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Abstract

Equity index options with less than one month to maturity have surged in popular-
ity over the past two decades, particularly for the very shortest maturities. S&P 500 
(SPX) options with fewer than 10 days to maturity represented 17% of all SPX option 
trading volume in 1996 as compared to around 70% today. Despite this popularity, 
research on such short maturities remains limited. In this paper, I examine deleveraged 
daily returns to short maturity contracts written on three major U.S. indices: S&P 
500, Nasdaq 100, and Russell 2000. I estimate Instrumental Principal Components 
Analysis factor models and find e vidence f or a  l ow-dimensional f actor s tructure that 
explains over 95% of the variation in the cross-section of option returns. I apply two 
complementary approaches to interpret the latent factors and conclude they primar-
ily provide compensation for exposure to the forward-looking higher-order moments of 
these indices, namely risk-neutral variance and skewness. Based on this interpretation, 
I propose a tradable factor model which outperforms previously proposed models from 
the literature and industry practice. Using this factor model, I quantify the contri-
butions to the expected return for options with various levels of moneyness, maturity, 
and type (call/put) from exposure to the underlying index, variance, and skewness. 
I document substantial contributions to the expected return from exposure to these 
higher-order moments, with significant variation across moneyness, maturity and type.
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1 Introduction

The bulk of total trading volume in the U.S. equity index options market consists of options
with 30 days or fewer to maturity. Option maturities of 10 days or fewer by themselves
constitute over two-thirds of this total trading volume, a stark change from just two decades
prior, when it made up less than one-fifth. This change was largely driven by the rollout of
non-standard weekday expirations, a nascent but burgeoning segment of the options market.
Despite this emergent popularity, options of such short maturities remain understudied by
the literature. This article fills this gap by examining the returns on these contracts and
relating them to a fundamental object in derivatives pricing: the risk-neutral distribution.
The seminal work of Breeden and Litzenberger (1978) explicitly connects option prices to
the forward-looking risk-neutral distribution and vise-versa. Less obvious is the connection
between the risk-neutral distribution and option returns. In this article, I study the rela-
tionship between the returns to these short maturity equity index options and changes in
the higher-order moments of their implied risk-neutral distributions.

Since their introduction on U.S. public exchanges in 1983, equity index options have
been the subject of much discussion and interest from academics and practitioners alike. In
particular, the market for S&P 500 Index options (and formerly S&P 100/OEX options) has
served as the proving ground for many innovations in the options market. Whether it’s the
rollout of a new method for calculating final settlement prices or the listing of long-dated
maturities (LEAPS), such innovations take hold in the equity index options space before
branching out to other option markets.1

In more recent history, perhaps the single most notable and impactful innovation is that
of the short maturity, non-standard expiration contracts, known colloquially as "weeklies".
These are call and put option contracts listed between one to five weeks prior to maturity,
expiring on a fixed weekday (i.e. Wednesday weeklies are options expiring each Wednesday)
at market close. Weeklies augment the traditional standard monthly expiration contracts
for equity indices; these traditional expiries settle before market open on the third Friday of
each month or the closest trading day preceding it if the Friday lands on a market holiday.
In 2005, the Chicago Board of Exchange (CBOE) listed the first set of regular non-standard
expirations on U.S. option exchanges: Friday weeklies written on the S&P 500 Index (SPX).2

1On June 19th, 1987, major US futures exchanges and equity option exchanges began computing S&P
500 settlement prices for associated options and futures contracts using the Special Opening Quotation
(SOQ) methodology, a settlement price based off the official opening prices of index constituents. In 1990,
U.S. options exchanges listed the first LEAPS (Long-term Equity AnticiPation Securities) on select equity
indices. LEAPS are option contracts with very long-dated maturities (2 - 10 years).

2I consider quarterly expirations, the first listed expirations for many options written on equity indices
and equity index futures as another standard expiration.

1



Figure 1. Total trading volume of S&P 500 equity index options by year for short maturities
(orange) and ultra-short maturities (blue).

These weekly Friday expirations proved popular with traders prompting CBOE to list Friday
weeklies for other major U.S. equity indices, select ETFs, and individual equities. In the
decade following their introduction, the Friday weeklies proved to be a smash hit, capturing
non-trivial segments of trading volume wherever they are introduced.3 In response, CBOE
began to list weeklies expiring on other weekdays. In 2016, CBOE introduced Wednesday
SPX weeklies with Monday weeklies following only a year later. By the end of 2022, CBOE
filled out the trading week having introduced Tuesday and Thursday SPX expirations earlier
that year. By the end of 2024, there is a set of listed S&P 500, Nasdaq 100 and Russell 2000
options expiring every single trading day. This innovation to the options market has been
highly consequential, shifting trading towards the very shortest maturities. The primary
focus of this paper is to understand the risks priced into these maturities which have since
taken over some of the world’s most liquid options markets.

The introduction of these weekly contracts has dramatically transformed the makeup
of trading volume in the options market. The adoption and emergent popularity of these
contracts is striking - not just for the SPX options market where they were first introduced
- but in whichever market they are listed. To aid our discussion on these contracts, I
refer to options expiring in 10 and 30 days as short maturity options (S maturities for

3The Boom in Zero-Day Options Is Coming for Tesla and Nvidia. Wall Street Journal - September 9,
2024
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short) and options expiring in fewer than 10 days I refer to as ultra-short maturities (US
maturities). The listing of various new weekly expirations coincides with dramatic changes
in the composition of trading volume. Figure 1 plots the annual trading volume of short
and ultra-short maturities from 1996 to 2023. In 1996, only around 17% of all SPX option
trading volume was in US maturities; by 2023, this figure ballooned to over 70%. Other
options markets which received weekly expirations see a similar trend of trading shifting
towards US maturity contracts.

