIs, and 

also include information on the frequency, source, transformation, seasonal adjustment, and the start date of each 
underlying data series utilized in the construction of the indexes. The data is publicly available for download from: 
https://sites.google.com/view/weeklystateindexes/dashboard. 



16 
 

more than 25% of the unique entries deviate by more than four standard errors (based 

on the series corresponding to that entry) from their sample average up to that point. 

These flagged matrices are then replaced with the average of the nearest five preceding 

and following non-flagged matrices. 

[Insert Figure 2 here] 

In the empirical section, we primarily concentrate on a ten-dimensional covariance 

matrix forecasting scenario. The ten state-level stock indices used to construct the 

RCOV are randomly selected similar to Bollerslev et al. (2018), Opschoor et al. (2018), 

and Opschoor et al. (2024). In this regard, Table C1 in Appendix C lists the names of 

the chosen states. In a robustness check, we examine the out-of-sample forecast 

precision within higher-dimensional contexts of 20, 30, 40 and all of the 50 states. In 

Figure 2, we plot the autocorrelation function (ACF) for the logarithm realized 

variances of ten chosen state-level stock market indices. It is evident that the ACF 

decays gradually across all assets after the first few lags, indicating significant 

autocorrelation and long memory. This phenomenon is very common in volatility time 

series and suggests that past variances are informative for predicting future variances. 

Given that the HAR model is a straightforward and effective tool for capturing long 

memory in volatility forecasting, we integrate the reverse-MIDAS framework into the 

HAR model to forecast the realized variances. 

[Insert Figure 3 here] 

We also depict the time series of the logarithm realized variances and the logarithm 

volatilities of ECIs of the corresponding states in Figure 3. It can be easily seen that the 

two series have very similar characteristics. For instance, both indicate peaks around 

April 2020 and April 2021, while displaying less fluctuation during the remaining 

periods. According to Figure 3, there appears to be a notable connection between the 

two series. This suggests that we may be able to leverage this relationship for 

forecasting purposes. In the next section, we will investigate this further by examining 

in-sample fitting and out-of-sample forecasting in greater detail. 
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5. Empirical findings  

We evaluate the forecast models by comparing various HAR-DRD models and 

their reverse-MIDAS version (which takes into account the information of volatility 

involving economic conditions) relying on statistical and economic criteria. We first 

present the in-sample parameter estimate results and assess the in-sample fits in sub-

section 5.1., and then analyze the out-of-sample forecast performance in sub-section 

5.2. 

5.1.  In-sample fits 

We begin by presenting the full-sample parameter estimates for each pair of the 

reverse-MIDAS (RM) and non-RM HAR-type univariate variance forecasting models 

in Tables 2-4, corresponding to ℎ = 1 , 5 , and 20, along with standard errors in 

parentheses. To save space, we follow the approach of Bollerslev et al. (2018) and 

report the averages of the model parameter estimates and standard errors for the ten 

selected states. Additionally, since the reverse-MIDAS models need to be re-estimated 

every workday, their estimates are further averaged over five workdays. From Table 1-

3, it can be observed that the daily, weekly, and monthly lag terms are significantly 

positive in all models. Besides, for each class of HAR(X) models, the reverse-MIDAS 

frameworks always have higher adjusted 푅� , which represents better in-sample-fit 

performance. It is noteworthy that the standard errors of estimates for the exogenous 

variable involving volatility of the ECI are relatively large, in comparison to their 

coefficients 훼, when ℎ = 1. However, these standard errors become relatively smaller 

when ℎ = 5  and 22 . In other words, the estimated coefficients 훼  exhibit less 

statistical significance in short-term, while they become relatively more statistically 

significant in the medium- to long-term. Meanwhile, for all forecast horizons, the 

estimated coefficients 훼 are positive, indicating that an increase in the volatility of the 

ECI leads to higher future volatility in state stock markets. This aligns with expectations, 

as heightened economic uncertainty typically drives market volatility. Additionally, 

with the inclusion of ECI volatility, the coefficient of the monthly realized variance 

component, 훽�, gets significantly reduced, suggesting that ECI volatility can partially 
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replace the influence of long-term volatility of stock markets. 

[Insert Tables 2, 3 and 4 here] 

5.2.  Statistical evaluation of out-of-sample forecasts 

Next, we use four types of statistical loss functions to evaluate the out-of-sample 

forecasting accuracy of the realized covariance forecasting models, including Euclidean, 

Frobenius, and QLIKE according to Symitsi et al. (2018) as well as the Stein loss 

function according to Laurent et al. (2012) and Luo and Chen (2020). Given the realized 

covariance matrix forecast 푺��, the Euclidean loss function is expressed as: 

퐿�
���� = �푣푒푐ℎ(푺� − 푺��)′푣푒푐ℎ(푺� − 푺��),    (21) 

and the Frobenius loss function is expressed as, 

퐿�
���� = �푇푟[(푺�� − 푺�)(푺�� − 푺�)′],     (22) 

where 푇푟(∙) represents the trace of a matrix. The QLIKE function is given as: 

퐿�
����� = log |푺��| + 푇푟�푺��

��푺��,     (23) 

the Stein loss function is as follows: 

퐿�
����� = 푇푟�푺��

��푺�� − log�푺��
��푺�� − 퐾.    (24) 

Following Bollerslev et al. (2018), we also adopt the MCS test (Hansen et al., 2011) 

and the DM test (Diebold and Mariano, 1995) to evaluate whether differences in 

forecast accuracy for the competing models are statistically significant. The MCS test 

is used to identify superior models from the set of candidate models, while the DM test 

is applied to compare the performance of various HAR-DRD models and their reverse-

MIDAS versions, which incorporate the volatility of the ECI. 

Our out-of-sample forecast comparisons are based on three forecast horizons, i.e., 

short (ℎ = 1), medium (ℎ = 5), and long (ℎ = 20). We continue to use the same ten-

dimensional covariance matrix analyzed earlier and forecast the 푫�  and 푹� 

separately using the method described above. These forecasts are then combined to 

reconstruct the covariance matrix forecasts. All models are re-estimated daily based on 

a rolling window sample of approximately five years (i.e., 260 weeks). It is important 

to note that our goal is not to run a horse-race between the different models to find a 
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single best model. Instead, we aim to explore whether integrating the low-frequency 

predictors into the RM, PCA-RM and Lasso-RM models enhances their performance 

compared to their non-RM benchmark counterparts. Table 5 reports the out-of-sample 

performance metrics for all covariance matrix forecasting models. For clarity, we 

categorize the models into four groups based on the four types of HAR models, i.e., 

HAR, HARJ, HARCJ and HARRS models. 

We apply the Model Confidence Set (MCS) of Hansen et al. (2011) to determine 

whether the forecast accuracy differs significantly across the competing models. For 

each of the four loss functions and three forecast horizons, we determine the subset of 

models that are included in the MCS at 75% confidence level, which are highlighted in 

bold. Additionally, to investigate whether incorporating the volatility of economic 

conditions improves the performance of the forecasting models, we conduct pairwise 

comparisons between each RM-based model and its corresponding non-RM benchmark 

model using the Diebold-Mariano (DM) test (Diebold and Mariano, 1995). Statistical 

significance is indicated by an asterisk. 

[Insert Table 5 here] 

According to Table 5, for the short horizon, both PCA-RM-HARX-DRD, RM-

HARJX-DRD, and PCA-RM-HARJX-DRD, are included in the MCS across all loss 

functions. Additionally, the RM-HARX-DRD and PCA-RM-HARCJX-DRD are also 

included in the MCS for QLIKE- and Stein-type losses. However, nearly all Lasso-RM 

models are excluded from the MCS, suggesting poor out-of-sample performances. 

Across all model groups, those in Group 2, which incorporates the jump component, 

are more likely to be included in the MCS compared to models in other groups. The 

DM test results show that most RM models, except for the Lasso-RM models, 

outperform their respective benchmark models within each group. This is especially 

evident for the PCA-RM models.  

For the medium-term horizon (h=5), the advantage of PCA-RM models persists, 

as nearly all PCA-RM models—except for PCA-RM-HARCJX-DRD—are included in 

the MCS across all loss functions. Again, the Lasso-RM models fail to make it into the 
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MCS, reinforcing the notion that their structure does not efficiently capture medium-

term volatility dynamics. The DM test results provide further evidence that the RM and 

PCA-RM models consistently outperform their non-RM counterparts. The results 

suggest that incorporating economic uncertainty at the weekly level enhances 

covariance forecasting accuracy over medium horizons, likely because economic 

conditions unfold over a longer timeframe and contribute to persistent market trends. 

Regarding the long forecast horizon, the findings are similar to those for shorter 

horizons. The RM models and the PCA-RM models generally exhibit better forecasting 

performance than their benchmark non-RM models, as indicated by the DM test results. 

However, the Lasso-RM models continue to perform poorly. Notably, the performance 

of PCA-RM models appears slightly worse than that of the RM models which only 

consider the volatility of the corresponding state when compared to their benchmarks. 

For instance, PCA-RM models consistently outperform their benchmarks only in Group 

3 across all loss functions, whereas RM models outperform their benchmarks in all 

groups. Conversely, PCA-RM models, which incorporate the ECI volatilities of all fifty 

states, show a slight advantage over RM models for ℎ = 1 . This suggests that 

considering the volatilities of other ECIs provides clear benefits for short-term 

covariance matrix forecasting, but these benefits diminish as the forecasting horizon 

lengthens.  

Across all forecast horizons, models in Group 2, which incorporate jump 

components, consistently demonstrate superior predictive performance, as evidenced 

by their frequent inclusion in the MCS. This highlights the importance of capturing 

discontinuities in realized variance when forecasting covariance matrices, as market 

shocks and sudden changes in volatility significantly influence future covariance 

structures. The overall findings suggest that incorporating economic uncertainty—

particularly through RM and PCA-RM models—enhances forecasting accuracy, 

especially in the short- and medium-term horizons. However, the benefits of integrating 

uncertainty measures from multiple states appear to diminish over longer horizons, 

emphasizing the importance of selecting appropriate predictors for different forecast 
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periods. 

[Insert Figure 4 here] 

Figure 4 depicts the average rankings of each model across the three forecast 

horizons for the four loss functions, represented by lines of different colors. Lower 

rankings indicate better performance, meaning that models closer to the center of the 

graph perform more effectively. For each group of models, it is evident that the RM 

model and PCA-RM model are positioned closer to the center of the graph compared 

to the Lasso-RM model and the benchmark models. Moreover, the PCA-RM model 

emerges as the top performing model in most cases. Additionally, models in Groups 1 

and 2 are generally closer to the center than those in other groups. Among all competing 

models, the Lasso-RM models consistently rank the farthest from the center of the 

graph. 

In sum, the out-of-sample results show that the RM and RM-PCA models 

significantly outperform their non-RM counterparts, especially for the medium and 

long horizons. This indicates that using the information embedded in the lower 

frequency variable involving volatility of economic conditions capturing uncertainty 

does help to improve state-level stock market covariance forecasting. Notably, both 

PCA-RM and Lasso-RM models account for economic volatility across all 50 states, 

yet their performance differs substantially. While the PCA-RM model outperforms 

benchmark models, the Lasso-RM model fails to reach a comparable level of accuracy. 

