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Abstract: This paper explores the predictability of monthly US stock returns using 
adaptive LASSO on firm-specific characteristics from June 1990 to December 2022. By 
efficiently selecting relevant features and managing high-dimensional data, adaptive 
LASSO improves return forecasts over traditional models. Key predictors include lagged 
returns, mean log-volumes, market values, dividend yields, and R&D expenses. We 
design two threshold-based portfolios: Adaptive LASSO 1/N (equal-weighted) and 
Adaptive LASSO SR (Sharpe ratio-weighted), incorporating a 0.3% transaction cost and 
a no-trade region to reduce turnover. These portfolios are evaluated against two 
benchmarks: the equal-weighted portfolio and the S&P 500 index. Both threshold-based 
portfolios outperform the benchmarks, with the Adaptive LASSO SR portfolio showing 
the best performance, while demonstrating resilience to transaction costs.  
 

Keywords: Adaptive LASSO, Stock Return Forecasting, Portfolio Optimization, Cross-

Section Features 

JEL codes: G11; G17; C53; C63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

1. Introduction 

Forecasting stock returns and constructing optimal portfolios remain fundamental 

challenges in finance. Traditional approaches, such as the mean-variance framework, 

seek to optimize returns for a given level of risk but often rely on estimations that are 

highly sensitive to errors. These inaccuracies can lead to significant underperformance in 

real-world applications.  

Over the past decades, extensive research has focused on the link between firm-

specific characteristics and stock returns. Studies have emphasized the role of financial 

ratios, momentum, and other factors in explaining cross-sectional return predictability. 

Despite these advances, accurately forecasting stock returns remains an elusive goal due 

to the complex and dynamic nature of financial markets, as well as the high-dimensional 

nature of the predictor space. 

Recent advancements in machine learning, particularly in the use of regularization 

techniques, have enhanced forecasting accuracy by addressing the challenges of feature 

selection and high dimensionality, while also reducing the risk of overfitting. Adaptive 

LASSO (Least Absolute Shrinkage and Selection Operator) is one such technique. 

Adaptive LASSO refines the original LASSO methodology by enabling more accurate 

identification of relevant predictors, especially when they are highly correlated. This 

improved version asymptotically identifies true nonzero coefficients and enhances 

predictive performance by managing multicollinearity and overfitting, common issues in 

stock return predictions. 

While predictive accuracy is crucial, successful portfolio management also 

depends on transaction costs and turnover rates. High turnover strategies, such as those 

used in high-frequency trading, can incur substantial transaction costs, which may erode 

net returns. Several papers have highlighted the importance of incorporating transaction 

costs into portfolio optimization.  

This paper examines the predictability of monthly U.S. stock returns using 

adaptive LASSO on a dataset spanning from June 1990 to December 2022. By leveraging 

lagged firm-specific characteristics, the adaptive LASSO model forecasts cross-sectional 

stock returns, adjusting to time-varying predictor spaces.  

The empirical results of this study indicate that no single predictor consistently 

dominates in return forecasting, but variables related to size, momentum, and investment 

activities show high selection frequencies, reflecting their relevance in stock return 
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prediction. Building on these forecasts, two trading strategies based on adaptive LASSO 

are developed: one with equal weights (Adaptive LASSO 1/N) and the other weighted by 

expected Sharpe ratios (Adaptive LASSO SR). These strategies are compared against a 

traditional 1/N portfolio and the S&P 500 index. The results show that adaptive LASSO 

portfolios consistently outperform the benchmarks in terms of cumulative net log-returns, 

Sharpe ratios, and Sortino ratios, even after accounting for transaction costs. This 

demonstrates the potential of adaptive LASSO to enhance portfolio performance while 

considering real-world constraints such as transaction costs and turnover rates. 

The contribution of this paper is threefold: (1) applying adaptive LASSO to a long 

and updated sample of U.S. stock returns to assess the predictive power of firm features, 

(2) developing trading strategies that incorporate transaction costs and no-trade zones, 

and (3) comparing these strategies against established benchmarks using a comprehensive 

set of financial performance metrics. 

The rest of the paper is organized as follows: Section 2 reviews the related 

literature, Section 3 describes the dataset and predictor variables used in the study, Section 

4 outlines the forecasting methodology and portfolio construction techniques, Section 5 

presents the empirical results, and Section 6 concludes the paper. 

 

2. Literature review 

Fundamental stock features have proven to be valuable indicators for building 

stock portfolios. Abarbanell and Bushee (1998) show that portfolios based on several 

fundamental indicators have a high cumulative size-adjusted abnormal return, with a 

significant portion of these abnormal returns generated around earnings announcements. 

Piotroski (2000) proposes an aggregate FSCORE, based on nine fundamental signals of 

firm profitability, liquidity/leverage and operational efficiency to classify firms, and 

shows that high FSCORE stocks have higher profitability. Turtle and Wang (2017), 

Tikkanen and Äijö (2018) and Walkshäusl (2020) revisited the work of Piotroski (2000) 

and concluded that high-FSCORE firms significantly outperform low-FSCORE firms in 

several international stock markets. Green et al. (2017) add 94 accounting features to the 

Fama-French-Carhart five-factor model and show that 12 characteristics provide relevant 

information about the average US monthly returns of non-microcap stocks over the full 

period 1980-2014. Dechow et al. (2001) look at firms with low fundamentals ratios and 

show that these firms provide short sellers with profitable investment strategies. Yan and 
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Zheng (2017) use more than 18,000 fundamental signals, showing that many of these 

signals are significant predictors even after accounting for data mining. Most notably, the 

seminal paper of Brand et al. (2009) provides a simple, parsimonious, flexible and 

effective framework for directly modelling the portfolio weights as a function of an 

asset’s characteristics. With just three superimposed characteristics (size, book-to-market 

ratio, and momentum), Brandt et al. (2009) found a robust performance in- and out-of-

sample.  

Another stream of literature uses technical indicators to predict future stock 

returns, with mixed results. Park and Irwin (2007) and Nazário et al. (2017) are two 

survey papers on technical analysis applied to stocks.  More recently, the trend has been 

to combine fundamental and technical indicators (see, for instance, Yuan et al., 2020; Li 

et al., 2022). 