Despite their overwhelming popularity, such contracts are, as of yet, not well-understood.
This is partly due to the fact that most research examining the options market typically only
study more conventional maturities - contracts with between 1 month to 2 years to expiration.
In this paper, I explicitly focus on equity index options with less than 1 month to maturity
and examine the risks priced into this heavily traded segment of the options market. To this
end, I examine the daily returns of equity index options written on the most followed US
equity indices using complimentary approaches from the factor model literature. I estimate
two sets of factor models on the excess deleveraged return for options written on the S&P
500 (SPX), Nasdaq 100 (NDX), and Russell 2000 (RUT). I first estimate the Instrumental
Principal Components Analysis (IPCA) latent factor model of Kelly, Pruitt, and Su (2019)
for each index. The estimation procedure for IPCA delivers a set of extracted latent factors
- potentially allowing for an interpretation of these factors using known risk exposures. The
latent factors primarily appear to encode compensation for bearing variance, skewness and
jump tail risk. This interpretation informs the specification of my second set of factor models
which use tradable and easily interpretable factors. These factor models have the upshot
that they are easier to economically interpret as compared to models which employ latent
factors.

My results suggest that a five factor model, consisting of the underlying index’s return,
two volatility factors (straddles constructed from options with 9 days and 30 days to matu-
rity) and two skewness factors (skewness assets constructed from options with 9 days and
30 days to maturity), is the most successful in explaining the variation in the return of
these shorter maturity contracts compared to other models which employ observable and
tradable factors. In particular, factor models that include factors sensitive to variance and
skewness over a 9-day horizon offer substantial improvement in explaining returns in US
maturities over models which only use factors relating to 1-month moments such as the
VIX and CBOE’s SKEW Index or the returns to a straddle and skewness asset constructed
using 1-month maturity options. This is in contrast to approaches studying conventional
maturities (1 month to 2 years) which typically just use factors exposed to forward-looking
1-month moments as factors.
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Using a reduced form model, I attribute fluctuations in the five tradable factors to the
return of underlying index and innovations to its risk-neutral forward-looking variance and
skewness. I find substantial heterogeneity across maturity, moneyness and option type
(call/put) in how innovations to variance and skewness affect option returns. I quantify
the contribution of these innovations to expected option returns and find relatively large
contributions attributable to innovations in these forward-looking higher-order moments.
In particular, index options which are further out-of-the-money usually attribute a greater
fraction of their expected return to changes in higher-order moments relative to a similar
option further in-the-money. In general, the magnitude of this fraction is generally increas-
ing in moneyness for calls and decreasing for puts. This result resembles a recent finding
by Fournier, Jacobs, and Orłowski (2024) who find similar variation in the contribution of
variance risk in their study of SPX option returns.

This paper contributes to four strands of the asset pricing literature. The first is the
relatively scant but burgeoning literature on options with shorter maturities. Common
approaches include parametric and semi-parametric approaches to option pricing (Bandi &
Renò 2024; Todorov 2019), examining the return profile of various option trading strategies
(Almeida, Freire, & Hizmeri 2024; Johannes, Kaeck, Seeger, & Shah 2024; Vilkov 2024),
and considering implications for market participants and trading activity in options and
the underlying market (Brogaard, Han, & Won 2023; Dim, Eraker, & Vilkov 2024). This
paper’s contribution in this vein is most similar to the first two approaches. Prior work
such as Almeida et al. (2024) generally find substantial variance risk premia implied by
option returns; however, the amount this exposure affects returns is usually not explicitly
quantified. Using a reduced form model, I provide estimates for the average contributions of
both variance and skewness to the expected return on different categories of options.

The second stand is the vast literature relating option prices and returns to the risk-
neutral measure. Breeden and Litzenberger (1978) establishes the explicit connection be-
tween option prices and the risk-neutral distribution: prices pin down a risk neutral distribu-
tion and vice-versa. The connection the risk neutral distribution shares with option returns
is more subtle but nonetheless salient. In particular, the literature consensus considers the
risk-neutral forward-looking variance as an important risk exposure and determinant for op-
tion returns. This stems from the fact that the price of any vanilla option, all else equal,
is increasing in expected variance of the underlying asset’s price path. This observation has
motivates studies such as those by Jones (2006) and Constantinides, Jackwerth, and Savov
(2013) which employ changes in the VIX as a risk factor in their factor models of option
returns. These models find large risk premia associated with variance and economically sig-
nificant contributions to option returns. In some aspects, the models I develop in this paper
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are an extension to these earlier models which consider only the first two moments of returns.
Like prior models, I fundamentally model option returns as compensation for bearing risks
associated with the underlying asset and its variance. However, unlike most prior work, I
also give serious consideration to skewness risk as a priced factor. While skewness risk has
been identified as a driver of asset returns as early as Arditti (1967) and Kraus and Litzen-
berger (1976), its role as a determinant of option returns is under-explored relative to the
role of variance. Kozhan, Neuberger, and Schneider (2013) and Bali, Chabi-Yo, and Murray
(2022) are two examples from the literature which examine the pricing of skewness risk in the
cross-section of equity options. For certain kinds of options, for example, out-of-the-money
call options, I find the contribution of skewness risk to the expected return is large.

The third strand of literature is the broad work that seek to understand option returns
using a factor model approach. Recent advancements in factor model methodologies more
broadly have mitigated some of the issues present in earlier work. For the markets I focus on
here, factor models are potentially more flexible and less susceptible than their no-arbitrage
model counterparts to potentially large errors due to model mis-specification (Giglio, Kelly,
& Xiu 2022; Israelov & Kelly 2017). The factors employed by these models can either be
latent or observable; factor models featuring both types of factors have been successfully
employed in explaining option returns. Empirically, models featuring latent factors tend
to have lower error but are more difficult to interpret. Goyal and Saretto (2022), Büchner
and Kelly (2022), Horenstein, Vasquez, and Xiao (2022), among many others utilize a low-
dimensional set of latent factors to explain the cross-section of option returns. Coval and
Shumway (2001), Jones (2006), and Fournier et al. (2024) are among many examples which
employ observable factors such as the underlying and a forward-looking variance factor.
In this paper, I estimate factor models of both types: a model of latent factors extracted
from option characteristics and an interpretable factor model for option returns consisting
of exposure to the underlying, and the returns to assets exposed to risk-neutral variance
and skewness. These two sets of factor models are complementary; the interpretation of the
latent factors informs the choice of factors in the observable factor model.