A potential technical explanation for this discrepancy is the difficulty the Lasso 

estimator faces in convergence and in selecting the optimal tuning parameter during 

empirical implementation. Intuitively, this finding underscores the importance of 

common factor movements over idiosyncratic variations in ECI volatility across states. 

Among all competing models, the RM-HARJX-DRD model stand out as always being 

included in the MCS, regardless of the loss functions and forecasting horizons, 

indicating prevailing forecasting accuracy, highlighting the importance of the jump 

component in accurately modeling the volatility dynamics (Caporin et al., 2016). 

 



22 
 

5.3.  Economic evaluation 

The out-of-sample results presented above show that the RM and PCA-RM models, 

which incorporate the volatility of economic conditions of the US states, outperform 

their benchmark models in terms of forecast accuracy. In this sub-section, we focus on 

investigating whether the proposed models can produce higher economic gains. 

Following the approach in Bollerslev et al. (2018), Luo and Chen (2020) and Li et al. 

(2024), we assess the economic performance of the various covariance forecasting 

models by constructing Global Minimum Variance (GMV) portfolios. As highlighted 

by Bollerslev et al. (2018), the GMV weights depend solely on return covariances, 

offering a particularly clear framework for assessing the effectiveness of different 

models. This approach avoids reliance on forecasts of expected returns, ensuring that 

the evaluation focuses exclusively on the performance of covariance forecasts. 

Moreover, as noted by Jagannathan and Ma (2003) and DeMiguel et al. (2009), mean-

variance optimized portfolios typically underperform GMV portfolios in terms of out-

of-sample Sharpe ratios, primarily due to the estimation error in expected returns, which 

can distort portfolio positions. Thus, we rely on the GMV portfolio approach to evaluate 

the economic performance of the competing forecasting models. 

Specifically, given the return covariance matrix forecasts 푺�� for the 푁 chosen 

assets, a risk-averse investor minimizes the conditional volatility by solving the 

following global minimum variance portfolio problem: 

풘� = arg min 풘�
� 푺��풘� ,      (25) 

푠. 푡. 풘�
� 푙 = 1, 

where 푙  is a 푁 × 1  vector of ones. The optimal solution of the above problem is 

written as: 

풘� = 푺��
���

��푺��
���

        (26) 

In the following, we denote the n-th element of 풘� corresponding to the allocation to 

the n-th asset as 푤�,� . We also denote the return on the n-th asset by 푟�,�. Then, we can 

obtain the portfolio return by: 

푟�� = 풘�
� 풓�.        (27) 
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We report the annualized return in this paper which is calculated as: 

퐴푛푛푢 푅푒푡푢푟푛 = 100 × [�1 + 푟�� �
���

− 1].   (28) 

The Sharpe ratio is widely employed in the academic research for assessing 

portfolio performance by balancing risk and return. Based on the portfolio returns 

established above, the standard deviation of the portfolio 휎� is computed using: 

휎� = � �
��

∑ �푟�� − �
��

∑ 푟��
�
������ �

�
�
������ ,    (29) 

where 푇�   is the length of out-of-samples. The Sharpe ratio indicates the ratio of 

average returns over risks as follows: 

푆ℎ푎푟푝 = ��
��

=
�

��
∑ ���

�
������

��
.      (30) 

In practice, evaluating a portfolio's diversification requires assessing whether it is 

heavily weighted in a few assets. If certain individual assets are overweighted, the 

portfolio becomes more susceptible to abnormal fluctuations, increasing overall risk. 

To address this, we also report the portfolio concentration levels, which are expressed 

as: 

퐶푂� = �∑ 푤�,�
��

��� �
�/�

.      (31) 

Since short selling incurs extra costs, we also report the portfolio short position by: 

푆푃� = ∑ 푤�,� ∙ 퐼(푤� ,� < 0)�
��� .     (32) 

A larger short position indicates a higher proportion of short selling within the portfolio, 

which, in turn, increases leverage and potentially amplifies risk. Additionally, fewer 

and less extreme short positions enhance the feasibility of implementing the portfolio 

in practice. 

Moreover, following Callot et al. (2017), Bollerslev et al. (2018), and Luo et al. 

(2022), we consider the utility-based framework of Fleming et al. (2001, 2003) to 

evaluate the economic value of the different forecasting models. Specifically, if the 

investor has quadratic utility with risk aversion 훾, the realized utility generated by the 

portfolio based on the covariance forecasts from model 푘, can be expressed as: 

푈�푟��
� , 훾� = �1 + 푟��

� � − 훾

2(1+훾) �1 + 푟��
� �

2
,    (33) 

and the economic value of the model 푘  and model 푙  therefore be determined by 
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solving for ∆훾 in the following equation: 

∑ 푈�푟��
� , 훾��

������ = ∑ 푈�푟��
� − ∆훾, 훾��

������ .   (34) 

The greater the ∆훾, the more returns that a risk-aversion investor would like to sacrifice 

to switch from model 푙 to model 푘. 

[Insert Tables 6, 7 and 8 here] 

Tables 6-8 report the portfolio performance, in terms of the above indicators, for 

different covariance forecasting models and various horizons. Firstly, for the short 

horizon, as reported in Table 6, the RM model in each group exhibit superiority relative 

to their benchmark model in terms of annualized returns, economic value and Sharpe 

ratio. The RM-HARCJX-DRD model achieves the highest annualized return of 8.137% 

and the highest Sharpe ratio, as indicated in bold in Table 6. Generally, regardless of 

whether 훾 is equal to 1 or 10, risk-averse investors tend to accept lower returns in 

favor of transitioning from benchmark models to the RM-class models. Moreover, the 

PCA-RM models also demonstrate relatively lower portfolio short positions (in 

absolute value) compared to the benchmarks, enhancing their practical applicability. 

Consistent with the statistical evaluations, the Lasso-RM models underperform across 

nearly all metrics. 

As shown in Table 7, for the medium horizon, all RM models still outperform their 

benchmark models in terms of portfolio annualized returns, economic value, and the 

Sharpe ratio. Moreover, they demonstrate improved performance in managing short 

positions. Besides, the Lasso-RM models also have relatively higher returns in the 

medium-term forecasts. In terms of portfolio concentration and short positions, the 

PCA-RM models outperform the benchmark models, suggesting that portfolios based 

on these models are less prone to extreme concentration in specific assets, thereby 

reducing overall risk exposure. Moreover, implementing short positions typically incurs 

higher costs compared to long positions, making models that limit excessive shorting 

more practical and cost-effective. 

As shown in Table 8, there are similar findings for the long-run forecasting case 

compared to the short- and medium-term. For example, all RM class models achieve 



25 
 

higher annualized returns, Sharpe ratios, and positive economic values. Moreover, they 

outperform their benchmark models in managing portfolio short positions. The PCA-

RM models continue to show an advantage over their benchmarks, not only in reducing 

short positions but also in lowering portfolio standard deviation, further enhancing risk 

management. 

In conclusion, portfolios constructed using RM covariance matrix forecasting 

models consistently achieve higher returns and Sharpe ratios. Figure 5 illustrates the 

average model rankings across different forecast horizons based on various economic 

evaluation criteria. Lower rankings indicate superior performance, meaning the closer 

a model is to the center of the graph, the better its overall effectiveness. As can be seen, 

the RM models are superior to the benchmark models in terms of annualized returns 

and Sharpe ratio, and the portfolios constructed based on the PCA-RM models 

generally perform best in terms of concentrations and short positions. Conversely, the 

Lasso-RM models exhibit poor performance as they are located farthest from the center 

of the graph in most cases. 

[Insert Figures 6, 7, and 8 here] 

In addition, we depict the accumulated returns, which is calculated as: 

100 × ∏ (1 + 푟�� )�
������ , in Figures 6-8. For clarity, we plot them separately based on 

the groups. This is because when all sixteen models are presented in a single figure, it 

becomes extremely difficult to discern the individual lines corresponding to each model. 

Simultaneously, our principal objective is to conduct a comparative analysis between 

the reverse-MIDAS models and the benchmark models, rather than identifying the 

superior model among all competing models. 

As shown in the figures, the RM-HAR model (the blue line) in each group 

demonstrates higher cumulative returns than the benchmark model (the red lines) 

irrespective of the forecast horizons. Moreover, in the medium-term, the portfolios 

constructed using the Lasso-RM models yield the highest accumulated returns within 

each group. However, over the long-term, portfolios based on the Lasso-RM forecasting 

models have clearly lower accumulated returns compared to other competing models. 
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Meanwhile, portfolios built on PCA-RM models generally produce cumulative returns 

similar to those of the benchmark models, with only slight deviations either above or 

below them. The results shown in Figures 5 to 7 further strengthens the economic 

advantages of using the reverse-MIDAS covariance matrix forecasting models which 

incorporates exogenous low-frequency volatility of economic conditions as concluded 

in Tables 6-8. 

 

6.  Robustness checks 

6.1.  Alternative RCOV measure: MRK 

Our analysis demonstrates that the RM and PCA-RM models, which take into 

account the information of the volatility of economic conditions, outperform their 

benchmark counterparts in forecasting the covariance matrix. To assess the robustness 

of these findings, we employ an alternative covariance measure—the multivariate 

realized kernel (MRK; Barndorff-Nielsen et al., 2011)—to calculate the realized 

covariance matrix for the 10 state-level stock market indices. 

As outlined by Barndorff-Nielsen et al. (2011), the multivariate realized kernel 

(MRK), which takes trading noise and non-synchronicity into account, is expressed as 

follows: 

푺�
��� = ∑ 푘 ��

�
� 훾�

�
���� ,       (35) 

where 훾�  is the h-th realized autocovariance, i.e., ∑ 풓�풓���
��

�����   for ℎ ≥ 0 , and 

훾� = 훾��
�  for ℎ < 0. As recommended in Barndorff-Nielsen et al. (2011), we employ 

the Parzen kernel function to represent the function 푘(∙) as due to its simplicity. 

Table C2 of Appendix C shows the out-of-sample forecasting result of the 

alternative covariance measure, MRK, using the abovementioned covariance 

forecasting models. The results clearly indicate that the RM and PCA-RM models 

outperform their benchmark models in all groups, demonstrating strong overall 

performance. Specifically, the PCA-RM-HARX-DRD and the PCA-RM-HARJX-DRD 

models are always included in the MCS across different loss functions and forecast 

horizons. However, the four Lasso-based models continue to generally perform poorly. 
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These findings confirm that our primary results remain robust, regardless of the 

covariance measure used. 

6.2.  Alternative dimension of covariance matrices: N=20 and 30 

In this sub-section, we assess the robustness of the previous conclusions by 

considering higher-dimensional covariance matrices. We construct covariance matrices 

using stock market indices for 20, 30, 40 (with the selected states shown in Table C1 of 

Appendix C) and all the 50 states and employ the forecasting method outlined in the 

previous section to obtain RCOV forecasts. The forecasting losses for the 20-, 30-, 40-, 

and 50-dimensional covariance matrix are presented in Tables C3, C4, C5, and C6 of 

Appendix C, respectively. As we can see from these tables, similar findings are obtained 

to those previously derived under the case of 10 states. The RM and PCA-RM models 

generally produce better performances than the benchmark models. Moreover, the 

PCA-RM-HARX-DRD and the PCA-RM-HARJX-DRD are almost always included in 

the MCS, regardless of loss functions and forecast horizons. 