Given the richness of data available, there is a bourgeoning literature proposing 

new procedures, most of which use machine learning tools to reduce the dimensionality 

of the predictor space. For instance, Kozak et al. (2020) develop a shrinkage factor that 

provides effective feature selection and produces highly significant abnormal returns 

relative to the five-factor model. Gu et al. (2020) evaluate the effectiveness of various 

machine learning models in predicting stock returns using a dataset of nearly 30,000 

stocks across 60 years. They find that tree-based models and neural networks deliver the 

best performance, particularly when using price trends, liquidity, and volatility as 

predictors. Other examples of machine learning applied to portfolio optimization are 

Almahdi and Yang (2017), Kircher and Rösch (2021), Liu et al. (2020), and Zhang et al. 

(2020). 

LASSO techniques have gained popularity due to their ability to eliminate 

redundant variables, enhancing prediction accuracy and portfolio performance. Adaptive 

LASSO, introduced by Zou (2006), modifies traditional LASSO by performing a two-

stage shrinkage, allowing consistent variable selection even under relaxed conditions. 

Messmer and Audrino (2017) demonstrated that adaptive LASSO outperformed 

traditional LASSO in predicting US stock returns, selecting 14 relevant features, namely 

short-term reversal, twelve-month momentum, and research spending scaled by market 

value. Other extensions of LASSO have been explored to improve model performance, 

such as the adaptive group LASSO of Freyberger et al. (2020), the twin adaptive LASSO 

of Lee et al. (2022) and applications of LASSO in quantile regressions (Bonaccolto et al., 

2018; Fan et al., 2023).  



6 

 

Beyond the importance of inputs in portfolio optimization and methods for 

addressing high-dimensionality challenges, the literature also provides insights into 

additional issues faced by investors in real markets. Fundamentally, a risk-averse investor 

seeks to maximize the reward-to-risk ratio, for which the Shape ratio is the obvious 

metric, after accounting for transaction costs (Hung et al., 2000).  

Transaction costs play a critical role in accurate portfolio evaluation. They are 

incorporated into portfolio optimization either by directly including them in the objective 

function or by imposing constraints on individual or total turnovers and portfolio weights. 

DeMiguel et al. (2020) incorporate proportional transaction costs into the parametric 

portfolio policies of Brandt et al. (2009) with a LASSO constraint and a transaction trigger 

threshold. Lee and Yoo (2020) applied this concept using long short-term memory 

networks, showing that thresholds between 0 and 0.025 improve returns and reduce risk.  

In summary, the evolving landscape of portfolio optimization and stock return 

prediction reflects significant data-driven advancements, with cross-sectional 

fundamental features proven effective for return forecasting, complemented by technical 

indicators for enhanced predictive accuracy. The integration of machine learning models, 

particularly adaptive LASSO, has addressed the challenges of high-dimensional data and 

multicollinearity, leading to improved feature selection and return predictability. 

Additionally, the consideration of transaction costs in threshold-based portfolios provides 

more realistic frameworks. These advancements underscore the importance of adaptive 

models applied to high-dimensional data for optimizing portfolio performance.  

 

3. Data 

This study analyses the 500 largest stocks by market capitalization traded on the 

NYSE or NASDAQ, using 51 stock market and accounting features from Refinitiv Eikon. 

The dataset has a daily frequency and covers the period from January 1, 1990, to 

December 31, 2022. We have also obtained the S&P 500 Total Return Index from the 

same source. This index considers the reinvestment of dividends and accommodates price 

changes resulting from management events (e.g., stock splits). Missing data is filled with 

the most recent available value. To create a monthly dataset, we use Wednesday data to 

represent four-week months, yielding a total of 430 monthly observations. For the risk-

free rate, we use the annualized daily 3-month T-bill secondary market yield from FRED 

(Federal Reserve Bank of St. Louis), as the 1-month rate was unavailable for the entire 
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period. These rates are converted to monthly values assuming 28-day months, hence 

resulting in 13 months per year. 

Over the 33-year period, some firms exited the database due to mergers (140 

cases), acquisitions (246 cases), split-offs (5 cases), name changes (5 cases), bankruptcies 

(6 cases), privatizations (13 cases), and other events. To maintain a constant number of 

stocks, each departing firm was replaced using the following rules: (1) For mergers or 

acquisitions, the departing stock was replaced by the merging entity or acquiring firm's 

stock if it was not already in the database on the last trading day of the replaced stock, (2) 

in split-offs, the successor company with the highest market value replaced the original 

firm, (3) for name changes, the stock remained in the database under its new name, and 

(4) in all other cases, the firm was replaced by the stock with the highest market 

capitalization not yet in the database. Data for the new stocks were included from the first 

day following the exit of the replaced firm. In total, the study used information from 931 

stocks throughout the period. 

After collecting the data, we perform several transformations to prepare it for 

estimation. Most of the accounting features have high granularity, with a yearly 

periodicity. To increase the comparability of these features across firms, in some cases, 

we use the market value as a deflator. We calculate the arithmetic monthly returns for 

each stock and for the S&P 500 index using the total return index, and we use the signed 

Amihud illiquidity ratio and signed Parkinson volatility measure. 

Liquidity, as defined by Amihud and Mendelson (1986), refers to the ability to 

trade an asset quickly without significantly affecting its price. Amihud's illiquidity ratio 

(Amihud, 2002) measures the price impact per dollar traded. We calculate the monthly 

illiquidity ratio, adjusted by the sign of the monthly returns, as follows: 

 ������,� = �	
�(
�,�)� � �
�,����,�
�

��� , (1) 

where 
�,� and ��,� are the arithmetic return and trading volume, in USD, of stock 	 on the �-th day of month �, respectively. M is the number of trading days in month �, and �	
�(
�,�) takes the value -1 if the return in month � is negative and 1 otherwise. 

Volatility is measured by the Parkinson (1980) estimator, also corrected by the 

sign of the monthly returns: 



8 

 

 ��,� = �	
�(
�,�)√��4��(2) ��  �� !"�,���,� #$%�
��� , (2) 

where "�,� and ��,� are the high and low prices of stock 	 on the �-th day of month �, 

respectively.   

Before proceeding with the empirical analysis, we pre-filtered the predictor space 

by excluding some features with high levels of multicollinearity, measured by the      

Variance Inflation Factor (VIF). This procedure eliminated several features, leaving 39 

remaining.  

Table A.1 in the appendix shows the 39 features and their description according 

to the notes available in the Refinitiv Eikon database.  

 

4. Methodology 

4.1. Forecasting 

We forecast the monthly returns on US stocks using lagged firm features, with 1 to 4 lags 

for arithmetic returns and 1 lag for other predictors. To standardize explanatory variables 

of varying magnitudes, we scaled them to align with the mean scale of returns. 