The final strand of literature is large body of work applying dimensionality reduction
methods to problems in empirical asset pricing (Chamberlain and Rothschild (1982); Kozak,
Nagel, and Santosh (2020); Lettau and Pelger (2020), among many others). It is well-known
that option returns depend greatly on characteristics such as moneyness and maturity which
may vary greatly over the contract’s life, rendering the idea of static betas implausible.
However, the betas for contracts which are of similar characteristics are also likely to be
related. In light of this observation, many factor model-based approaches employ some form
of dimensionality reduction on option characteristics to incorporate dynamic betas in a par-
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simonious way. This paper uses the Instrumental Principal Components Analysis (IPCA)
model of Kelly et al. (2019) as its main empirical workhorse which allows for dynamic option
betas to be easily implemented by specifying the betas as linear functions of these poten-
tially time-varying contract characteristics. Both Goyal and Saretto (2022) and Büchner
and Kelly (2022) investigate delta-hedged returns through the lens of an IPCA model that
features both latent factors and dynamic betas that are functions of contract characteristics.
Other approaches include specifying the option betas as non-linear functions of state vari-
ables (Jones 2006), using a shrinkage estimator to control for time variation in the factor
exposures (Shafaati, Chance, & Brooks 2021), and implementing other PCA-based methods
of computing conditional betas from contract characteristics (Z. Chen, Roussanov, Wang, &
Zou 2024).

The aim of this article is to examine the factor structure embedded in the returns of
equity index options with less than a month to maturity. To this end, I focus on the one-day
deleveraged holding returns of these options. Although these contracts have ballooned in
popularity, they remain relatively under-studied. In this paper, I estimate the risks embedded
into these options and decompose the expected return into components corresponding to
movements in the underlying index and fluctuations in its higher order moments. In the
sections that follow, I first give an overview of the motivating theory in section 2. Since I want
to estimate factor models on option returns, I construct a time series of leverage-adjusted
portfolios from these short-maturity contracts in section 3. As noted by Constantinides et
al. (2013), delevering option returns can simplify the econometrics considerably, allowing
for linear factor models to be estimated on a set of returns more akin to the conventional
stock and bond returns on which factor models have been traditionally estimated. With
these deleveraged portfolios in hand, I proceed with empirical work starting in section 4
where I estimate a series of IPCA models and assess the models using standard metrics from
the factor model literature. In section 5, I take two distinct approaches to interpreting the
latent factors extracted in section 4. In the first approach, I use known risk factors from prior
factor model-based approaches and regress them against the extracted latent factors. In the
second, I examine the factor loadings across various buckets of options grouped by maturity,
moneyness and type. Using these interpretations, I propose my own 5 factor model consisting
of daily returns to the underlying index, two variance assets, and two skewness assets. In
section 6, I propose and estimate a reduced-form model of variance and skewness asset returns
and relate them to innovations in the risk-neutral moments of the underlying. Combining
this reduced-form model with the 5 factor model from the prior section, I estimate the
fraction of the expected return attributable to fluctuations in forward-looking variance and
skewness. Lastly, the final section provides concluding remarks and some future directions
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for this research.

2 Theory

2.1 Factor models of option returns

I study option returns using a factor model approach, one of the most common approaches
in empirical asset pricing today. Although frequently used to examine other asset classes,
a factor structure for option returns can be easily motivated in several ways. One source
of motivation is general as it stems from the universal nature of the framework which is
independent of the asset class. Instead, it relies only on the assumption of no-arbitrage and
the existence of a stochastic discount factor, mt+1, satisfying for any return Ri,t+1:

Et(mt+1Ri,t+1) = 1 (1)

If we assume that mt+1 in (1) is a linear function of systematic risk factors Ft+1, then the
cross section of returns satisfies a conditional factor model:

Ri,t+1 −Rf
t+1 = αi,t + β′

i,tFt+1 + εi,t+1 (2)

where E [εi,t+1Ft+1] = 0, αi,t = 0, εi,t+1 is mean zero for all i and each t, and Rf
t+1 is the

one-day gross risk-free rate. A more asset class-specific motivation emerges from the fact
that option prices, and therefore returns, are exposed to attributes of the underlying asset’s
stochastic process. Indeed, many modern hedging frameworks rely on this intuition, concep-
tualizing the change in an option price as a function of changes in the price and volatility
of the underlying asset (Bates 2005). For instance, Carr and Wu (2020) formalize this in-
sight into a continuous time framework linking short-term fluctuations in the option price
directly to variation in the underlying’s price and the option’s implied volatility. Denoting
the change in an option’s price by ∆Ot+1, a conventional decomposition emerges from a
Taylor expansion along the underlying’s price and volatility to obtain

∆Ot+1 ≈
∂Ot

∂St

∆St+1 +
∂2Ot

∂S2
t

(∆St+1)
2 +

∂Ot

∂IVt

∆IVt+1 (3)

where ∆St+1 and ∆IVt+1 are the changes in the underlying’s price and the option’s implied
volatility respectively. The partial derivatives of Ot in (3) will be familiar to readers as option
"Greeks" which provide practitioners with a practical avenue to hedge option exposures
in a straightforward way. Normalizing both sides of (3) and performing light algebraic
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manipulation provides an expression for option returns:

∆Ot+1

Ot

≈
[
∂Ot

∂St

St

Ot

]
∆St+1

St

+

[
∂2Ot

∂S2
t

S2
t+1

Ot

](
∆St+1

St

)2

+

[
∂Ot

∂IVt

IVt

Ot

]
∆IVt+1

IVt

(4)

The linear approximation in (4) motivates a factor structure for option returns with factor
loadings being functions of option characteristics. Substituting RS,t+1 = ∆St+1/St and
RIV,t+1 = ∆IVt+1/IVt makes the factor structure clear:

∆Ot+1

Ot

≈
[
∂Ot

∂St

St

Ot

]
RS,t+1 +

[
∂2Ot

∂S2
t

S2
t

Ot

]
R2

S,t+1 +

[
∂Ot

∂IVt

IVt

Ot

]
RIV,t+1 (5)

Note approximation in (5) is valid regardless of the underlying asset of the option. It is
also valid regardless of the option’s time to maturity and moneyness. This suggests that a
shared factor structure across options of differing in type (call or put), moneyness, and time
to maturity. It’s not just practitioners that utilize, either explicitly or implicitly, a factor
structure to conceptualize the risks baked into option returns; many formal option pricing
models do so as well. Consider the stochastic process that underlies the classic model of
Black and Scholes (1973):

dSt

St

= µdt+ σdBt (6)

where St, µ and σ are the price, drift and volatility of the underlying and Bt follows a
Brownian motion. This implies a one factor model where the risk being priced stems from
the Brownian motion Bt. Other popular option pricing models imply their own factor models.
In the case of the Heston (1993) model, we have a similar drift-diffusion process for St, but
with an additional process which makes volatility stochastic. Let B1

t and B2
t be two Brownian

motions and Vt be the level of volatility. In the Heston model, St has the dynamics:

dSt = µStdt+
√
VtStdB

1
t

dVt = k (θ − Vt) dt+ σ
√
VtdB

2
t

dB1
t dB

2
t = ρdt

(7)

Here we have two risk factors - one associated with the diffusive component of St and the
other with the volatility process Vt. In general, fully specified option pricing models imply
a set of risk factors for option returns that are related to the higher-order moments of the
underlying.

These theoretical and practical insights have provided the literature with ample motiva-
tion to examine option returns using a factor model approach where the factors correspond
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to higher order moments of the underlying asset. This approach leads researchers to model
returns as generated by factor models of the form

OptionReturni,t+1 = αi,t+1 + β1,i,tR
underlying
t+1 + β2,i,tF

2
t+1 + β3,i,tF

3
t+1 + . . . (8)

where F k
t+1 denotes a factor corresponding to the k-th moment of the underlying. Typically,

the moments employed look over a one-month horizon. Classic examples include Coval and
Shumway (2001) and Jones (2006) who use zero-delta straddle returns and changes in the VIX
Index (one-month forward-looking volatility of the S&P 500) respectively as priced variance
factors. Other papers, such as Zhu (2015) and Liang and Du (2024) consider the forward-
looking skewness of the index, measured by the CBOE SKEW Index (a linear transformation
of one-month forward-looking skewness of the S&P 500), as a priced skewness factor. As
we will explore in later sections, for options with very short maturities, considering factors
sensitive to moments over shorter horizons (specifically 9-day forward-looking variance and
skewness) helps explain variation in returns and their inclusion as priced factors produces
models with lower pricing errors, in particular for US maturity options.

2.2 Higher order moments and option prices

To precisely investigate the relationship between risk-neutral moments and option returns,
I extract moments from option prices. Specifically, I obtain the risk-neutral moments over
the 9-day and 30-day horizon by pricing an asset with payoff equal to either the realized
variance or realized skewness over that horizon. To obtain risk-neutral variance, I replicate
the fair price of a variance claim with maturity m, V (m)

t , as in Bondarenko (2014). Such an
asset has payoff equal to the realized variance from time t to maturity m days later at time
t + m. Rf

t+1 is the one-day accrued interest of a 1-month Treasury bill. The price of this
variance claim is simply the discounted risk-neutral expectation of realized variance. I price
this claim via replication as in Neuberger (1994) and Jiang and Tian (2005):

V
(m)
t =

1

1 +mRf
t+1

EQ
t (RVt→t+m) =

2

1 +Rf
t+1

(∫ F
(m)
t

0

Pt(K,m)

K2
dK +

∫ ∞

F
(m)
t

Ct(K,m)

K2
dK

)
(9)

where Q is the risk-neutral measure, F (m)
t is the t + m forward price of the underlying at

time t, and RVt→t+m denotes the realized variance over the next m days: time t to t +m.
Pt(K,m) and Ct(K,m) are the put and call prices for options expiring at t+m corresponding
to strike K. Similarly, we can construct an asset with payoff equal to the realized skewness
from time t to t +m, RSt→t+m, using the methodology of Neuberger (2012). Specially, the
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price of this asset W
(m)
t is given by:

W
(m)
t =

1

1 +mRf
t+1

EQ
t (RSt→t+m)

=
1

V
(m)
t

[
6

∫ ∞

F
(m)
t

K − F
(m)
t

F
(m)
t K2

Ct(K,m)dK −
∫ F

(m)
t

0

F
(m)
t −K

F
(m)
t K2

Pt(K,m)dK

] (10)

For my purposes, I construct the moment claims V
(m)
t and W

(m)
t for m = 9d (9 days) and

m = 30d (30 days). I define the one-day change in these prices by ∆V
(m)
t+1 and ∆W

(m)
t+1

respectively. Intuitively, these quantities represent changes in the market’s expectation of
variance and skewness in an underlying asset over a fixed forward-looking horizon of m days.