6.3.  Alternative volatility model for ECIs: Using SV model to extract the volatility of 

ECIs 

In this sub-section, we replace the volatility extracted from ECIs via the GARCH 

model with the stochastic volatility (SV) model (see, Appendix A), By still using the 

original approach of calculating the covariance matrix, and forecasting methods 

outlined in the previous section, the corresponding out-of-sample forecasting results are 

presented in Table C7 of Appendix C. The findings remain consistent—both the RM 

and PCA-RM models in each group outperform their benchmark counterparts, whereas 

the Lasso-RM models continue to underperform. 

 

6.4.  Alternative out-of-sample period  

The choice of the out-of-sample range can influence the conclusions of the 

experiments. To ensure the robustness of our results, we extend our analysis to an 

alternative and earlier out-of-sample period, spanning from October 18, 2016, to March 

29, 2021, while maintaining the full-sample start date of October 24, 2011. In contrast, 
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the original out-of-sample range covered March 30, 2021, to June 30, 2024. We then 

reapply the forecasting procedure using this revised timeframe. The corresponding 

forecasting losses are reported in Table C8 of Appendix C. Once again, our findings 

remain unchanged—both the RM and PCA-RM models consistently outperform the 

non-RM benchmark models in forecast accuracy, while the Lasso-RM models continue 

to exhibit weak performance. 

 

7.  Further analysis: introducing dynamic correlations of ECIs into the scalar 

MHAR model 

In the previous sections, we forecasted the realized correlation matrix 푹� with the 

scalar MHAR model. Although our investigation of the role of the ECI in RCOV 

forecasting mainly relies on incorporating the volatility of the ECI into the realized 

variance forecasting models. As a supplementary, we also integrate the information 

from the ECIs into the realized correlation matrix forecasting model. Particularly, we 

forecast the realized correlation matrix of the state-level stock market by utilizing the 

correlation of the state-level ECIs, which is estimated by the DCC-GARCH model (see, 

Appendix A) of Engel (2002). Since the time-varying correlation matrix of ECIs is at 

weekly frequency while the realized correlation matrix of stock market is daily, we 

combine the scalar MHAR with the reverse-MIDAS model like the models for realized 

variance introduced in Section 3. 

Consider the scalar MHAR model in section 3, we now specify it in a reverse-

MIDAS framework as follows: 

푣푒푐ℎ(푨���
���

�
) = 풄� + 휃�,�푣푒푐ℎ(푨

�� �
�

� ) + 휃�,�푣푒푐ℎ(푨
�� �

�

� ) + 휃�,�푣푒푐ℎ(푨
���

���
�

� ) +

훼�푣푒푐ℎ(푪푿�) + 흐���
���

�
, 푡 = 0,1, … , 푇 − 1, 푙 = 1,2, … , 퐿,  (36) 

where 푨� = log (푹�) , 푪푿� = log (푪풐풓풓�
��� ) , and 푪풐풓풓�

���  represent the dynamic 

correlation matrix of state-level ECIs estimated via the DCC-GARCH model. The 

model integrates the dynamic correlations of ECIs into the stock market realized 

correlation matrix forecasting, and we denote it as scalar RM-MHARX model for 

convenience. 
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[Insert Table 9 here] 

Table 9 shows the in-sample estimate of the scalar MHAR model and its RM 

version for three forecast horizons based on the whole sample. As observed, the 

coefficients for the daily, weekly and monthly lags are significantly positive. Moreover, 

the adjusted 푅� of RM-MHARX model is slightly higher than that of its benchmark 

across all forecast horizons. Additionally, the coefficient 훼 is not significant at ℎ = 1, 

but becomes significant for the medium- and long-term horizons. 

[Insert Table 10 here] 

Table 10 presents the differences in out-of-sample covariance matrix forecast 

losses, calculated by comparing the original results from Table 5 with those obtained 

after replacing the correlation matrix forecasting model with the RM-MHARX setup 

while keeping the realized variance forecasting models unchanged. These results 

highlight the improvements in covariance forecasting attributed to the proposed RM-

MHAR correlation matrix model. Shaded numbers denote instances where the new 

forecast losses are lower than the original, while boldface numbers signify whether the 

differences are statistically significant based on the DM test. 

As is shown in Table 10, the RM-MHARX model exhibits superior performance 

over the MHAR model in nearly all instances with respect to the widely used loss 

functions: Euclidean and Frobenius, across the three forecast horizons. Moreover, the 

RM-MHARX model improves the forecast accuracy of MHAR model in terms of 

QLIKE and Stein losses for medium-term forecasts. These results suggest that 

introducing the state-level ECI information to forecast the realized correlation of state-

level stock returns can further enhance the forecast accuracy of the realized covariance 

– an expected finding, given the role of the macroeconomic environment in governing 

comovement in the stock market returns of the US states. 

 

8.  Conclusion 

In this paper, we introduce the role of low-frequency (weekly) economic conditions 

indices as predictors to model and forecast the daily RCOV of state-level stocks, 
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derived from 5-minute intraday data, based on the HAR-DRD and the reverse-MIDAS 

frameworks. Specifically, we first decompose the covariance matrix into a volatility 

diagonal matrix and a correlation matrix. For the forecasts of univariate volatilities, we 

combine various HAR-type models with the reverse-MIDAS framework to construct a 

set of mix-frequency volatility forecasting models that include lower-frequency 

exogenous predictors involving volatility of the ECIs acting as a proxy for uncertainty. 

While for the forecasts of the correlation matrix, we adopt the scalar MHAR model that 

has been widely used in the related literature.  

Our findings show that the univariate volatility models which considers the 

volatility of economic conditions has better in-sample fits. Moreover, the significance 

level of the coefficient of the volatility of ECI increases as the forecast horizon increases. 

Second, the out-of-sample forecasting losses indicate that the RM models outperform 

their benchmark models that do not consider the influence of the second moment of 

economic conditions. Additionally, the portfolio based on the RM models can generate 

higher economic gains, such as annualized returns and Sharpe ratios. The Lasso-RM 

models occasionally also demonstrate excellent performance in the economic 

evaluation, even though they perform poorly in terms of statistical loss functions. The 

statistical results continue to hold under various robustness checks involving alternative 

definitions of the RCOV, dimension of the correlation matrix, alternative measure of 

the volatility of the ECI, and out-of-sample period. Furthermore, incorporating 

correlation of ECIs in modeling the realized correlation of stock markets of US states 

provides greater improvements in the forecasting of the RCOV beyond the case where 

the volatility of ECI was only considered in the realized variance component. In brief, 

integrating the reverse-MIDAS modeling framework with the prevailing covariance 

matrix modeling approach is beneficial for forecasting the covariance matrix, as 

depicted by our analysis of US state-level stock markets.  

Since covariance forecasts serve as key inputs for optimal asset allocation decisions, 

our findings suggest that incorporating economic uncertainty into forecasting models 

of realized covariance can enhance portfolio design for investors. Furthermore, given 
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that stock market volatility has historically had negative effects on the U.S. real 

economy (Pierdzioch and Gupta, 2020; Bouri et al., 2024), policymakers must closely 

monitor economic uncertainty and tailor the scale and duration of expansionary policies 

accordingly. This approach helps mitigate the risk of uncertainty-driven covariability 

in state-level stock markets, preventing it from exacerbating the recessionary effects 

initially triggered by economic volatility. 

Future research avenues could explore extending the reverse-MIDAS framework 

to incorporate additional sources of macroeconomic uncertainty beyond the volatility 

of ECIs. Specifically, integrating higher-frequency measures of geopolitical risks, 

monetary policy uncertainty, and financial market stress indices could enhance the 

forecasting accuracy of realized covariance matrices. Additionally, given the strong 

evidence of connectedness among state-level stock returns and economic conditions, 

network-based econometric approaches such as Graphical VAR or dynamic factor 

models could be employed to capture the spatial and temporal dependencies across 

states.
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Table 1. Description of realized covariance matrix forecasting models 

Covariance models Univariate variance models Correlation matrix models Exogenous variables 

Group 1:  

Scalar MHAR (or scalar 
RM-MHARX in Section 7) 

 
HAR-DRD HAR None 
RM-HARX-DRD RM-HARX The log volatility of the corresponding state’s ECI 
PCA-HARX-DRD PCA-HARX The first PCA component extracted from log volatilities for all fifty states’ ECIs 
Lasso-RM-HARX-DRD Lasso-RM-HARX The log volatilities for all fifty states’ ECIs 
Group 2:   
HARJ-DRD HARJ None 
RM-HARJX-DRD RM-HARJX The log volatility of the corresponding state’s ECI 
PCA-RM-HARJX-DRD PCA-RM-HARJX The first PCA component extracted from log volatilities for all fifty states’ ECIs 
Lasso-RM-HARJX-DRD Lasso-RM-HARJX The log volatilities for all fifty states’ ECIs 
Group 3:   
HARCJ-DRD HARCJ None 
RM-HARCJX-DRD RM-HARCJX The log volatility of the corresponding state’s ECI 
PCA-RM-HARCJX-DRD PCA-RM-HARCJX The first PCA component extracted from log volatilities for all fifty states’ ECIs 
Lasso-RM-HARCJX-DRD Lasso-RM-HARCJX The log volatilities for all fifty states’ ECIs 
Group 4:   
HARRS-DRD HARRS None 
RM-HARRSX-DRD RM-HARRSX The log volatility of the corresponding state’s ECI 
PCA-RM-HARRSX-DRD PCA-RM-HARRSX The first PCA component extracted from log volatilities for all fifty states’ ECIs 
Lasso-RM-HARRSX-DRD Lasso-RM-HARRSX The log volatilities for all fifty states’ ECIs 



37 
 

 

 

Figure 1. Forecasting procedure description 
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Figure 2. The autocorrelation function of log realized variances for selected ten states 

 

 
(a) log RVs (daily) 

 
(b) log volatilities of the ECIs (weekly) 

Figure 3. Data plot 
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Table 2. In-sample estimates (h=1) 

 
HAR(X) HARJ(X) HARCJ(X) HARRS(X) 

Standard RM Standard RM Standard RM Standard RM 
훽� 0.354 0.358 0.427 0.434 0.348 0.354 0.175 0.178 

 (0.025) (0.057) (0.028) (0.064) (0.026) (0.059) (0.023) (0.053) 
훽� 0.280 0.279 0.263 0.260 0.292 0.287 0.080 0.082 

 (0.040) (0.090) (0.040) (0.090) (0.042) (0.095) (0.042) (0.094) 
훽� 0.263 0.246 0.268 0.247 0.186 0.176 0.096 0.077 

 (0.035) (0.082) (0.035) (0.082) (0.038) (0.086) (0.057) (0.128) 
훾�   -0.308 -0.333 0.085 0.080 0.196 0.199 

   (0.052) (0.121) (0.052) (0.121) (0.022) (0.049) 
훾�      -0.097 -0.094 0.182 0.178 

     (0.093) (0.210) (0.042) (0.093) 
훾�     0.383 0.327 0.170 0.166 

     (0.100) (0.232) (0.061) (0.136) 
훼  0.020  0.026  0.025  0.027 
  (0.027)  (0.028)  (0.029)  (0.028) 

Adj. R2 0.580 0.583 0.587 0.591 0.594 0.599 0.592 0.596 
Note: The table reports the in-sample parameter estimates, standard errors (in parentheses) and 
adjusted R2 for different models. Following Bollerslev et al. (2018), all results represented are the 
averages across the ten randomly selected state-level stock market indices. 