When a stock is replaced in the database, its substitute is not included in the 

regression and in the portfolios for 5 months, to ensure that lagged predictors are 

available. So, the monthly regressions may have a different number of stocks, &�. To 

handle the remaining missing data, we create dummy variables that equal 1 when a feature 

is missing and 0 otherwise, replacing missing values with 0. Linearly dependent dummies 

are removed before adding them to the predictor set. 

The original LASSO estimator, proposed by Tibshirani (1996), is defined as 

follows: 

'()*++,,� = -.
/	�' 0� 1
�,� − 34 − � 35,�6�,5,�5 7% + 9� � 35,�%
5

:;
��� < , 9� ≥ 0, (3) 

where 
�,� is the discrete return for firm 	 in month � and 6�,5,� is the explanatory variable ? for firm 	 in month �. The estimation is performed for � = 1, … , B, where B = 425 is 
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the sample size. 35,� is the regression coefficient for the explanatory variable ? in month �, and 34 is the constant term. Finally, 9� is the regularisation (or penalty) parameter in 

month �, which allows for the elimination of redundant coefficients. 

Adaptive LASSO, proposed by Zou (2006), differs from standard LASSO by 

allowing the weights to vary for each parameter, defining a first-stage estimator so that 

relevant variables are less affected by the penalty, and allowing consistent variable 

selection by the procedure in the second-stage estimator. The adaptive LASSO estimator 

is given by:  

'(*DE)*++,; = -.
/	�' 0� 1
�,� − 34 − � 35,�6�,5,�5 7% + 9� � FG5,��35,��5
:;

��� < , 9� ≥ 0, (4) 

where FG5,� is a weight vector. Following the suggestion of Zou (2006) we define FG5,� =1 �3H5,�,)+�I;⁄ , where 3H5,�,)+ is the OLS first stage estimator and K > 0. While Zou suggests 

using K = 1, in this paper, we dynamically select this parameter for each month from the 

set K = {0.5, 1, 1.5, 2} via a 10-fold cross-validation procedure.  

 

4.2. Trading strategies 

For comparison, we first examine the 1/N portfolio, also termed the naïve strategy, 

which avoids the risks of parameter estimation errors found in traditional models. 

DeMiguel et al. (2009) compared the 1/N portfolio to 14 other models and found that 

none of these models outperformed the naïve strategy after accounting for transaction 

costs. They attributed this to the impact of estimation errors in reducing the benefits of 

optimal diversification. Consequently, the 1/N portfolio has been widely adopted as a 

benchmark for evaluating more sophisticated trading strategies and as a baseline portfolio 

for other strategies (Tu and Zhou, 2011; Lee and Yoo, 2020; Jiang et al., 2019).  

In addition, we take the S&P 500 index as a second benchmark. The main 

advantage of this benchmark is that it represents a buy-and-hold strategy with no 

transaction costs for a well-diversified market-weighted portfolio. 

We base stock selection on the predicted monthly returns for each stock, 

accounting for transaction costs. In this study, we consider proportional round-trip 

transaction costs of 0.3%. Earlier papers, such Brandt et al. (2009) and DeMiguel et al. 
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(2009) consider proportional costs of 0.5%. However, more recent papers consider lower 

transaction costs (see, for instance, Babazadeh and Esfahanipour, 2019; Paiva et al., 2019; 

Guo et al., 2021). A round-trip cost of 0.3% seems reasonable for liquid markets such as 

NYSE and NASDAQ.  

The portfolios are rebalanced monthly in line with the periodicity of the data. We 

assume that short selling is not allowed, so all the stocks have non-negative weights in 

the portfolio. To minimize trades that become unprofitable after transaction costs, a long 

position in a stock is initiated in month � only if its expected return in the following month 

(� + 1) exceeds the cost threshold of 0.15%. Conversely, a long position is closed in 

month � if the expected return is lower than -0.15%, i.e., when the expected loss exceeds 

the cost of exiting the market. In all other cases, the investor maintains the position in the 

stock from the previous month.  

After determining which stocks to include in the portfolio, it is necessary to 

compute their weights. We consider two alternatives: an equal-weighted portfolio with 

the selected stocks and a portfolio with weights based on the expected Sharpe ratio of 

each selected stock. The first case, referred to as Adaptive LASSO 1/N, assigns an equal 

weight to each stock 	 at month �, defined as P�,�∗ = �+;, where �� is the number of stocks 

for the portfolio in month �. The alternative approach, hereafter referred to as Adaptive 

LASSO SR, is based on the expected adjusted Sharpe ratios (Israelsen, 2005), such that 

 RS�
T �,�U�V = RS
�,�U�V − 
W,�S��,�XY V+�Z[(\SX],;^_VEX`,;), (5) 

where RS
�,�U�V is the expected return of stock 	 in month � + 1, 
W,� is the risk-free 

return in month �, ��,�XY  is the standard deviation of the excess daily returns for stock 	 over 

the previous 4 months (80 days) and �	
�(6) is a function that takes the value -1 if 6 is 

negative and 1 otherwise.  

We define the weight for each stock as the difference between its expected 

adjusted Sharpe ratio and the minimum expected adjusted Sharpe ratio across all stocks 

in the portfolio, RS�
Ta�[,�U�V. This difference is then normalized by dividing it by the 

sum of such differences across the portfolio:  
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 P�,�U�∗ = \S+XT ],;^_VE\S+XT b]c,;^_V∑ e\S+XT ],;^_VE\S+XT b]c,;^_Vfg;]h_  . (6) 

After determining these weights, which we will also refer to as the target weights, 

we consider a non-trade radius similar to the one used by Brandt et al. (2009), which is 

based on prior research (Magill and Constantinides, 1976; Taksar et al., 1988; Davis and 

Norman, 1990; Leland, 2000). 

First, a “hold” portfolio is defined, assuming no trades. This way, the weights of 

this portfolio change between periods � − 1 and � only due to the price changes of the 

assets. The weights of the hold portfolio, P�,�j , are expressed as: 

 P�,�j = P�,�E� �UX],;�UXk,; , (7) 

where P�,�E� is the weight of stock 	 at time � − 1, 
�,� is the arithmetic return of stock i 

at time � − 1 and 
l,� is the arithmetic return of the portfolio at time �. The actual portfolio 

weights depend on the target weights and the “hold” portfolio weights. They are defined 

as: 

 P�,� = mP�,�j                                        , 	n �:; ∑ SP�,�∗ − P�,�j V% ≤ p%+;���q�P�,�j + (1 − q�)P�,�∗ , 	n �:; ∑ SP�,�∗ − P�,�j V% > p%+;��� , (8) 

where �� is the number of stocks in the portfolio at time �, q� is the time-varying linear 

combination parameter and p is the non-trade radius. 