Since the variance claim is purely exposed to realized variance over some horizon, we can
obtain the price of variance forwards as considered by Dew-Becker, Giglio, Le, and Rodriguez
(2017). The variance forward has payoff equal to the realized variance that occurs over the
next 30 days excluding the first 9 days. I derive the price of this asset V

(30d−9d)
t using the

variance claim prices of the 30-day and 9-day variance asset in equation (11):

V
(30d−9d)
t =

1

1 + 30Rf
t

[
EQ

t (RVt→t+30)− EQ
t (RVt→t+9)

]
= V

(30d)
t − V

(9d)
t (11)

Unlike the variance forward, we cannot construct an analogous skewness claim by simply
taking the difference between the two skewness claims. The reason is due to a general fact
of probability theory: measures of skewness are not additive in the same way measure of
variance are. For example, the realized variance of a continuous-time process from time t0

and t1 is typically measured by its quadratic variation QVt0→t1 . This variance additive in
the sense that for t2 > t1, the quadratic variation from t0 to t2 is obtained by the sum:

QVt0→t2 = QVt0→t1 +QVt1→t2

For realized skewness, we do not observe a similar type of linearity. Instead, to obtain a
skewness forward, I normalize the price of an asset with payoff equal to the realized third
cumulant by risk-neutral expectation of realized variance between time t + 9 and t + 30:
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EQ(RVt+9→t+30). The price of the skewness forward is given by:

W
(30d−9d)
t =

1

V
(30d−9d)
t

([
6

∫ ∞

F
(30d)
t

K − F
(30d)
t

F
(30d)
t K2

Ct(K, 30)dK −
∫ F

(30d)
t

0

F
(30d)
t −K

F
(30d)
t K2

Pt(K, 30)dK

]
−[

6

∫ ∞

F
(9d)
t

K − F
(9d)
t

F
(9d)
t K2

Ct(K, 9)dK −
∫ F

(9d)
t

0

F
(9d)
t −K

F
(9d)
t K2

Pt(K, 9)dK

])
(12)

The payoff of this asset is the realized skewness of the underlying between time t + 9 and
t+ 30.

The two types of moment claims have a natural interpretation with respect to the volatil-
ity surface. The variance claims V (m)

t reflect the overall level of the variance at each maturity
m. The skewness claims W

(m)
t reflect the slope of implied volatility smile at each maturity.

Each of the skewness assets are constructed from a portfolio that is long out-of-the-money
call options and short out-of-the-money put options. If the volatility smile were flat, as is
the case in the classic Black and Scholes (1973) model, then the value of the two integrals
in (10) would be equal and the skewness asset would have zero price. Empirically, equity
indices possess an option-implied skewness which is generally negative due to higher im-
plied volatility of out-of-the-money put options relative to call options which are similarly
out-of-the-money.

To fully utilize the data, I use linear interpolation to obtain the values of V (30d)
t , V (9d)

t ,
W

(30d)
t , and W

(9d)
t using the prices of variance claims V (m)

t and skewness claims W (m)
t when-

ever there are sufficiently close maturities m1 and m2 which bracket the target maturity from
above and below.4

Figure 2 show the prices of these variance and skewness claims constructed from SPX
options. On the left, I plot W

(30d)
t and W

(9d)
t . Both skewness time-series tend to spike

downwards during crises when the risk-neutral skew of the index is dominated by the greater
likelihood and risk premia associated with a left tail event such as in 2018’s "Volmageddon"
episode or the 2020 pandemic stock market crash. The skewness of the SPX at both horizons
is negative. This is the norm for equity indices which, under the risk-neutral distribution,
generally feature a larger left tail compared to its right tail. The right side of the figure
plots V

(30d)
t and V

(9d)
t . Large values for these time-series reflect elevated forward-looking

uncertainty for the corresponding horizon. As documented by Kozhan et al. (2013), the risk-
neutral variance (skewness) for SPX is, on average, larger (more negative) than the variance

4I consider two maturities m1 and m2 sufficiently close to m if 0.75m ≤ m1 ≤ m and m ≤ m2 ≤ 1.25m.
CBOE uses a similar construction for the VIX on days when SPX options with exactly 30 days to maturity
are not available.
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Figure 2. 9-day (blue) and 30-day minus 9-day (orange) forward-looking risk neutral mo-
ments of the S&P 500 Index extracted from option prices; plotted variances are annualized.

(skewness) that is realized.
For the rest of this article, I use annualized measures of variance using CBOE’s method-

ology. I compute the un-annualized variance by first computing the integrals in (9) for the
desired maturity or by interpolating it using nearby maturities. Then I multiply that risk-
neutral variance by 252 divided by number of business days to maturity. For the variance
forward V

(30d−9d)
t , I multiply this by 252/21.

3 The data and option panel construction

3.1 Data description

I obtain data on option contract prices, option greeks, and implied volatilities from Option-
Metrics for the most widely followed equity indices in the United States: S&P 500 (SPX),
Nasdaq-100 (NDX), and Russell 2000 (RUT). As of 2024, each of these equity indices have
an option expiration every single trading day. The contracts are cash-settled European-style
equity index call and put options. For all three indices, OptionMetrics’s coverage begins
in January 1996 and ends in August 2023. In 1996, each equity index had only a single
option expiration each month. This monthly expiration date is commonly referred to as the
standard expiration and occurs on the third Friday of each month with the options being
cash-settled before market open. If the third Friday happens to be a market holiday, the
expiration date falls on the closest preceding trading day. As my focus is on short maturity
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options, I only consider options with 30 days or fewer to expiration for inclusion in the final
option panel.

Other data include risk-free rates and option market derived indices. To compute risk-
free rates earned over a day, I obtain 1-month T-bill prices from Bloomberg and divide the
one-day accrued interest by the T-bill’s 3PM mid-price. From CBOE, I obtain time series of
various option market derived indices: the VIX Index, a one-month forward-looking measure
of SPX volatility, the SKEW Index, a one-month forward-looking measure of SPX skewness,
and the VVIX Index, a one-month forward-looking measure of VIX volatility.