 

Table 3. In-sample estimates (h=5) 

 
HAR(X) HARJ(X) HARCJ(X) HARRS(X) 

Standard RM Standard RM Standard RM Standard RM 
훽� 0.247 0.250 0.297 0.307 0.249 0.256 0.113 0.116 

 (0.021) (0.047) (0.023) (0.053) (0.022) (0.049) (0.019) (0.043) 
훽� 0.242 0.241 0.228 0.225 0.251 0.244 0.039 0.040 

 (0.033) (0.074) (0.033) (0.074) (0.035) (0.078) (0.034) (0.077) 
훽� 0.361 0.328 0.362 0.325 0.247 0.230 0.174 0.144 

 (0.029) (0.068) (0.029) (0.067) (0.031) (0.071) (0.046) (0.105) 
훾�   -0.224 -0.257 0.010 -0.002 0.138 0.141 

   (0.043) (0.101) (0.043) (0.100) (0.018) (0.040) 
훾�      -0.027 -0.008 0.198 0.193 

     (0.077) (0.174) (0.034) (0.076) 
훾�     0.469 0.373 0.190 0.185 

     (0.083) (0.193) (0.050) (0.111) 
훼  0.038  0.045  0.043  0.043 
  (0.023)  (0.023)  (0.024)  (0.023) 

Adj. R2 0.632 0.634 0.638 0.641 0.647 0.650 0.647 0.649 
Note: The table reports the in-sample parameter estimates, standard errors (in parentheses) and 
adjusted R2 for different models. Following Bollerslev et al. (2018), all results represented are the 
averages across the ten randomly selected state-level stock market indices. 
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Table 4. In-sample estimates (h=20) 

 
HAR(X) HARJ(X) HARCJ(X) HARRS(X) 

Standard RM Standard RM Standard RM Standard RM 
훽� 0.147 0.149 0.160 0.169 0.149 0.153 0.060 0.061 

 (0.021) (0.046) (0.023) (0.052) (0.021) (0.048) (0.019) (0.042) 
훽� 0.173 0.174 0.167 0.165 0.169 0.162 0.013 0.014 

 (0.032) (0.073) (0.032) (0.073) (0.034) (0.077) (0.034) (0.075) 
훽� 0.429 0.379 0.426 0.374 0.315 0.292 0.370 0.329 

 (0.029) (0.066) (0.029) (0.066) (0.031) (0.069) (0.045) (0.102) 
훾�   -0.070 -0.100 0.018 0.019 0.089 0.090 

   (0.043) (0.099) (0.042) (0.099) (0.017) (0.039) 
훾�      0.045 0.064 0.171 0.168 

     (0.076) (0.172) (0.033) (0.075) 
훾�     0.421 0.266 0.045 0.040 

     (0.082) (0.190) (0.049) (0.109) 
훼  0.059  0.065  0.067  0.059 
  (0.022)  (0.023)  (0.023)  (0.022) 

Adj. R2 0.576 0.583 0.578 0.586 0.588 0.596 0.594 0.600 
Note: The table reports the in-sample parameter estimates, standard errors (in parentheses) and 
adjusted R2 for different models. Following Bollerslev et al. (2018), all results represented are the 
averages across the ten randomly selected state-level stock market indices. 
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Table 5. Out-of-sample forecasting losses 
 Short horizon (h=1) Medium horizon (h=5) Long horizon (h=20) 
 퐿���� 퐿����  퐿�����  퐿�����  퐿���� 퐿����  퐿�����  퐿�����  퐿���� 퐿����  퐿�����  퐿�����  
Group 1:             
HAR-DRD 4.432 5.373 5.782 3.284 3.624 4.324 5.850 1.583 3.503 4.167 6.119 1.088 
RM-HARX-DRD 4.435 5.378 5.773* 3.275* 3.612* 4.310* 5.842* 1.575* 3.480* 4.142* 6.120 1.088 
PCA-RM-HARX-DRD 4.420* 5.361* 5.773* 3.275* 3.612* 4.304* 5.844* 1.577* 3.521 4.172 6.133 1.101 
Lasso-RM-HARX-DRD 4.453 5.393 5.819 3.321 3.707 4.405 6.003 1.736 5.444 6.266 7.602 2.571 
Group 2:             
HARJ-DRD 4.417 5.352 5.776 3.278 3.637 4.344 5.867 1.600 3.463 4.140 6.127 1.095 
RM-HARJX-DRD 4.413 5.349* 5.765* 3.267* 3.614* 4.317* 5.857* 1.590* 3.413* 4.096* 6.125* 1.093* 
PCA-RM-HARJX-DRD 4.405* 5.339* 5.763* 3.265* 3.604* 4.299* 5.855* 1.587* 3.449* 4.113* 6.131 1.100 
Lasso-RM-HARJX-DRD 4.429 5.364 5.817 3.319 3.680 4.380 5.997 1.730 5.422 6.247 7.586 2.555 
Group 3:             
HARCJ-DRD 4.533 5.463 5.799 3.301 3.750 4.452 5.887 1.620 3.559 4.232 6.163 1.131 
RM-HARCJX-DRD 4.526 5.457* 5.779* 3.281* 3.720* 4.427* 5.874* 1.607* 3.486* 4.179* 6.160* 1.128* 
PCA-RM-HARCJX-DRD 4.505* 5.435* 5.756* 3.258* 3.696* 4.394* 5.855* 1.588* 3.484* 4.155* 6.140* 1.108* 
Lasso-RM-HARCJX-DRD 4.529* 5.457* 5.810 3.312 3.709* 4.407* 5.957 1.690 5.307 6.111 7.574 2.543 
Group 4:             
HARRS-DRD 4.456 5.394 5.793 3.295 3.644 4.345 5.854 1.587 3.530 4.189 6.149 1.117 
RM-HARRSX-DRD 4.459 5.397 5.780* 3.282* 3.628* 4.325* 5.844* 1.577* 3.505* 4.162* 6.147* 1.115* 
PCA-RM-HARRSX-DRD 4.444* 5.380* 5.778* 3.280* 3.628* 4.319* 5.845* 1.577* 3.546 4.191 6.155 1.123 
Lasso-RM-HARRSX-DRD 4.475 5.410 5.819 3.321 3.701 4.395 5.961 1.694 5.338 6.144 7.508 2.476 

Note: The table reports out-of-sample forecast loss for the five groups of models. Entries in boldface indicate models that are part of the 75% model confidence 
set (MCS) for all models across the relevant loss. For each group, RM models that significantly improve on their non-RM benchmark model via DM test are 
indicated by an asterisk. 
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Figure 4. Model rankings based on different loss functions 

Note: Each colored line shows the relative rankings of models for the corresponding loss functions. 
The model rankings are averaged across the three kinds of forecast horizons. Lower rankings 
indicate better performance, thus the closer a model is to the center of the graph, the better it is. 
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Table 6. Portfolio performance for short horizon (h=1) 

 
퐴푛푛푢푎푙푖푧푒푑 

푅푒푡푢푟푛  
Economic value (%) 

휎�(%) 푆ℎ푎푟푝(%) 퐶푂 푆푃 
훾 = 1 훾 = 10 

Group 1:        
HAR-DRD 5.910 - - 0.876 2.601 0.765 -0.326 
RM-HARX-DRD 6.297 0.362 0.332 0.878 2.761 0.770 -0.332 
PCA-RM-HARX-DRD 5.544 -0.349 -0.375 0.878 2.440 0.767 -0.325 
Lasso-RM-HARX-DRD 5.877 -0.040 -0.119 0.880 2.575 0.772 -0.327 
Group 2:        
HARJ-DRD 5.642 - - 0.885 2.462 0.781 -0.335 
RM-HARJX-DRD 6.232 0.548 0.447 0.890 2.697 0.785 -0.339 
PCA-RM-HARJX-DRD 5.418 -0.216 -0.256 0.887 2.362 0.783 -0.334 
Lasso-RM-HARJX-DRD 4.851 -0.753 -0.787 0.886 2.121 0.787 -0.336 
Group 3:        
HARCJ-DRD 7.207 - - 0.881 3.136 0.780 -0.325 
RM-HARCJX-DRD 8.137 0.852 0.714 0.888 3.498 0.778 -0.327 
PCA-RM-HARCJX-DRD 6.976 -0.221 -0.274 0.883 3.029 0.777 -0.324 
Lasso-RM-HARCJX-DRD 7.208 -0.006 -0.075 0.884 3.124 0.785 -0.326 
Group 4:        
HARRS-DRD 4.904 - - 0.879 2.161 0.767 -0.328 
RM-HARRSX-DRD 5.370 0.439 0.396 0.881 2.355 0.769 -0.331 
PCA-RM-HARRSX-DRD 4.649 -0.244 -0.251 0.880 2.050 0.767 -0.325 
Lasso-RM-HARRSX-DRD 3.940 -0.929 -1.021 0.884 1.735 0.770 -0.328 

Note: The table reports portfolio performance for the different models. Entries in shade indicate models that outperform their 
benchmarks for the relevant column, and entries in boldface indicate the best models for the relevant column. 
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Table 7. Portfolio performance for medium horizon (h=5) 

 
퐴푛푛푢푎푙푖푧푒푑 

푅푒푡푢푟푛  
Economic value (%) 

휎�(%) 푆ℎ푎푟푝(%) 퐶푂 푆푃 
훾 = 1 훾 = 10 

Group 1:        
HAR-DRD 7.571 - - 0.876 3.307 0.728 -0.284 
RM-HARX-DRD 8.053 0.440 0.357 0.880 3.494 0.730 -0.283 
PCA-RM-HARX-DRD 7.397 -0.163 -0.176 0.877 3.231 0.725 -0.275 
Lasso-RM-HARX-DRD 9.809 2.037 1.635 0.895 4.148 0.742 -0.288 
Group 2:        
HARJ-DRD 7.585 - - 0.875 3.315 0.738 -0.293 
RM-HARJX-DRD 8.409 0.756 0.663 0.880 3.642 0.741 -0.291 
PCA-RM-HARJX-DRD 7.371 -0.199 -0.200 0.876 3.224 0.737 -0.284 
Lasso-RM-HARJX-DRD 9.516 1.762 1.465 0.890 4.055 0.746 -0.294 
Group 3:        
HARCJ-DRD 8.847 - - 0.861 3.910 0.752 -0.283 
RM-HARCJX-DRD 9.861 0.917 0.788 0.867 4.305 0.750 -0.285 
PCA-RM-HARCJX-DRD 8.590 -0.238 -0.251 0.861 3.797 0.749 -0.279 
Lasso-RM-HARCJX-DRD 10.086 1.100 0.756 0.878 4.345 0.760 -0.297 
Group 4:        
HARRS-DRD 7.143 - - 0.873 3.135 0.730 -0.284 
RM-HARRSX-DRD 7.806 0.610 0.535 0.877 3.401 0.730 -0.281 
PCA-RM-HARRSX-DRD 6.971 -0.161 -0.161 0.874 3.062 0.727 -0.274 
Lasso-RM-HARRSX-DRD 8.150 0.920 0.744 0.882 3.525 0.742 -0.289 