The no-trade region is a hypersphere of radius p around the target portfolio 

weights. So, if the hold portfolio is sufficiently close to the target portfolio, it is better not 

to trade, and if the hold portfolio is sufficiently far from the target, the trade must occur 

to the frontier of the no-trade region, the new portfolio being a weighted average of the 

hold and target portfolios. The parameter q� can be chosen so that the new portfolio is 

exactly at the boundary, that is: 

1�� �SP�,�∗ − P�,�j V% = 1��
+;

��� SP�,�∗ − q�P�,�j − (1 − q�)P�,�∗ V% = q�% �SP�,�∗ − P�,�j V%.+;
���  (9) 

Setting SP�,�∗ − q�P�,�j − (1 − q�)P�,�∗ V% = p2, then 
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 q� = r�+;s∑ St],;∗ Et],;u Vvg;]h_ w_ v⁄ . (10) 

 For the selection of the hyperparameter p, we split the data into in-sample and 

out-of-sample periods. The in-sample covers the first 170 months, approximately 2/5 of 

the entire sample period, and the strategies are implemented during this period using 

values for p from 0 to 0.01, with a step size of 0.001. We then use the value of p that 

maximizes the annualized Sharpe ratio in-sample. After selecting p, we build and evaluate 

the portfolios over the test period, which covers the remaining months. Note that the no-

trade region is not considered for the benchmark strategies. 

 

5. Empirical results 

5.1. Forecasting 

Firstly, we analyse the relevance of the features for forecasting expected returns. 

Table A.2 in the appendix reports the percentage of the months in the overall period 

(including in-sample and out-of-sample periods) in which each feature is selected by the 

adaptive LASSO for forecasting the returns.  

The mean of the four previous values of log-volumes is the most consistently 

chosen feature, with an overall selection frequency of 46.35%. The natural logarithms of 

the volume, the market value, and the number of both full and part-time employees also 

present themselves as good predictors, with selection frequencies of 39.77%, 38.59% and 

32.24%, respectively. These results highlight the importance of size proxies in predicting 

returns, as pointed out by Freyberger et al. (2020). Lagged returns of the previous one to 

four months are chosen more than 25% of the time as predictors, implying the existence 

of information in momentum. The importance of momentum has long been referred to in 

the literature (see, for instance, Carhart,1997; Fama and French, 2016; Brandt et al., 2009; 

Freyberger et al., 2020). Additionally, the relative importance of Research and 

Development (R&D) (32.47% frequency) and dividend yield (31.77% frequency) 

underscore the relevance of R&D expenditures (Messmer and Audrino, 2017) and 

dividend yields (Lettau and Ludvigson, 2005; Cochrane, 2008). 

There are notable differences between in-sample and out-of-sample selection 

frequencies. For instance, the natural logarithm of the volume is chosen in 31.18% of in-

sample months but in 45.49% of out-of-sample months, suggesting a shift in the 
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importance of trading volume over time. Conversely, the turnover rate drops sharply from 

30.00% in-sample to 4.31% out-of-sample, indicating instability in its predictive power. 

This suggests the presence of return continuation or reversal patterns in the market. 

Adaptive LASSO effectively adjusts to evolving market conditions, supporting its use for 

dynamic stock return forecasting. 

Table 1 shows some descriptive statistics of the percentage of months in which 

the features are selected by adaptive LASSO.  Results concerning the individual features 

are presented in Table A2 in the Appendix. 

 

Table 1 – Descriptive statistics of the relative number of months of feature selection  

 Overall sample In-sample Out-of-sample 
Mean 24.81 24.99 24.69 
Median 24.24 25.00 24.91 
Std. Dev  7.46 7.07 8.97 
Minimum 9.88 10.59 4.31 
Percentile 5 14.64 14.80 12,20 
Percentile 95  38.28 35.29 41.53 
Maximum 46.35 40.00 50.59 
Nº features >25% 20 21 21 

Notes: This table presents some descriptive statistics of the relative number of months in which features 
were selected by the adaptive LASSO. These statistics were computed using the information presented in 
Table A.2. The last row refers to the number of features chosen in at least 25% of the months. All values 
are in percentage except the last row. 

The mean selection frequency is consistent across all periods, with 24.81% 

overall, 24.99% in-sample, and 24.69% out-of-sample, indicating a balanced selection 

process without significant bias. The standard deviation is lowest in-sample (7.07%) and 

highest out-of-sample (8.97%), reflecting greater variability in feature selection during 

the out-of-sample period, which could be due to changing market dynamics or structural 

breaks. The minimum selection frequency is particularly low out-of-sample (4.31%). 

Conversely, the maximum frequency is highest out-of-sample (50.59%), indicating that 

certain features were consistently relevant. The relatively stable means and medians 

suggest that adaptive LASSO maintains a balanced selection process across both periods. 

The number of features selected in at least 25% of the months remains consistent, with 

20 overall, 21 in-sample, and 21 out-of-sample. These findings illustrate the Adaptive 

LASSO's flexibility in responding to evolving market dynamics, underscoring its 

predictive power and reliability for stock return forecasting. 
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5.2. Performance of the portfolios  

Table 2 presents key performance indicators of the cumulative returns and other portfolio 

evaluation metrics out-of-sample.  