On the options data, I impose the standard filters following Constantinides et al. (2013)
and Goyal and Saretto (2022). These filters serve to eliminate contracts with prices which
are either obviously erroneous, violate no-arbitrage conditions, or are so deep or out of the
money that their extrinsic value is close to zero. Specifically, I eliminate contracts which
(1) have zero bid price, or (2) have mid prices that cannot be inverted to compute a Black-
Scholes implied volatility (BSIV), or (3) have a BSIV lower than 2% or greater than 200%, or
(4) have a recorded bid price strictly greater than the ask price, or (5) have a Black-Scholes
delta with absolute value below 0.01 or above 0.99, or (6) imply put-call parity violations.5

I apply one final set of filters to the data: the removal of extremely deep in-the-money
(ITM) and extremely deep out-of-the-money (OTM) options. This removes options that are
very thinly traded which have essentially zero value (options deeply OTM) or have little
value beyond their intrinsic value (options deeply ITM). I compute the cutoff using the risk-
neutral volatility of the underlying implied by options with shared expiration. Specifically,
I compute VIXind,t(τ), the risk-neutral annualized volatility of the underlying from time t

to t + τ for index ind, using out-of-the-money options expiring in τ business days. Using
the valuation approach of Neuberger (1994), I compute VIXind,t(τ) from the price of a log
contract which is easily priced via the replication result of Carr and Madan (1998).

VIXind,t (τ) =

√
2

τ/252
EQ

t

(
− logRind

t→t+τ

)
=

√√√√ 2

τ/252

∑
j

pind(Kj)

K2
j

(13)

The sum in (13) is taken over all OTM options expiring at time t + τ written on index
ind, with pind(Kj) denoting the price of an OTM option of strike Kj.6 Rind

t→t+τ denotes the
return of index ind over time t to t+ τ and EQ

t is the expectation taken over the conditional
risk-neutral distribution.To convert this to a risk-neutral volatility over the life of the option

5Specifically, I remove option quotes which imply a profitable put-call parity arbitrage using the ask
price of the options for long positions and bid price for short positions.

6For the sum in (13), I consider a call option to be OTM if their strike is greater than or equal to the
forward price. For a put option, I consider it to be OTM if the strike is strictly below the forward price.
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Underlying Monday Tuesday Wednesday Thursday Friday

SPX 2017 2022 2016 2022 2005
NDX 2020 2022 2019 2023 2010
RUT 2021 2024 2021 2024 2010
VIX - - 2016 - -
TLT 2024 - 2023 - 2010
GLD 2024 - 2023 - 2010
WTI 2023 2024 2023 2024 2016

Table 1. Intial listing year of weekday, non-standard expiry contracts ("weeklies") across
underlying assets. A standard option expiry for the underlying assets above is typically the
third Friday of each month (excluding the VIX which has its standard expiry on the third
Wednesday of each month).

[t, t + τ ], I multiply VIXind,t (τ) by
√

τ/252. With this quantity in hand for all available
expirations and times t, I keep only option quotes with strikes less than 4 times the risk-
neutral volatility over the remaining life of the option from the spot price. The rationale
for this cutoff is empirically motivated by the fact that nearly all trading volume for equity
index options is concentrated inside this range. For SPX options, 89% of all trading volume
from 1996 to 2023 falls into this range. I observe very similar proportions for NDX and RUT
options.

Over the course of the prior two decades, many non-standard expiration dates were
listed, starting with the SPX Friday weeklies in 2005.7. Since the introduction of the Friday
weeklies, the equity index options market saw precipitous growth in the listing of other
weekday contracts. Other equity indices in 2010 saw the listing of their own Friday weeklies.
New weekday expirations followed in 2016, when CBOE listed the first Wednesday weeklies
for SPX and VIX. By 2024, three widely referenced U.S. equity indices, SPX, NDX, and
RUT would have a dedicated options expiration every weekday. Table 1 summarizes the
rollout timeline for these US equity indices.

Following successful launches of weeklies written on various equity-linked indices, ex-
changes began listing weeklies for popular ETFs and futures contracts covering a variety of
asset classes. The last three rows of 1 show the rollout timeline of these weeklies for three
heavily traded securities outside of equity markets: TLT (iShares 20+ Year Treasury Bond
ETF), GLD (SPDR Gold Shares), and WTI (West Texas Intermediate - crude oil futures).
Today, the scope of tradable weekly expirations is staggering with around 600 or so individ-
ual equities and ETFs obtaining weekly maturities since 2010.8 At time of writing, there

7https://www.cboe.com/insights/posts/the-evolution-of-same-day-options-trading/
8The Options Clearing Corporation, a U.S. clearing house specializing in equity derivatives clearing and
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are several proposals under review at Securities and Exchange Commission to add Monday
and Wednesday expirations to other commodity-linked ETFs such as SLV (silver) and UNG
(natural gas).9 In addition, there are active discussions around listing non-Friday weeklies
for individual equities, highlighting the ever-expanding proliferation of such expirations.10

3.2 Construction of option panel

It is well-known options provide levered exposure to their underlying assets. For this reason,
raw option returns are typically orders of magnitude greater in scale relative to the underlying
asset’s return (Frazzini & Pedersen 2022). To effectively estimate factor models on such
assets, prior work in empirical asset pricing often adjusts the option returns in some way
as opposed to simply working with raw option returns. Examining these adjusted returns
instead of the raw returns, alleviates well-known issues related to the estimation of expected
option returns and risk premia stemming from measurement errors in option quotes (Broadie,
Chernov, & Johannes 2009; Duarte, Jones, & Wang 2024). There are two general approaches
to producing an adjusted series of option returns considered by researchers: delta-hedged
returns and deleveraged returns.