Note: The table reports portfolio performance for the different models. Entries in shade indicate models that outperform their 
benchmarks for the relevant column, and entries in boldface indicate the best models for the relevant column. 
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Table 8. Portfolio performance for long horizon (h=20) 

 
퐴푛푛푢푎푙푖푧푒푑 

푅푒푡푢푟푛  
Economic value (%) 

휎�(%) 푆ℎ푎푟푝(%) 퐶푂 푆푃 
훾 = 1 훾 = 10 

Group 1:        
HAR-DRD 9.296 - - 0.891 3.959 0.718 -0.267 
RM-HARX-DRD 9.878 0.520 0.409 0.896 4.172 0.724 -0.258 
PCA-RM-HARX-DRD 9.118 -0.163 -0.152 0.890 3.889 0.712 -0.246 
Lasso-RM-HARX-DRD 8.136 -1.207 -2.509 0.954 3.253 0.737 -0.296 
Group 2:        
HARJ-DRD 9.901 - - 0.891 4.207 0.742 -0.274 
RM-HARJX-DRD 10.452 0.489 0.372 0.896 4.402 0.750 -0.271 
PCA-RM-HARJX-DRD 9.673 -0.206 -0.195 0.890 4.118 0.740 -0.257 
Lasso-RM-HARJX-DRD 7.244 -2.596 -4.197 0.969 2.865 0.737 -0.296 
Group 3:        
HARCJ-DRD 9.536 - - 0.884 4.090 0.791 -0.279 
RM-HARCJX-DRD 10.340 0.715 0.540 0.892 4.377 0.788 -0.286 
PCA-RM-HARCJX-DRD 9.712 0.164 0.190 0.882 4.169 0.792 -0.275 
Lasso-RM-HARCJX-DRD 7.861 -1.731 -3.537 0.972 3.092 0.790 -0.314 
Group 4:        
HARRS-DRD 9.621 - - 0.897 4.064 0.739 -0.269 
RM-HARRSX-DRD 10.186 0.502 0.383 0.903 4.264 0.744 -0.262 
PCA-RM-HARRSX-DRD 9.317 -0.276 -0.261 0.896 3.945 0.736 -0.249 
Lasso-RM-HARRSX-DRD 7.226 -2.317 -3.491 0.954 2.901 0.741 -0.303 

Note: The table reports portfolio performance for the different models. Entries in shade indicate models that outperform their 
benchmarks for the relevant column, and entries in boldface indicate the best models for the relevant column. 
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Figure 5. Model rankings based on different economic evaluation metrics 

Note: Each colored line shows the relative rankings of models for the corresponding economic 
evaluation criteria. The model rankings are averaged across the three kinds of forecast horizons. 
Lower rankings indicate better performance, thus the closer a model is to the center of the graph, 
the better it is. 
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Figure 6. Accumulated return for short horizon (h=1) 

Note: All models of the same type in the groups are represented by lines of the same color. For instance, the four kinds of PCA-RM models in all groups are 
indicated in green. 
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Figure 7. Accumulated return for medium horizon (h=5) 

Note: All models of the same type in the groups are represented by lines of the same color. For instance, the four kinds of PCA-RM models in all groups are 
indicated in green. 
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Figure 8. Accumulated return for long horizon (h=20) 

Note: All models of the same type in the groups are represented by lines of the same color. For instance, the four kinds of PCA-RM models in all groups are 
indicated in green. 
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Table 9. In-sample estimates for different correlation forecasting models 

 
Short horizon (h=1) Medium horizon (h=5) Long horizon (h=20) 

MHAR RM-MHARX MHAR RM-MHARX MHAR RM-MHARX 
휃� 0.088 0.089 0.060 0.060 0.043 0.043 

 (0.004) (0.008) (0.002) (0.005) (0.002) (0.008) 
휃� 0.169 0.166 0.153 0.151 0.096 0.095 

 (0.008) (0.015) (0.004) (0.010) (0.003) (0.015) 
휃� 0.431 0.433 0.418 0.419 0.398 0.398 

 (0.008) (0.018) (0.005) (0.011) (0.004) (0.018) 
훼  0.006  0.008  0.008 
  (0.004)  (0.002)  (0.002) 

Adj. R2 0.713 0.714 0.852 0.853 0.909 0.910 
Note: The table reports the in-sample parameter estimates, standard errors (in parentheses) and adjusted 
R2 for different models. 
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Table 10. Out-of-sample forecasting losses differences 
 Short horizon (h=1) Medium horizon (h=5) Long horizon (h=20) 
 퐿���� 퐿����  퐿�����  퐿�����  퐿���� 퐿����  퐿�����  퐿�����  퐿���� 퐿����  퐿�����  퐿�����  
Group 1:             
HAR-DRD 0.001 0.002 -0.008 -0.008 0.006 0.009 -0.002 -0.002 0.008 0.012 -0.004 -0.004 
RM-HARX-DRD 0.001 0.002 -0.007 -0.007 0.005 0.008 0.001 0.001 0.007 0.011 -0.001 -0.001 
PCA-RM-HARX-DRD 0.001 0.001 -0.006 -0.006 0.004 0.006 0.002 0.002 0.007 0.009 0.001 0.001 
Lasso-RM-HARX-DRD 0.001 0.002 -0.007 -0.007 0.004 0.007 0.002 0.002 0.004 0.006 -0.005 -0.005 
Group 2:             
HARJ-DRD 0.001 0.002 -0.006 -0.006 0.006 0.009 0.000 0.000 0.008 0.012 -0.004 -0.004 
RM-HARJX-DRD 0.000 0.001 -0.005 -0.005 0.005 0.008 0.003 0.003 0.007 0.010 0.000 0.000 
PCA-RM-HARJX-DRD 0.000 0.000 -0.003 -0.003 0.004 0.006 0.004 0.004 0.006 0.009 0.001 0.001 
Lasso-RM-HARJX-DRD 0.001 0.001 -0.006 -0.006 0.004 0.007 0.003 0.003 0.004 0.006 -0.005 -0.005 
Group 3:             
HARCJ-DRD 0.002 0.004 -0.012 -0.012 0.008 0.013 -0.006 -0.006 0.010 0.016 -0.008 -0.008 
RM-HARCJX-DRD 0.001 0.003 -0.009 -0.009 0.007 0.011 -0.002 -0.002 0.009 0.014 -0.003 -0.003 
PCA-RM-HARCJX-DRD 0.001 0.001 -0.007 -0.007 0.006 0.009 0.000 0.000 0.008 0.012 -0.001 -0.001 
Lasso-RM-HARCJX-DRD 0.001 0.003 -0.010 -0.010 0.006 0.009 0.001 0.001 0.004 0.007 -0.003 -0.003 
Group 4:             
HARRS-DRD 0.002 0.003 -0.009 -0.009 0.006 0.009 -0.002 -0.002 0.008 0.012 -0.005 -0.005 
RM-HARRSX-DRD 0.001 0.002 -0.006 -0.006 0.005 0.007 0.001 0.001 0.008 0.011 -0.002 -0.002 
PCA-RM-HARRSX-DRD 0.001 0.001 -0.005 -0.005 0.004 0.006 0.003 0.003 0.007 0.010 -0.001 -0.001 
Lasso-RM-HARRSX-DRD 0.001 0.002 -0.007 -0.007 0.004 0.007 0.002 0.002 0.004 0.007 -0.003 -0.003 

Note: This table presents the out-of-sample covariance matrix forecast loss differences. These are between the original results in Table 5 and those obtained after 
replacing the correlation matrix forecasting model with the RM-MHARX model, while keeping the various realized variance forecasting models unchanged. Numbers 
in shade denote the new losses are lower than the original. Numbers in boldface indicate that the differences are significant according to the DM test. 
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Appendices: 
A.  Descriptions on the GARCH, SV, and DCC-GARCH models employed for the 

extraction of relevant information from the ECI 

 

GARCH model: 

Let 푦� = 퐸퐶퐼�, we use the following univariate GARCH (1,1) model to extract the 

volatility of ECI of a certain state, 

푦� = 휇 + 휀� ,       (A.1) 

휀� = 퓏�휎� , 퓏� ~i. i. d. 푁(0,1),     (A.2) 

휎�
� = 휔 + 훼휀���

� + 훽휎���
� , 휔 > 0, 훼 + 훽 < 1.   (A.3) 

The extracted volatility is 휎�. 

 

SV model: 

In Section 6, we replace the GARCH model with the SV mode to extract the volatility 

of ECI. Following, e.g., Jacquieretal.(1994) and Kimetal.(1998), the SV model is 

experessed as, 

푦� = exp ���
�

� 휖� ,       (A.4) 

ℎ� = 휇 + 휙(ℎ��� − 휇) + 휎휂�,     (A.5) 

휖� , 휂�~i. i. d. N(0,1).       (A.6) 

The extracted volatility is 휎� = exp ���
�

�. 

 

DCC-GARCH model: 

In Section 7, we utilize the DCC-GARCH model to extract the dynamic correlation of 

ECIs. Consider the follow multivariate GARCH model, 

풚� = 흁 + 휺� ,        (A.7) 

휺� = 푯�
�/�픃�, 픃� ~i. i. d. 퐍(0, 퐈�).     (A.8) 

where 푯� is an 푁 × 푁 latent positive definite covariance matrix of 풚� and 퐈� is an 

푁 × 푁 identity matrix.  
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According to the Dynamic Conditional Correlation (DCC) in Engle (2002), the 

covariance matrix 푯� can be decomposed as, 

푯� = 푫�푹�푫� = 휌���ℎ��,�ℎ��,� ,     (A.9) 

푫� = 푑푖푎푔��ℎ��,� , … , �ℎ��,��,      (A.10) 

푹� = 푑푖푎푔(푸�)��/�푸�푑푖푎푔(푸�)��/�,     (A.11) 

푸� = (1 − 푎 − 푏)푸� + 푎(픃���픃���
� ) + 푏푸���,   (A.12) 

푎, 푏 > 0, 푎 + 푏 < 1.       (A.13) 

The extracted dynamic correlation matrix is 푹�. 
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B.  The expression of all forecasting models mentioned in the paper 
Table B1. Summary of realized covariance matrix forecasting models 

Univariate realized variance forecasting models 
Group 1: 
HAR model: 

log (푅푉
���

�
) = 훽� + 훽� log�푅푉�

� � + 훽� log(푅푉�
�) + 훽� log(푅푉�

�) + 휀� , 푡 =
1
퐿

,
2
퐿

, … ,1 +
1
퐿

, … , 푇 − 1 +
1
퐿

, . . , 푇. 