 
Table 2 - Performance with transaction costs 

 
S&P 500 1/N 

Adaptive 

LASSO 1/N 

Adaptive 

LASSO SR 

Win rate  68.24 68.24 66.27 64.71 
CumRet 189.57 213.24 269.22 337.20 
Total turnover  130.97 12,978.49 14,520.23 
Turnover reduction    49.48 53.72 
Skewness -0.4755 -0.3405 0.5064** 0.5953*** 
Annualized mean return  11.12 12.56 15.70 20.11** 
Annualized standard deviation  16.44 17.73 19.96 24.59 
SR  60.18 63.90 72.41* 76.74** 
SOR  129.57 143.80 214.74* 255.34** 
CE (K = 1) 9.66 10.87 13.72 17.19** 
CE (K = 3) 6.69 7.47 10.41 12.45* 
CE (K = 5) 2.64 2.70 5.82 5.82 
CVaR1%  21.48 22.85 18.16 21.41 
CVaR5%  12.03 12.07 10.09** 11.72 
MD 52.15 50.03 36.01 42.16 
Notes: This table presents the performance metrics of the two proposed trading strategies (Adaptative 
LASSO 1/N and Adaptative LASSO SR) and the S&P 500 and 1/N benchmark portfolios in the presence 
of round-trip transaction costs of 0.3%. These metrics are computed out of sample. B = B� + B%  is the size 
of the whole sample and B� = 170 and B% = 255 are the sizes of the in-sample and out-of-sample periods, 
respectively. The win rate corresponds to the percentage of months in the market in which the strategy 
generates a positive return. The cumulative return after transaction costs of strategy z is presented as 
CumRet, defined as CumRet = ∏ S1 + 
l,�V����_U� − 1. The total turnover is the sum of the turnover for 
all the periods, with turnover being defined as the sum of the absolute changes in portfolio weights from 
one period to the next, B�.����.l = ∑ ∑ �P�,� − P�,�E��+;�������_U� . The turnover reduction is the one 
generated by the implementation of the no-trade radius. The annualized mean return and standard deviation 
are the average return and the standard deviation of the monthly returns multiplied by 13 and √13, 
respectively. We consider 4-week periods, so we have 13 periods per year. The annualized Sharpe ratio 
(SR) corresponds to the ratio between the annualized mean return minus the annualized average free-risk 
rate (proxied by the 3-month T-bill secondary market yield) and the annualized standard deviation of excess 
returns. The annualized Sortino ratio considers in the denominator only the negative deviations from a 

target value, which is assumed to be zero, ��
l = √13R(
l) � ��v ∑ /	�e
l,� , 0f%����_U�� . The annualized 

certainty equivalent (CE) reflects the indifference of the investor between obtaining a certain amount or 
investing and in the risky strategy. Assuming a Constante Relative Risk Aversion (CRRA) utility 

function �R = ���v ∑ �� (1 + 
�)����_U�  and �R = s ��v ∑ (1 + 
�)�EI����_U� w _�_�� − 1 if the risk-aversion 

parameter K is equal to 1 or higher than 1, respectively.  CVaR at q% (Conditional Value-at-Risk at q%) 
measures the average loss conditional on the VaR (Value-at-Risk) at the q% level being exceeded and the 
maximum drawdown (MD) is computed as the maximum observed loss from a peak to a trough of the 
accumulated value of the trading strategy, as a percentage of the value of that peak. The inference is 
obtained using bootstrap p-values, which give the probability that a certain metric is worse than that of the 
best benchmark strategy, 1/N. These p-values are obtained using 100,000 bootstrap samples created with 
the circular block procedure of Politis and Romano (1994), with an optimal block size chosen according to 
Politis and White (2004) and Politis and White (2009). The significance of the metrics at the 10%, 5% and 
1% levels are denoted by “*”, “**” and “***”, respectively. All values are in percentage except skewness. 
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As expected, the results show that the total turnover is substantially lower for the 

1/N portfolio (approximately 131%), whereas the Adaptive LASSO 1/N and Adaptive 

LASSO SR portfolios exhibit significantly higher turnover values, by factors of 

approximately 100 and 110, respectively. However, the implementation of the no-trade 

boundary proposed by Brandt et al. (2009) led to considerable reductions in turnover of 

49.48% and 53.72%, respectively. This reduction highlights the effectiveness of 

transaction cost mitigation techniques in improving portfolio efficiency. 

In terms of return distribution characteristics, the benchmark portfolios (S&P 500 

and 1/N) display left-skewed monthly returns, indicating a higher frequency of negative 

outliers, whereas the Adaptive LASSO portfolios exhibit right-skewed returns, 

suggesting a tendency for occasional higher-than-average positive returns. The win rate 

exceeds 64% across all portfolios, with the S&P 500 and 1/N benchmarks achieving 

slightly superior win rates of 68.24% compared to the Adaptive LASSO portfolios. 

Regarding performance, the Adaptive LASSO SR portfolio exhibits the highest 

annualized mean return (20.11%), followed by the Adaptive LASSO 1/N portfolio 

(15.70%), with both outperforming the S&P 500 (11.12%) and 1/N (12.56%) 

benchmarks. However, this superior return performance comes at the cost of increased 

risk, as reflected in the higher annualized standard deviation for the Adaptive LASSO SR 

portfolio (24.59%) and the Adaptive LASSO 1/N portfolio (19.96%). Despite the higher 

volatility, the Adaptive LASSO SR portfolio has the highest annualized Sharpe ratio 

(76.74%), followed by the Adaptive LASSO 1/N portfolio (72.41%), outperforming the 

S&P 500 (60.18%) and 1/N (63.90%). This indicates that, on a risk-adjusted basis, the 

Adaptive LASSO strategies generate higher returns per unit of risk, although the 

statistical significance of these improvements is limited. 

A more pronounced difference is observed in the annualized Sortino ratio, which 

accounts for downside risk. The Adaptive LASSO SR and Adaptive LASSO 1/N 

portfolios achieve Sortino ratios of 255.34% and 214.74%, respectively, which are 

significantly higher than those of the S&P 500 (129.57%) and 1/N (143.80%) portfolios. 

These findings suggest that the Adaptive LASSO-based strategies provide more favorable 

downside risk-adjusted returns, enhancing their attractiveness to risk-averse investors. 

The Adaptive LASSO SR portfolio further stands out in terms of the annualized 

certainty equivalent, suggesting higher investor utility relative to other strategies. 

Similarly, the Adaptive LASSO 1/N portfolio outperforms the benchmark portfolios in 

this metric.  
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In terms of downside risk measures, the Conditional Value-at-Risk (CVaR) shows 

values above 18% at the 1% level and above 10% at the 5% level. This suggests a 

substantial risk of loss in extreme market conditions. Among all portfolios, the Adaptive 

LASSO 1/N portfolio presents the lowest CVaR values, suggesting a relatively lower 

exposure to severe tail risk events. 

Lastly, the maximum drawdown, which captures the most significant peak-to-

trough decline, remains above 35% for all portfolios. The highest drawdown is observed 

in the S&P 500 strategy (52.15%), indicating substantial vulnerability to market 

downturns. Conversely, the Adaptive LASSO 1/N portfolio records the lowest drawdown 

(36.01%), reflecting greater resilience to extreme losses. 