An option’s delta-hedged return is the return to a strategy that holds the option while
dynamically hedging the option using a known hedge ratio, generally the Black-Scholes delta.
The dynamic hedging portion of this strategy aims to remove exposure to the underlying
with the hedging frequency usually chosen to be daily. An option’s deleveraged, or leverage-
adjusted, return is the return to a portfolio consisting of the option and the risk-free asset (one
month Treasury bill). The option’s portfolio weight is inversely proportional to a measure
of its embedded leverage which I compute as in Frazzini and Pedersen (2022). Intuitively,
options that provide greater leverage receive a smaller weight when forming the portfolios
on which the deleveraged return is computed. Cao and Han (2013), Karakaya (2014), Goyal
and Saretto (2022), Büchner and Kelly (2022) among others consider delta-hedged option
returns when estimating factor models on the cross-section of option returns. Constantinides
et al. (2013), Gruenthaler, Lorenz, and Meyerhof (2022), Frazzini and Pedersen (2022) among
others use the second approach, deleveraging option returns by their embedded leverage. I
opt for this second approach, as in the context of my dataset, which consists of purely of
very short maturity option contracts, the choice of hedging frequency is unclear (Bertsimas,

settlement services, maintains a list of stock and ETF tickers with actively listed weeklies: Link.
9Several exchanges including Nasdaq and BOX, have petitioned the SEC for a rule change in its Short

Term Option Series Program. This change will allow for the listing of additional Monday and Wednesday
expirations for certain commodity-linked ETFs.

10Zero-Day Options Boom Will Only Grow Even As Some Investors Fear Disaster. Bloomberg - May 6,
2024
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Kogan, & Lo 2000; Sepp 2012).
I create a panel of deleveraged one-day option returns for a range of target moneyness

values and business days to maturity using options with fewer than 22 business days to
expiration for each equity index and option type. In the spirit of Constantinides et al. (2013),
I compute these one-day returns in my panel as the one-day deleveraged return on contracts
with standardized characteristics via kernel-based weighting scheme. At time t, each panel
observation is the one-day deleveraged return for a option with the following standardized
characteristics: maturity (1 to 21 business days to maturity) and target moneyness value
ranging from 0.9 to 1.1 (spaced by 0.01), option type (call or put), and underlying index.11

There are 21×21×2 = 882 possible combinations of characteristics per underlying index (21
possible business days to expiration multiplied by the 21 target moneyness values for both
puts and calls). The methodology of constructing the option panel proceeds in two steps. In
the first step, I deleverage each option’s one-day return from the raw one-day option returns I
compute from the OptionMetrics data. I can compute each option’s deleveraged return from
these raw option returns and the daily holding returns (accrued interest) from the 1-month
Treasury bill. Denote option i’s gross raw one-day return at time t + 1 by Ropt

i,t+1 and the
one-day gross risk-free rate by Rf

t+1. The deleveraged return Ri,t+1 is given by

Rdelev
i,t+1 =

(
η−1
i,t R

opt
i,t+1 + (1− η−1

i,t )R
f
t+1

)
− 1 (14)

where ηi,t is the Frazzini and Pedersen (2022) embedded leverage measure.12 In the second
step, I construct a panel of deleveraged one-day returns for put and call options with fixed
maturity τ (1-21 business days to maturity) and exact moneyness K (values between 0.9
and 1.1 spaced out by 0.01) by interpolating on deleveraged option returns nearby in stan-
dardized moneyness. Starting with calls, the deleveraged call option return from this panel
with moneyness K, maturity τ , and index ind by R(K, τ,Call, ind) is computed from the
deleveraged call returns in the first step at time t with maturity τ and strikes close to the
target moneyness K:

Rt+1(K, τ,Call, ind) =
∑
i

wi,t(K)Rdelev
i,t+1 (15)

where I use Ki,t to denote the moneyness of the ith option at time t from the OptionMetrics
data. The weights wi,t(K) in (15) are computed as a function of distance from K. I define

11Moneyness, occasionally referred to as simple moneyness, is the strike price divided by level of the index.
12Note the portfolio weights in (14) are always between 0 and 1. This is because Frazzini and Pedersen

(2022) compute the embedded leverage ηi,t as the absolute value of an option’s price elasticity with respect
to the underlying asset which is always greater than 1.
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the weights in (16) where φ denotes the standard Gaussian density.

wi,t+1(K) = φ

(
Ki,t −K

V IXind,t(τ)
√
τ/252

)
ind ∈ {SPX,NDX,RUT} (16)

As before, V IXind,t(τ)
√
τ/252 is risk-neutral standard deviation of the corresponding un-

derlying index’s return over the option’s life. Thus, the quantity passed into the Gaussian
density is the distance of an option’s moneyness from K in standard deviation units. I allow
only options nearby in the sum in equation (15), by first computing the weights as in (16)
and then removing all weights lower than 0.01 and normalizing the remaining weights to
sum to one before computing the panel return using equation (15). I follow an analogous
computation for the daily deleveraged return on put options in my option panel.

This procedure interpolates a panel of deleveraged one-day option returns on contracts
with standardized characteristics using a Gaussian weighting scheme. To ensure the interpo-
lated returns in the panel are as close to the deleveraged returns from the data as possible, I
compute the standardized option return in (15) only when there are at least two sufficiently
close options with the desired maturity that bracket the target moneyness K.13 Following
this procedure produces a cross-sectional panel of deleveraged one-day call and put returns
on contracts for a range of moneyness values (0.9, 0.91, . . . , 1.09, 1.1), times to maturity (1-
21 BDTE), option types (call/put), and equity indices (SPX, NDX, RUT). For the sake of
expositional compactness going forward, I use Ri,t+1 to a denote the gross one-day delevered
option return i from the option panel. Each subscript i is a stand-in for the 4-tuple of target
standardized characteristics: moneyness, BDTE, type and index. This standardized panel
of deleveraged option returns serves as the main dataset of interest for my empirical analysis
in subsequent sections.