RM-HARX model: 

log (푅푉
���

���
�

) = 훽�,� + 훽�,� log �푅푉
���

�

� � + 훽�,� log �푅푉
���

�

� � + 훽�,� log �푅푉
���

�

� � + 훼� log(푉표푙�
���) + 휀

���
���

�
, 푡 = 0,1, … , 푇 − 1, 푙 = 1,2, … , 퐿. 

PCA-HARX model: 

log (푅푉
���

���
�

) = 훽�,� + 훽�,� log �푅푉
���

�

� � + 훽�,� log �푅푉
���

�

� � + 훽�,� log �푅푉
���

�

� � + 훼�퐹푎푐푡표푟� + 휀
���

���
�

, 푡 = 0,1, … , 푇 − 1, 푙 = 1,2, … , 퐿. 

Lasso-RM-HARX model: 

log (푅푉
���

���
�

) = 훽�,� + 훽�,� log �푅푉
���

�

� � + 훽�,� log �푅푉
���

�

� � + 훽�,� log �푅푉
���

�

� � + � 훼�,� log�푉표푙�,�
����

��

���

+ 휀
���

���
�

, 푡 = 0,1, … , 푇 − 1, 푙 = 1,2, … , 퐿. 

Group 2: 

HARJ model: 

log (푅푉
���

�
) = 훽� + 훽� log�푅푉�

� � + 훽� log(푅푉�
�) + 훽� log(푅푉�

�) + 훾�log (퐽� + 1) + 휀� , 푡 =
1
퐿

,
2
퐿

, … ,1 +
1
퐿

, … , 푇 − 1 +
1
퐿

, . . , 푇. 

RM-HARJX model: 

log (푅푉
���

���
�

) = 훽�,� + 훽�,� log �푅푉
���

�

� � + 훽�,� log �푅푉
���

�

� � + 훽�,� log �푅푉
���

�

� � + 훾�,� log (퐽
���

�
+ 1) + 훼� log(푉표푙�

���) + 휀
���

���
�

, 푡 = 0,1, … , 푇 − 1, 푙

= 1,2, … , 퐿. 
PCA-HARJX model: 

log (푅푉
���

���
�

) = 훽�,� + 훽�,� log �푅푉
���

�

� � + 훽�,� log �푅푉
���

�

� � + 훽�,� log �푅푉
���

�

� � + 훾�,� log (퐽
���

�
+ 1) + 훼�퐹푎푐푡표푟� + 휀

���
���

�
,푡 = 0,1, … , 푇 − 1, 푙 = 1,2, … , 퐿. 

Lasso-RM-HARJX model: 
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log (푅푉
���

���
�

) = 훽�,� + 훽�,� log �푅푉
���

�

� � + 훽�,� log �푅푉
���

�

� � + 훽�,� log �푅푉
���

�

� � + 훾�,� log (퐽
���

�
+ 1) + � 훼�,� log�푉표푙�,�

����
��

���

+ 휀
���

���
�

,푡 = 0,1, … , 푇 − 1, 푙

= 1,2, … , 퐿. 
Group 3: 
HARCJ model: 

log (푅푉
���

�
) = 훽� + 훽�log (퐶푉�

�) + 훽�log (퐶푉�
�) + 훽�log (퐶푉�

�) + 훾� log (퐶퐽�
� + 1) + 훾� log (퐶퐽�

� + 1) + 훾� log (퐶퐽�
� + 1) + 휀� , 푡

=
1
퐿

,
2
퐿

, … ,1 +
1
퐿

, … , 푇 − 1 +
1
퐿

, . . , 푇. 

RM-HARX model: 

log (푅푉
���

���
�

) = 훽�,� + 훽�,� log (퐶푉
���

�

� ) + 훽�,� log (퐶푉
���

�

� ) + 훽�,� log (퐶푉
���

�

� ) + 훾�,� log (퐶퐽
���

�

� + 1) + 훾�,� log (퐶퐽
���

�

� + 1) + 훾�,� log (퐶퐽
���

�

� + 1)

+ 훼� log(푉표푙�
���) + 휀

���
���

�
,푡 = 0,1, … , 푇 − 1, 푙 = 1,2, … , 퐿. 

PCA-HARX model: 

log (푅푉
���

���
�

) = 훽�,� + 훽�,� log (퐶푉
���

�

� ) + 훽�,� log (퐶푉
���

�

� ) + 훽�,� log (퐶푉
���

�

� ) + 훾�,� log (퐶퐽
���

�

� + 1) + 훾�,� log (퐶퐽
���

�

� + 1) + 훾�,� log (퐶퐽
���

�

� + 1) + 훼�퐹푎푐푡표푟�

+ 휀
���

���
�

, 푡 = 0,1, … , 푇 − 1, 푙 = 1,2, … , 퐿. 

Lasso-RM-HARX model: 

log (푅푉
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���
�

) = 훽�,� + 훽�,� log (퐶푉
���

�

� ) + 훽�,� log (퐶푉
���

�

� ) + 훽�,� log (퐶푉
���

�

� ) + 훾�,� log (퐶퐽
���

�

� + 1) + 훾�,� log (퐶퐽
���

�

� + 1) + 훾�,� log (퐶퐽
���

�

� + 1)

+ � 훼�,� log�푉표푙�,�
����

��

���

+ 휀
���

���
�

, 푡 = 0,1, … , 푇 − 1, 푙 = 1,2, … , 퐿. 

Group 4: 
HARRS model: 
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log (푅푉
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���

�
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���

�

� ) + 휀� , 푡

=
1
퐿

,
2
퐿

, … ,1 +
1
퐿

, … , 푇 − 1 +
1
퐿

, . . , 푇. 

RM-HARRSX model: 

log (푅푉
���

���
�

) = 훽�,� + 훽�,� log (푃푆푉
���

�

� ) + 훽�,� log (푃푆푉
���

�
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���

�
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���

�
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���

�

� ) + 훾�,� log (푁푆푉
���

�

� ) + 훼� log(푉표푙�
���)

+ 휀
���

���
�

, 푡 = 0,1, … , 푇 − 1, 푙 = 1,2, … , 퐿. 

PCA-HARRSX model: 

log (푅푉
���

���
�

) = 훽�,� + 훽�,� log (푃푆푉
���

�

� ) + 훽�,� log (푃푆푉
���

�

� ) + 훽�,� log (푃푆푉
���

�

� ) + 훾�,� log (푁푆푉
���

�

� ) + 훾�,� log (푁푆푉
���

�
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���

�

� ) + 훼�퐹푎푐푡표푟�

+ 휀
���

���
�

, 푡 = 0,1, … , 푇 − 1, 푙 = 1,2, … , 퐿. 

Lasso-RM-HARRSX model: 

log (푅푉
���

���
�

) = 훽�,� + 훽�,� log (푃푆푉
���

�

� ) + 훽�,� log (푃푆푉
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� ) + 훽�,� log (푃푆푉
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���

�

� ) + 훾�,� log (푁푆푉
���

�
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���

�
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���
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�
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Relaized correlation matrix forecasting models 
Scalar MHAR model: 

푣푒푐ℎ(푨���) = 풄 + 휃�푣푒푐ℎ�푨�
�� + 휃�푣푒푐ℎ(푨�

�) + 휃�푣푒푐ℎ(푨�
�) + 흐��� , 푡 =

1
퐿

,
2
퐿

, … ,1 +
1
퐿

, … , 푇 − 1 +
1
퐿

, . . , 푇. 

Scalar RM-MHARX model: 

푣푒푐ℎ(푨
���

���
�

) = 풄� + 휃�,�푣푒푐ℎ(푨
���

�

� ) + 휃�,�푣푒푐ℎ(푨
���

�

� ) + 휃�,�푣푒푐ℎ(푨
���

���
�

� ) + 훼�푣푒푐ℎ(푪푿�) + 흐
���

���
�

,푡 = 0,1, … , 푇 − 1, 푙 = 1,2, … , 퐿, 
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C.  Tables 
Table C1. The chosen US states for different dimension scenarios 

State N=10 N=20 N=30 N=40 N=50 State N=10 N=20 N=30 N=40 N=50 
Alabama     △ Montana △ △ △ △ △ 
Alaska     △ Nebraska  △ △ △ △ 
Arizona △ △ △ △ △ Nevada  △ △ △ △ 
Arkansas   △ △ △ New Hampshire  △ △ △ △ 
California  △ △ △ △ New Jersey    △ △ 
Colorado     △ New Mexico △ △ △ △ △ 
Connecticut  △ △ △ △ New York   △ △ △ 
Delaware  △ △ △ △ North Carolina    △ △ 
Florida  △ △ △ △ North Dakota     △ 
Georgia  △ △ △ △ Ohio     △ 
Hawaii   △ △ △ Oklahoma   △ △ △ 
Idaho   △ △ △ Oregon △ △ △ △ △ 
Illinois    △ △ Pennsylvania     △ 
Indiana △ △ △ △ △ Rhode Island    △ △ 
Iowa △ △ △ △ △ South Carolina  △ △ △ △ 
Kansas     △ South Dakota  △ △ △ △ 
Kentucky   △ △ △ Tennessee △ △ △ △ △ 
Louisiana    △ △ Texas △ △ △ △ △ 
Maine   △ △ △ Utah     △ 
Maryland    △ △ Vermont   △ △ △ 
Massachusetts   △ △ △ Virginia    △ △ 
Michigan    △ △ Washington     △ 
Minnesota     △ West Virginia △ △ △ △ △ 
Mississippi △ △  △ △ Wisconsin   △ △ △ 
Missouri   △ △ △ Wyoming    △ △ 

Note: These states are selected randomly through the following process in R software: First, the “set.seed(123)” function is used to set the seed 
for reproducibility. Then, corresponding numbers are randomly sampled from the range of 1 to 50 using the “sample( )” function. Each sampled 
number is mapped to a specific state, resulting in the selection of states, denoted by “△”. 
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Table C2. Out-of-sample forecasting losses (MRK) 