Overall, the results highlight the superior performance of the Adaptive LASSO 

SR strategy, which consistently outperforms the benchmark portfolios. Even after 

incorporating transaction costs, the Adaptive LASSO-based strategies demonstrate strong 

risk-adjusted returns and robustness in extreme market conditions. The combination of 

threshold-based selection with a no-trade boundary proves effective in optimizing 

portfolio performance while mitigating transaction costs. These findings underscore the 

potential of Sharpe ratio-based weight optimization in delivering superior investment 

outcomes.  

 

 

5.3. Sensitivity of the results to transaction costs  

The evolution of the cumulative returns of the LASSO-base strategies and cumulative 

returns of the benchmarks, with and without transaction costs, are shown in Figure 1. The 

key feature observed in this figure is that both Adaptive LASSO portfolios consistently 

outperform the 1/N benchmark, with the SR variant achieving the highest cumulative 

return of 337.2% with transaction costs and 356.66% without transaction costs, 

significantly surpassing all other portfolios.  
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Figure 1 – Cumulative returns with and without transaction costs 

 Table 3 presents the performance metrics of the portfolios in the scenario with no 

transaction costs. The comparison between Table 2 (with transaction costs) and Table 3 

(without transaction costs) highlights the impact of transaction costs on portfolio 

performance. 

 Without transaction costs, cumulative returns are noticeably higher across all 

portfolios. The win rate remains relatively stable, with minor improvements for the 

Adaptive LASSO portfolios when transaction costs are excluded. The Sharpe Ratio (SR) 

and Sortino Ratio (SOR) improve without transaction costs. The Adaptive LASSO SR 

portfolio’s SR rises from 76.74% (with costs) to 80.73% (without costs), and its Sortino 

Ratio increases from 255.34% to 267.55%. These improvements indicate that transaction 

costs erode a portion of the risk-adjusted returns. 

 

Table 3 - Performance without transaction costs 

 S&P 500 1/N 
Adaptive 

LASSO 1/N 

Adaptive 

LASSO SR 

Win rate  68.24 68.24 67.45 65.10 
CumRet 1.8974 2.1547 2.8849 3.5666 
Skewness -0.4753 -0.3399 0.5154** 0.5986*** 
Annualized mean return  11.13 12.67 16.70* 21.12** 
Annualized Standard Deviation 16.44 17.73 20.02 24.62 
SR  60.25 64.54 77.20 80.73 
SOR  129.74 145.26 222.67 267.55** 
CE (K = 1)  9.67 10.98 14.71* 18.18** 
CE (K = 3) 6.70 7.59 11.49 13.56* 
CE (K = 5) 2.65 2.82 6.74 6.85 
CVaR1%  21.48 22.83 18.05 21.38 
CVaR5%  12.02 12.06 9.99** 11.62 
MD  52.15 49.89 35.81 42.01 

a) With transaction costs (c = 0.15%) b)  Without transaction costs 
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Notes: This table presents the performance metrics of the S&P 500 and 1/N benchmark portfolios and the 
two proposed trading strategies (Adaptative LASSO 1/N and Adaptative LASSO SR), without considering 
transaction costs. For a detailed description of the metrics presented see the notes of Table 2. All values are 
presented in percentage. 

Figure 2 - Cumulative returns with different proportional transaction costs 

 

 Figure 2 illustrates the cumulative returns of various portfolios with different 

levels of proportional transaction costs. To explore how transaction costs affect portfolio 

performance, the portfolios were constructed for transaction cost rates ranging from 

0.15% to 1.2%, with intervals of 0.01%. The Adaptive LASSO 1/N portfolio is the most 

impacted, with its cumulative returns falling below the 1/N benchmark when transaction 

costs exceed 0.64%. On the other hand, the Adaptive LASSO SR portfolio continues to 

outperform the 1/N benchmark until the transaction cost reaches 1.07% (break-even 

transaction cost), i.e. a round-trip cost of 2.14%.  

Overall, while transaction costs do reduce cumulative returns, the Adaptive 

LASSO portfolios, particularly the SR version, remain competitive even at higher cost 

levels. 

 

5.4. Sensitivity enter/exit the market threshold  

Table 4 presents the results of a sensitivity analysis to the entry/exit threshold. The results 

support the robustness of the Adaptive LASSO strategies.  

 

Table 4 - Sensitivity analysis to market entry and exit thresholds 
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Threshold Performance metrics 
Adaptive 

LASSO 1/N 

Adaptive 

LASSO SR 

0% 

CumRet 271.15 340.52 

Mean return  15.82 20.27** 

SR  72.55 77.63 

SOR  220.01* 259.94** 

0.05% 

CumRet 273.44 339.45 
Mean return  15.94 20.24** 
SR  73.21 77.04 
SOR  222.21** 259.65** 

0.1% 

CumRet 268.05 339.50 
Mean return  15.65 20.23** 
SR  72.00 77.16 
SOR  216.53* 256.78** 

0.15% 

CumRet. 269.22 337.20 
Mean return  15.70 20.11** 
SR  72.41 76.74 
SOR  214.74* 255.34** 

0.2% 

CumRet. 264.83 334.88 
Mean return  15.48 19.99** 
SR  71.17 76.25 
SOR  218.56* 256.63** 

0.25% 

CumRet. 233.95 301.97 
Mean return  13.91 18.30** 
SR  63.25 69.40 
SOR  187.54* 229.84** 

0.3% 

CumRet 234.13 301.93 
Mean return  13.91 18.29** 
SR  63.33 69.44 
SOR  188.33* 229.87** 

Notes: This table presents the annualized cumulative return, the annualized mean return, Sharpe ratio and 
Sortino ratio. All metrics are computed using round-trip transaction costs of 0.3%. The p-values are 
obtained using 100,000 bootstrap samples created with the circular block procedure of Politis and Romano 
(1994), with an optimal block size chosen according to Politis and White (2004) and Politis and White 
(2009). “*”, “**” and “***” denote the significance levels of 10%, 5% and 1%, respectively. In bold are 
the best results for the two LASSO approaches. All values are presented in percentage. 

 

The optimal threshold for the Adaptive LASSO SR portfolio is 0%, yielding a 

cumulative return of 340.52%, an annualized Sharpe ratio of 77.63%, and an annualized 

Sortino ratio of 259.94%. For the Adaptive LASSO 1/N portfolio, the best performance 

is achieved at a threshold of 0.05%, with a cumulative return of 273.44%, an annualized 

mean return of 15.94%, an annualized Sharpe ratio of 73.21%, and an annualized Sortino 

ratio of 222.21%. These low values for the optimal thresholds may result from the general 

upward trend in stock prices over the period considered, making it usually worthwhile to 

stay in the market despite transaction costs. 

While the threshold choice influences portfolio performance, its impact is not 

highly pronounced. Both Adaptive LASSO portfolios maintain a statistically significant 
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advantage over the 1/N benchmark in terms of the Sortino ratio across all thresholds. The 

Adaptive LASSO SR portfolio also consistently exhibits a statistically higher monthly 

mean return compared to the 1/N benchmark; a distinction not always observed for the 

Adaptive LASSO 1/N portfolio. 

These findings highlight the resilience of the Adaptive LASSO SR strategy in 

generating superior returns under varying market conditions. The variation in entry/exit 

thresholds does not substantially alter the strategy’s performance, indicating that strict 

threshold optimization may not be necessary. Instead, investors may prioritize other 

factors, such as transaction costs and liquidity constraints, when selecting an entry/exit 

threshold. The overall results underscore the potential of the Adaptive LASSO framework 

to deliver strong, risk-adjusted returns while maintaining robustness across different 

market conditions. 

 

 

6. Conclusions 

This study explores the impact of various firm-specific features on forecasting returns for 

a large set of US stocks traded on the NYSE and NASDAQ between January 1990 and 

December 2022. By applying the adaptive LASSO methodology, we identify the most 

relevant features for predicting stock returns and use these forecasts to construct two 

threshold-based portfolios: Adaptive LASSO 1/N, with equal weights for selected stocks, 

and Adaptive LASSO SR, where stock weights are determined by their expected Sharpe 

ratio. Additionally, we incorporate a round-trip transaction cost of 0.3% and a no-trade 

region to manage turnover rates and mitigate trading costs. 

In terms of feature relevance, the adaptive LASSO consistently selects firm 

characteristics such as lagged returns, log-transformed trading volumes, market value, 

employee count, dividend yield, R&D expenditure relative to sales, net cash flow 

investing divided by market value, and return on invested capital. These features are 

selected more than 10% of the time across the sample period, with some reaching a 

selection frequency of up to 51%. 

The portfolio analysis reveals that the Adaptive LASSO SR portfolio outperforms 

its counterparts, achieving a cumulative return of 337.20%, which substantially exceeds 

the S&P 500 (189.57%) and 1/N (213.24%) benchmarks. Moreover, the Adaptive 

LASSO SR portfolio has the highest annualized Sharpe ratio at 76.74%, surpassing the 
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other portfolios, which further emphasizes the superior risk-adjusted performance of the 

adaptive LASSO-based strategies. These findings affirm that adaptive LASSO 

predictions contribute significantly to portfolio performance, providing a reliable method 

for selecting profitable stocks. 

Furthermore, the sensitivity analysis shows that the break-even transaction cost 

for the Adaptive LASSO SR portfolio is estimated to be 1.07%. This indicates that the 

strategy remains robust even with moderate trading costs. The combination of threshold-

based strategies with the no-trade boundary effectively reduces turnover and enhances 

the efficiency of portfolio construction. 

Additionally, sensitivity to entry/exit thresholds demonstrates that the Adaptive 

LASSO SR portfolio consistently maintains superior performance across a range of 

thresholds, with the optimal threshold set at 0%. This threshold yields a cumulative return 

of 340.52% and an annualized Sharpe ratio of 77.63%, solidifying the Adaptive LASSO 

SR portfolio as the best-performing strategy under varying market conditions. 

In conclusion, this study highlights the effectiveness of adaptive LASSO in 

identifying key firm characteristics for stock return forecasting and constructing 

portfolios that outperform traditional benchmarks, even when accounting for transaction 

costs.  
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Table A.1 – List of the features  

# Acronym Description 

1 Amihud Amihud ratio (see Equation (1)) 

2 Returns Arithmetic returns, given by .�,� = �X�],;�X�],;�_ − 1, where .�,�is the arithmetic return for stock 	 at time � and B
��,� is the total return 

index for stock 	 at time �  

3 Cf_per_sales Cash flows-to-sales, given by the ratio between funds from operations and net sales or revenues, multiplied by 100 

4 Current_ratio Current ratio, given by the ratio between total current assets and total of current liabilities 

5 Dep_div_mv Depreciation and depletion divided by market value, where the market value is given by share price multiplied by number of ordinary 
shares in issue 

6 Div_yield  Dividend yield, given by the ratio between dividend per share and share price, multiplied by 100 

7 Emp_growth Employees 1-year yearly growth, given by the current year's total employees divided by last year's total employees minus 1, all 
multiplied by 100 

8 EPS_div_Price Earnings per share divided by the adjusted closing price, where the earnings per share are given by the revenue multiplied by the net 
margin and divided by the number of shares outstanding 

9 Gross_profit_margin Gross profit margin, given by the ratio between gross income and net sales or revenues, multiplied by 100 

10 Income_tax_div_mv Income taxes divided by market value, where the income taxes correspond to all income taxes levied on the income of a company by 
federal, state, and foreign governments and the market value is given by share price multiplied by number of ordinary shares in issue 

11 Inv_turnover Inventory turnover, that corresponds to the ratio between the cost of goods sold (excluding depreciation) and average of inventories of 

the last and current years 

12 Log_Employees Natural logarithm of the number of both full and part-time employees of the firm  

13 Log_mv Natural logarithm of market value, where the market value is given by share price multiplied by number of ordinary shares in issue 

 
14 

 
Log_Vol 

Natural logarithm of volumes, where volume correspond to the adjusted closing price, multiplied by turnover by volume, where the 
turnover by volume is the number of shares traded for a stock on a particular day 

15 Mean_Amihud Mean of current and three previous values of Amihud illiquidity ratio 

16 Mean_log_Vol Mean of current and three previous values of log-volumes 

17 Mean_Parkinson Mean of current and three previous values of Parkinson range volatility estimator 

18 Net_cf_financing Net cash flow – financing divided by market value, where the net cash flow – financing corresponds to net cash receipts and 
disbursements resulting from reduction and/or increase in long- or short-term debt, proceeds from the sale of stock, stock 
repurchased/redeemed/retired, dividends paid, and other financing activities 
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19 Net_cf_investing Net cash flow – investing divided by market value, where the net cash flow – investing corresponds to net cash receipts and 

disbursements resulting from capital expenditures, decrease/increase from investments, disposal of fixed assets, increase in other assets 
and other investing activities  