 Short horizon (h=1) Medium horizon (h=5) Long horizon (h=20) 
 퐿���� 퐿����  퐿�����  퐿�����  퐿���� 퐿����  퐿�����  퐿�����  퐿���� 퐿����  퐿�����  퐿�����  
Group 1:             
HAR-DRD 5.754 7.150 31.160 41.918 4.128 5.016 5.703 2.590 3.649 4.425 5.851 1.435 
RM-HARX-DRD 5.735* 7.125* 31.379 42.137 4.110* 4.992* 5.707 2.594 3.628* 4.396* 5.863 1.447 
PCA-RM-HARX-DRD 5.724* 7.114* 31.196 41.955 4.110* 4.989* 5.698* 2.584* 3.643* 4.406* 5.863 1.447 
Lasso-RM-HARX-DRD 5.763 7.159 31.534 42.293 4.217 5.113 5.954 2.840 5.394 6.375 7.217 2.801 
Group 2:             
HARJ-DRD 5.773 7.182 30.957 41.716 4.129 5.021 5.714 2.601 3.599 4.383 5.856 1.440 
RM-HARJX-DRD 5.755* 7.157* 31.204 41.962 4.105* 4.991* 5.720 2.606 3.566* 4.348* 5.864 1.448 
PCA-RM-HARJX-DRD 5.749* 7.149* 30.994 41.753 4.099* 4.981* 5.705* 2.591* 3.572* 4.347* 5.861 1.445 
Lasso-RM-HARJX-DRD 5.788 7.195 31.310 42.069 4.217 5.113 5.971 2.858 5.383 6.362 7.238 2.822 
Group 3:             
HARCJ-DRD 5.849 7.231 31.820 42.578 4.220 5.091 5.726 2.612 3.720 4.491 5.886 1.470 
RM-HARCJX-DRD 5.842 7.220* 31.726* 42.484* 4.201* 5.077* 5.710* 2.597* 3.681* 4.464* 5.877* 1.461* 
PCA-RM-HARCJX-DRD 5.803* 7.184* 31.065* 41.824* 4.152* 5.029* 5.662* 2.549* 3.624* 4.405* 5.839* 1.423* 
Lasso-RM-HARCJX-DRD 5.836* 7.219* 31.543* 42.301* 4.191* 5.071* 5.848 2.735 5.196 6.130 7.157 2.741 
Group 4:             
HARRS-DRD 5.732 7.100 32.413 43.172 4.076 4.956 5.728 2.615 3.575 4.351 5.899 1.483 
RM-HARRSX-DRD 5.714* 7.078* 32.549 43.308 4.064* 4.942* 5.724* 2.611* 3.573* 4.349* 5.907 1.491 
PCA-RM-HARRSX-DRD 5.684* 7.050* 32.113* 42.872* 4.057* 4.932* 5.708* 2.595* 3.595 4.364 5.904 1.488 
Lasso-RM-HARRSX-DRD 5.727* 7.101 32.360* 43.119* 4.164 5.048 5.892 2.779 5.184 6.133 7.138 2.723 

Note: The table reports out-of-sample forecast loss for the five groups of models. Entries in boldface indicate models that are part of the 75% model confidence set 
(MCS) for all models across the relevant loss. For each group, RM models that significantly improve on their non-RM benchmark model via DM test are indicated 
by an asterisk. 
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Table C3. Out-of-sample forecasting losses (N=20) 
 Short horizon (h=1) Medium horizon (h=5) Long horizon (h=20) 
 퐿���� 퐿����  퐿�����  퐿�����  퐿���� 퐿����  퐿�����  퐿�����  퐿���� 퐿����  퐿�����  퐿�����  
Group 1:             
HAR-DRD 7.027 9.078 5.003 9.383 5.620 7.206 4.844 3.889 5.390 6.911 5.318 2.470 
RM-HARX-DRD 7.032 9.085 4.988* 9.369* 5.598* 7.179* 4.827* 3.872* 5.367* 6.888* 5.308* 2.460 
PCA-RM-HARX-DRD 7.014* 9.063* 4.984* 9.365* 5.590* 7.163* 4.809* 3.855* 5.383* 6.889* 5.290* 2.442* 
Lasso-RM-HARX-DRD 7.051 9.106 5.113 9.493 5.815 7.447 5.179 4.225 8.675 10.759 8.815 5.967 
Group 2:             
HARJ-DRD 7.010 9.054 5.018 9.399 5.657 7.255 4.901 3.947 5.391 6.928 5.360 2.512 
RM-HARJX-DRD 7.007 9.051* 5.000* 9.380* 5.619* 7.207* 4.882* 3.927* 5.353* 6.896* 5.348* 2.500* 
PCA-RM-HARJX-DRD 6.996* 9.036* 4.993* 9.373* 5.597* 7.173* 4.858* 3.904* 5.352* 6.872* 5.325* 2.477* 
Lasso-RM-HARJX-DRD 7.032 9.080 5.145 9.525 5.797 7.422 5.169 4.215 8.618 10.694 8.778 5.930 
Group 3:             
HARCJ-DRD 7.117 9.161 4.996 9.376 5.767 7.363 4.908 3.954 5.490 7.029 5.427 2.579 
RM-HARCJX-DRD 7.117 9.164 4.964* 9.344* 5.740* 7.338* 4.881* 3.926* 5.456* 7.018* 5.407* 2.559* 
PCA-RM-HARCJX-DRD 7.096* 9.140* 4.926* 9.306* 5.701* 7.288* 4.837* 3.883* 5.409* 6.946* 5.357* 2.509* 
Lasso-RM-HARCJX-DRD 7.122 9.167 5.082 9.462 5.780 7.375 5.064 4.110 8.457 10.512 8.858 6.010 
Group 4:             
HARRS-DRD 7.048 9.097 5.010 9.391 5.647 7.236 4.869 3.915 5.424 6.939 5.435 2.587 
RM-HARRSX-DRD 7.049 9.098 4.989* 9.370* 5.618* 7.199* 4.847* 3.893* 5.402* 6.916* 5.419* 2.572* 
PCA-RM-HARRSX-DRD 7.031* 9.077* 4.984* 9.364* 5.609* 7.183* 4.827* 3.873* 5.413* 6.911* 5.391* 2.543* 
Lasso-RM-HARRSX-DRD 7.065 9.115 5.101 9.481 5.752 7.355 5.095 4.141 8.564 10.632 8.634 5.786 

Note: The table reports out-of-sample forecast loss for the five groups of models. Entries in boldface indicate models that are part of the 75% model confidence set 
(MCS) for all models across the relevant loss. For each group, RM models that significantly improve on their non-RM benchmark model via DM test are indicated 
by an asterisk. 
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Table C4. Out-of-sample forecasting losses (N=30) 

 
Short horizon (h=1) Medium horizon (h=5) Long horizon (h=20) 

퐿���� 퐿����  퐿�����  퐿�����  퐿���� 퐿����  퐿�����  퐿�����  퐿���� 퐿����  퐿�����  퐿�����  
Group 1:             
HAR-DRD 9.990 13.128 7.010 19.383 7.838 10.256 5.832 7.344 7.414 9.734 6.377 4.353 
RM-HARX-DRD 9.996 13.138 6.978* 19.352* 7.815* 10.225* 5.807* 7.319* 7.399* 9.712* 6.391 4.367 
PCA-RM-HARX-DRD 9.973* 13.110* 6.981* 19.355* 7.804* 10.208* 5.784* 7.296* 7.417 9.719* 6.370* 4.346* 
Lasso-RM-HARX-DRD 10.029 13.173 7.295 19.669 7.995 10.431 6.299 7.811 10.197 12.793 9.901 7.877 
Group 2:             
HARJ-DRD 9.956 13.087 6.976 19.350 7.869 10.301 5.911 7.423 7.420 9.759 6.416 4.392 
RM-HARJX-DRD 9.953 13.084 6.948* 19.322* 7.824* 10.242* 5.885* 7.396* 7.392* 9.731* 6.423 4.399 
PCA-RM-HARJX-DRD 9.939* 13.066* 6.929* 19.303* 7.801* 10.209* 5.854* 7.366* 7.394* 9.714* 6.400* 4.376* 
Lasso-RM-HARJX-DRD 10.021 13.164 7.276 19.649 7.922 10.352 6.115 7.627 9.061 11.712 8.482 6.458 
Group 3:             
HARCJ-DRD 10.086 13.226 6.882 19.256 7.959 10.386 5.864 7.376 7.498 9.845 6.448 4.424 
RM-HARCJX-DRD 10.088 13.229 6.816* 19.190* 7.941* 10.368* 5.825* 7.337* 7.488 9.850 6.455 4.431 
PCA-RM-HARCJX-DRD 10.065* 13.203* 6.754* 19.128* 7.902* 10.317* 5.769* 7.281* 7.447* 9.787* 6.397* 4.373* 
Lasso-RM-HARCJX-DRD 10.080 13.211 7.192 19.565 7.955 10.351 6.139 7.651 10.456 13.130 10.512 8.488 
Group 4:             
HARRS-DRD 10.017 13.159 6.986 19.360 7.858 10.278 5.851 7.363 7.435 9.747 6.499 4.475 
RM-HARRSX-DRD 10.017 13.159 6.948* 19.322* 7.826* 10.235* 5.824* 7.336* 7.415* 9.718* 6.500 4.476 
PCA-RM-HARRSX-DRD 9.993* 13.131* 6.934* 19.308* 7.814* 10.217* 5.794* 7.306* 7.427* 9.718* 6.474* 4.449* 
Lasso-RM-HARRSX-DRD 10.029 13.169 7.180 19.554 7.899 10.313 6.118 7.630 9.424 12.009 10.190 8.166 

Note: The table reports out-of-sample forecast loss for the five groups of models. Entries in boldface indicate models that are part of the 75% model confidence set 
(MCS) for all models across the relevant loss. For each group, RM models that significantly improve on their non-RM benchmark model via DM test are indicated 
by an asterisk. 
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Table C5. Out-of-sample forecasting losses (N=40) 

 
Short horizon (h=1) Medium horizon (h=5) Long horizon (h=20) 

퐿���� 퐿����  퐿�����  퐿�����  퐿���� 퐿����  퐿�����  퐿�����  퐿���� 퐿����  퐿�����  퐿�����  
Group 1:             
HAR-DRD 26.224 30.162 7.558 34.399 21.758 24.721 3.883 12.078 18.951 21.662 4.308 6.649 
RM-HARX-DRD 26.253 30.193 7.494* 34.335* 21.749* 24.703* 3.846* 12.041* 18.869* 21.571* 4.340 6.681 
PCA-RM-HARX-DRD 26.236 30.172 7.497* 34.338* 21.669* 24.623* 3.814* 12.009* 18.741* 21.451* 4.290* 6.631* 
Lasso-RM-HARX-DRD 26.467 30.407 7.934 34.775 22.094 25.140 4.782 12.977 27.629 30.797 11.324 13.665 
Group 2:             
HARJ-DRD 26.179 30.107 7.435 34.276 21.761 24.736 3.979 12.174 18.992 21.732 4.356 6.697 
RM-HARJX-DRD 26.248 30.175 7.391* 34.231* 21.745* 24.706* 3.948* 12.143* 18.886* 21.624* 4.386 6.726 
PCA-RM-HARJX-DRD 26.200 30.126 7.356* 34.197* 21.671* 24.627* 3.907* 12.102* 18.758* 21.489* 4.335* 6.676* 
Lasso-RM-HARJX-DRD 26.357 30.306 7.835 34.676 21.972 24.991 4.401 12.596 24.645 27.861 10.385 12.726 
Group 3:             
HARCJ-DRD 26.487 30.422 7.426 34.254 22.433 25.398 3.996 12.140 19.188 21.938 4.423 6.745 
RM-HARCJX-DRD 26.575 30.506 7.288* 34.116* 22.482 25.442 3.957* 12.102* 19.209 21.964 4.470 6.793 
PCA-RM-HARCJX-DRD 26.516 30.450 7.119* 33.948* 22.325* 25.277* 3.868* 12.013* 19.031* 21.775* 4.390* 6.712* 
Lasso-RM-HARCJX-DRD 27.169 31.061 7.880 34.709 24.307 27.240 5.838 13.986 33.266 36.371 12.730 15.071 
Group 4:             
HARRS-DRD 26.758 30.673 7.691 34.537 22.342 25.282 4.025 12.223 19.786 22.469 4.651 6.987 
RM-HARRSX-DRD 26.860 30.771 7.596* 34.441* 22.364 25.290 3.983* 12.181* 19.780 22.449* 4.665 7.000 
PCA-RM-HARRSX-DRD 26.731* 30.643* 7.553* 34.399* 22.224* 25.152* 3.927* 12.125* 19.519* 22.197* 4.588* 6.924* 
Lasso-RM-HARRSX-DRD 27.395 31.299 7.931 34.777 23.402 26.380 4.701 12.899 28.322 31.443 11.404 13.745 