20 Net_debt_div_mv Net debt divided by market value, where the net debt is the difference between total debt and cash and the market value is given by 
share price multiplied by the number of ordinary shares in issue 

21 Net_margin_div_mv Net margin divided by market value, where the net margin is the ratio between net income and net sales or revenues, multiplied by 
100 and the market value is given by share price multiplied by the number of ordinary shares in issue 

22 Net_sales_div_mv Net sales or revenues divided by market value, where the net sales or revenues are the gross sales and other operating revenue, 

excluding discounts, returns and allowances and the market value is given by share price multiplied by the number of ordinary shares 
in issue 

23 OPM_div_mv Operating profit margin divided by market value, where the operating profit margin is the ratio between operating income and net 
sales or revenues, multiplied by 100, and the market value is given by share price multiplied by the number of ordinary shares in issue 

24 Parkinson Parkinson volatility range estimator (see Equation (2)) 

25 Price_to_book Price-to-book value, given by share price divided by the book value per share 

26 PER Price-to-earnings ratio, given by adjusted closing price divided by the earnings rate per share 

27 Quick_ratio Quick ratio, given by cash and equivalents plus receivables (net) divided by total current liabilities 

28 RD_to_sales Research and development expenses-to-sales, given by research and development expense divided by net sales or revenues, multiplied 
by 100 

29 Return_on_equity Return on equity, given by ((net income - preferred dividend requirement) / average of last year and current year’s common equity) * 
100 

30 Return_on_inv_cap Return on invested capital, given by (net income + ((interest expense on debt - interest capitalized) * (1-tax rate))) / (average of last 
year and current year’s (total capital + short term debt and current portion of long-term debt))*100 

31 Sps_div_Price Sales per share divided by the adjusted closing price, where sales per share correspond to the per share amount of the company's sales 
or revenues for the 12 months ended the last calendar quarter of the year 

32 SGAE_to_sales Selling, general and administrative expenses-to-sales, where the selling, general and administrative expenses correspond to ((selling, 
general and administrative expenses - research and development expense) / net sales or revenues)) * 100 

33 Share_turn Share turnover rate, given by the ratio between trading volume and market capitalization, multiplied by 100 

34 Shareholders_equity_div_mv Total shareholders’ equity divided by market value, where the total shareholders’ equity is the sum of preferred stock and common 
shareholders’ equity, and the market value is given by share price multiplied by number of ordinary shares in issue 

35 Total_asset_turn Total asset turnover, given by the ratio between net sales or revenues and total assets 
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36 Total_debt_of 

_common_equity 

Total debt (% of common equity), given by ((long-term debt + short-term debt and current portion of long-term debt) / common 

equity)*100 

37 Total_debt_of_total_cap Total debt (% of the total capital), given by long-term debt + short-term debt and current portion of long-term debt) / (total capital + 
short-term debt and current portion of long-term debt)*100 

38 Total_liabilities_div_mv Total liabilities divided by market value, where the total liabilities are all short- and long-term obligations expected to be satisfied by 
the company and the market value is given by share price multiplied by the number of ordinary shares in issue 

39 Work_cap_div_mv Working capital divided by the market value, that is, the difference between the current assets and current liabilities, divided by share 
price multiplied by number of ordinary shares in issue 

Notes: This table presents the acronyms of the variables, in alphabetical order, used in the present paper, their summary description, mostly based on the notes available in 
Refinitiv Eikon database. 
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Table A.2 – Features selection by the adaptive LASSO 

Variable 

Relative number of months where each feature is selected by 

adaptive LASSO (%) 

Overall sample  In-sample Out-of-sample 

Returns(1) 29.18 35.29 25.10 

Returns(2) 31.29 33.53 29.80 

Returns(3) 29.18 28.82 29.41 

Returns(4) 31.06 28.82 32.55 

Amihud 23.29 26.47 21.18 
Cf_per_sales 16.24 20.59 13.33 
Current_ratio 23.53 21.18 25.10 
Dep_div_MV 27.29 26.47 27.84 
Div_yield  31.77 32.94 30.98 

Emp_growth 17.18 16.47 17.65 
EPS_div_Price 22.35 20.59 23.53 
Gross_profit_margin 28.24 25.29 30.20 

Income_tax_div_MV 18.59 19.41 18.04 

Inv_turnover 24.94 26.47 23.92 
Log_Employees 32.24 35.29 30.20 

Log_mv 38.59 33.53 41.96 

Log_Vol 39.77 31.18 45.49 

Mean_Amihud 23.29 24.12 22.75 
Mean_Parkinson 27.53 30.00 25.88 
Mean_log_Vol 46.35 40.00 50.59 

Net_cf_financing  17.41 24.12 12.94 
Net_cf_investing  31.53 34.71 29.41 

Net_debt_div_mv 21.65 20.00 22.75 

Net_margin_div_mv 26.12 24.12 27.45 
Net_sales_div_mv 26.12 25.29 26.67 
OPM_div_mv 25.88 23.53 27.45 
Parkinson 19.29 16.47 21.18 
Price_to_book 14.35 17.65 12.16 
PER 15.53 10.59 18.82 
Quick_ratio 31.53 28.82 33.33 

RD_to_sales 32.47 31.77 32.94 

Return_on_equity 18.12 20.00 16.86 
Return_on_inv_cap 29.41 35.88 25.10 

Sps_div_Price 9.88 14.71 6.67 
SGAE_div_sales 20.24 19.41 20.78 
Share_turn 14.59 30.00 4.31 
Shareholders_equity_div_mv 20.24 18.24 21.57 
Total_asset_turn 21.65 24.71 19.61 
Total_debt_of_common_equity 20.71 16.47 23.53 
Total_debt_of_total_cap 18.35 19.41 17.65 
Total_liabilities_div_mv 25.41 25.29 25.49 
Work_cap_div_mv 19.53 11.77 24.71 

Notes: This table reports the relative number of months in the overall sample and in the in-sample and out-
of-sample subperiods, in which the adaptive LASSO selects each feature for forecasting the returns. All the 
variables are lagged one month, except Returns(k) that are lagged k months. In bold are the features chosen 
in at least 25% of the months. The values are presented in percentages. 
 