Note: The table reports out-of-sample forecast loss for the five groups of models. Entries in boldface indicate models that are part of the 75% model confidence set 
(MCS) for all models across the relevant loss. For each group, RM models that significantly improve on their non-RM benchmark model via DM test are indicated 
by an asterisk. 
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Table C6. Out-of-sample forecasting losses (N=50) 

 
Short horizon (h=1) Medium horizon (h=5) Long horizon (h=20) 

퐿���� 퐿����  퐿�����  퐿�����  퐿���� 퐿����  퐿�����  퐿�����  퐿���� 퐿����  퐿�����  퐿�����  
Group 1:             
HAR-DRD 30.660 35.645 12.517 53.507 24.760 28.516 4.558 16.915 21.616 25.069 5.318 9.410 
RM-HARX-DRD 30.677 35.661 12.444* 53.434* 24.722* 28.468* 4.486* 16.843* 21.522* 24.964* 5.289* 9.381* 
PCA-RM-HARX-DRD 30.703 35.678 12.452* 53.442* 24.665* 28.408* 4.471* 16.828* 21.378* 24.830* 5.213* 9.305* 
Lasso-RM-HARX-DRD 30.823 35.816 12.914 53.904 24.979 28.860 5.512 17.868 35.085 39.521 16.006 20.097 
Group 2:             
HARJ-DRD 30.774 35.753 12.361 53.351 24.817 28.587 4.650 17.007 21.680 25.162 5.372 9.464 
RM-HARJX-DRD 30.810 35.787 12.319* 53.309* 24.769* 28.525* 4.585* 16.942* 21.553* 25.031* 5.338* 9.430* 
PCA-RM-HARJX-DRD 30.802 35.771 12.277* 53.268* 24.720* 28.466* 4.563* 16.920* 21.420* 24.890* 5.262* 9.353* 
Lasso-RM-HARJX-DRD 30.989 35.980 12.826 53.816 25.043 28.909 5.550 17.906 35.104 39.545 16.146 20.238 
Group 3:             
HARCJ-DRD 31.216 36.227 12.914 53.912 25.666 29.440 5.716 18.007 21.847 25.360 5.550 9.622 
RM-HARCJX-DRD 31.296 36.305 12.665* 53.663* 25.679 29.449 5.730 18.021 21.782* 25.303* 5.531* 9.603* 
PCA-RM-HARCJX-DRD 31.260 36.274 12.388* 53.387* 25.553* 29.319* 5.489* 17.780* 21.648* 25.160* 5.405* 9.477* 
Lasso-RM-HARCJX-DRD 31.789 36.808 15.545 56.536 27.321 31.100 6.499 18.790 36.751 41.093 18.273 22.364 
Group 4:             
HARRS-DRD 31.387 36.365 13.093 54.091 25.724 29.464 4.906 17.267 22.468 25.904 5.817 9.903 
RM-HARRSX-DRD 31.469 36.446 12.913* 53.911* 25.720 29.449* 4.807* 17.169* 22.388* 25.813* 5.764* 9.850* 
PCA-RM-HARRSX-DRD 31.375* 36.351* 12.876* 53.874* 25.573* 29.302* 4.770* 17.131* 22.140* 25.579* 5.659* 9.745* 
Lasso-RM-HARRSX-DRD 31.746 36.742 13.616 54.614 26.740 30.539 5.922 18.284 35.600 39.933 16.141 20.232 

Note: The table reports out-of-sample forecast loss for the five groups of models. Entries in boldface indicate models that are part of the 75% model confidence set 
(MCS) for all models across the relevant loss. For each group, RM models that significantly improve on their non-RM benchmark model via DM test are indicated 
by an asterisk. 
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Table C7. Out-of-sample forecasting losses (Stochastic volatility) 

 Short horizon (h=1) Medium horizon (h=5) Long horizon (h=20) 
 퐿���� 퐿����  퐿�����  퐿�����  퐿���� 퐿����  퐿�����  퐿�����  퐿���� 퐿����  퐿�����  퐿�����  
Group 1:             
HAR-DRD 4.432 5.373 5.782 3.284 3.624 4.324 5.850 1.583 3.503 4.167 6.119 1.088 
RM-HARX-DRD 4.427* 5.369* 5.770* 3.272* 3.616* 4.311* 5.850 1.582* 3.501* 4.153* 6.140 1.109 
PCA-RM-HARX-DRD 4.431 5.371* 5.776* 3.278* 3.622* 4.313* 5.861 1.594 3.560 4.205 6.182 1.150 
Lasso-RM-HARX-DRD 4.482 5.428 5.918 3.420 4.471 5.280 6.815 2.548 12.986 14.882 17.125 12.094 
Group 2:             
HARJ-DRD 4.417 5.352 5.776 3.278 3.637 4.344 5.867 1.600 3.463 4.140 6.127 1.095 
RM-HARJX-DRD 4.405* 5.339* 5.767* 3.268* 3.603* 4.302* 5.865* 1.597* 3.413* 4.081* 6.123* 1.091* 
PCA-RM-HARJX-DRD 4.410* 5.343* 5.767* 3.269* 3.605* 4.298* 5.871 1.604 3.476 4.134* 6.177 1.145 
Lasso-RM-HARJX-DRD 4.481 5.422 5.903 3.405 4.435 5.231 6.797 2.529 12.623 14.512 17.000 11.968 
Group 3:             
HARCJ-DRD 4.533 5.463 5.799 3.301 3.750 4.452 5.887 1.620 3.559 4.232 6.163 1.131 
RM-HARCJX-DRD 4.515* 5.443* 5.780* 3.281* 3.697* 4.396* 5.867* 1.600* 3.435* 4.105* 6.149* 1.117* 
PCA-RM-HARCJX-DRD 4.507* 5.435* 5.765* 3.267* 3.705* 4.398* 5.867* 1.600* 3.514* 4.171* 6.171 1.140 
Lasso-RM-HARCJX-DRD 4.560 5.490 5.866 3.368 4.300 5.054 6.615 2.348 12.444 14.144 17.053 12.021 
Group 4:             
HARRS-DRD 4.456 5.394 5.793 3.295 3.644 4.345 5.854 1.587 3.530 4.189 6.149 1.117 
RM-HARRSX-DRD 4.450* 5.387* 5.775* 3.277* 3.631* 4.325* 5.849* 1.582* 3.514* 4.158* 6.148 1.115* 
PCA-RM-HARRSX-DRD 4.452* 5.387* 5.782* 3.284* 3.636* 4.327* 5.859 1.592 3.574 4.212 6.189 1.158 
Lasso-RM-HARRSX-DRD 4.499 5.439 5.870 3.372 4.359 5.138 6.633 2.366 13.546 15.494 16.852 11.820 

Note: The table reports out-of-sample forecast loss for the five groups of models. Entries in boldface indicate models that are part of the 75% model confidence set 
(MCS) for all models across the relevant loss. For each group, RM models that significantly improve on their non-RM benchmark model via DM test are indicated 
by an asterisk. 
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Table C8. Out-of-sample forecasting losses (alternative out-of-sample period) 

 Short horizon (h=1) Medium horizon (h=5) Long horizon (h=20) 
 퐿���� 퐿����  퐿�����  퐿�����  퐿���� 퐿����  퐿�����  퐿�����  퐿���� 퐿����  퐿�����  퐿�����  
Group 1:             
HAR-DRD 13.875 15.007 7.673 5.692 11.331 12.285 8.059 3.702 10.826 11.870 9.044 3.616 
RM-HARX-DRD 13.902 15.037 7.643* 5.662* 11.308* 12.257* 7.988* 3.630* 10.763* 11.770* 9.037* 3.609* 
PCA-RM-HARX-DRD 13.994 15.139 7.652* 5.670* 11.268* 12.180* 7.954* 3.596* 10.955 11.888 9.139 3.711 
Lasso-RM-HARX-DRD 13.938 15.072 7.705 5.724 11.657 12.584 8.332 3.975 14.072 15.015 18.202 12.774 
Group 2:             
HARJ-DRD 14.042 15.195 7.744 5.762 11.445 12.426 8.075 3.717 10.754 11.819 9.264 3.836 
RM-HARJX-DRD 14.052 15.207 7.701* 5.720* 11.405* 12.373* 7.995* 3.637* 10.670* 11.698* 9.260* 3.832* 
PCA-RM-HARJX-DRD 14.152 15.309 7.670* 5.689* 11.301* 12.203* 7.921* 3.563* 10.984 11.955 9.396 3.968 
Lasso-RM-HARJX-DRD 14.033* 15.176* 7.777 5.796 11.558 12.486 8.326 3.968 13.949 14.915 22.764 17.336 
Group 3:             
HARCJ-DRD 15.154 16.233 16.326 14.345 12.504 13.345 8.596 4.238 11.144 12.132 9.212 3.784 
RM-HARCJX-DRD 15.199 16.284 15.650* 13.668* 12.447* 13.298* 8.566* 4.208* 11.079* 12.062* 9.193* 3.766* 
PCA-RM-HARCJX-DRD 15.221 16.333 16.104* 14.122* 12.634 13.491 8.497* 4.139* 12.257 13.367 9.334 3.906 
Lasso-RM-HARCJX-DRD 15.483 16.570 16.266* 14.285* 12.656 13.513 8.788 4.431 14.059 15.047 18.879 13.451 
Group 4:             
HARRS-DRD 13.700 14.836 7.612 5.631 11.270 12.198 7.818 3.461 10.442 11.419 8.695 3.267 
RM-HARRSX-DRD 13.707 14.839 7.509* 5.527* 11.219* 12.135* 7.678* 3.321* 10.437* 11.388* 8.477* 3.049* 
PCA-RM-HARRSX-DRD 13.790 14.928 7.501* 5.520* 11.204* 12.082* 7.661* 3.303* 10.455 11.357* 8.545* 3.117* 
Lasso-RM-HARRSX-DRD 13.868 15.007 7.854 5.873 11.743 12.620 8.050 3.693 13.949 14.863 14.729 9.301 

Note: The table reports out-of-sample forecast loss for the five groups of models. Entries in boldface indicate models that are part of the 75% model confidence set 
(MCS) for all models across the relevant loss. For each group, RM models that significantly improve on their non-RM benchmark model via DM test are indicated 
by an asterisk. 

 