One of the primary analyses of this paper is how option returns can vary by the money-
ness, maturity, and type of the contract. To this end, I introduce some useful conventions to
more easily discuss options with similar characteristics. I sort options of the same underlying
index into 20 buckets. For each option in my option panel, contract i at time t is in one of
these buckets. Define the set B(a1, a2, a3, a4) as the subset of the option panel corresponding
to the bucket with maturity a1, moneyness a2, type a3, and index a4. Buckets are defined
along 4 contract characteristics:

1. Maturity (a1 ∈ {US, S}) - Option contracts are either of ultra-short maturity (0 - 9
dte) or short maturity (10 - 30 dte).

13I consider an option with moneyness K ′ to be sufficiently close to K if the distance between K ′ and K
is less than V IXind,t(τ)

√
τ/8. This ensures we are using sufficiently local information relative to our target

moneyness K.

17



2. Moneyness (a2 ∈ {DOTM,OTM,ATM, ITM,DITM}) - Contracts are divided into
five groups based on the absolute value of their Black-Scholes delta |∆i,t|: DOTM
(0 ≤ |∆i,t| < 0.2), OTM (0.2 ≤ |∆i,t| < 0.4), ATM (0.4 ≤ |∆i,t| < 0.6), ITM (0.6 ≤
|∆i,t| < 0.8), and DITM (0.8 ≤ |∆i,t| ≤ 1).

3. Option type (a3 ∈ {Call,Put}) - Contract’s type as either a call or put option.

4. Equity index (a4 ∈ {SPX,NDX,RUT}) - Option’s underlying equity index.

There are 20 buckets for each equity index making for a total of 60 buckets. Every stan-
dardized option return in our panel, identified by the pair (i, t+ 1), belongs to one of these
60 buckets. Before turning to the empirical analyses, I first briefly discuss the constructed
panel and give an overview of its summary statistics.

In table 2, I present summary statistics of the standardized panel broken down my the
underlying index. I interpolate their contract characteristics, such as its option’s Black-
Scholes IV (BSIV) or its Black-Scholes delta, by computing the weighted average over those
characteristics using the same weighting scheme as in (15). The primary characteristics of
the interpolated contracts are as expected. The average business days to maturity (BDTE),
for both puts and calls, is around 2 weeks. This is consistent with when weeklies are listed;
these contracts generally list on exchanges between 2-5 weeks prior to expiration. The
average standardized moneyness for both put and call options in the sample are negative,
reflecting the fact that the majority of call (put) options in the OptionMetrics data are in-
the-money (out-of-the-money). The average Black-Scholes implied volatilities across indices
are typical values for equity indices with at-the-money options ranging from 15% to 30% for
large portions of the sample. Turning to the embedded leverage column, we get a sense of
the substantial leverage built into options. For instance, SPX call options have an average
embedded leverage of 45, implying a 45% return on typical call option if the index rises 1%.
For put options, the degree of leverage is similar relative to calls across indices. The summary
statistics for the greeks are typical for option data on equity index options. OptionMetrics
reports vegas in terms of the change in option price in cents to a 1 percent increase in BSIV.
To remove this dependence on the level of the underlying, I rescale this reported vega to
be a price elasticity by dividing the reported vega by price of the option multiplied 100.
Adjusting the vega in this way yields the percent change in option price for a 1% change in
BSIV. The number of observations (Nobs) for each index, indicates a fairly balanced sample
between puts and calls. Notably, the three equity indices I consider here are one of only a
handful of assets to have an options expiration every day as of 2024.

Turning to returns, table 3 shows the daily deleveraged return in basis points (bps)
for put options (moneyness ≤ 1) and call options (moneyness ≥ 1) written on SPX. As
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BDTE Std. Moneyness BSIV Emb. Lev. Delta Gamma Vega Nobs

Call options :
SPX 12.146 -0.595 0.207 45.371 0.563 0.003 0.123 497,763

(5.693) (1.796) (0.114) (43.120) (0.354) (0.003) (0.178)
NDX 12.246 -0.292 0.263 33.453 0.533 0.001 0.084 408,407

(5.534) (1.361) (0.114) (27.973) (0.331) (0.001) (0.112)
RUT 11.724 -0.288 0.251 35.638 0.530 0.005 0.089 289,003

(5.543) (1.442) (0.109) (27.843) (0.341) (0.004) (0.115)

Put options :
SPX 11.835 -0.235 0.210 41.428 -0.471 0.003 0.101 563,161

(5.750) (2.048) (0.107) (31.960) (0.370) (0.003) (0.103)
NDX 12.073 -0.197 0.261 30.927 -0.476 0.001 0.071 425,875

(5.602) (1.485) (0.112) (21.675) (0.339) (0.001) (0.074)
RUT 11.510 -0.157 0.255 32.096 -0.483 0.005 0.073 309,098

(5.587) (1.579) (0.109) (21.786) (0.349) (0.004) (0.074)

Table 2. Means and standard deviations (in parentheses) for the various characteristics of
the equity index options on the S&P 500 (SPX), Nasdaq-100 (NDX) and Russell 2000 (RUT)
from OptionMetrics. BDTE refers to business days to expiration, BSIV is the standard Black-
Scholes implied volatility, Emb. Lev. is the embedded leverage is computed as in Frazzini
and Pedersen (2022). Std. Moneyness is the natural logarithm of simple moneyness divided
by risk-neutral volatility over the option’s life. Delta, gamma, and vega are the Black-Scholes
greeks and Nobs denotes the number of observations retained from the OptionMetrics sample
after data filters are applied.

expected, all SPX put options in the sample have negative average return. The same is true
of put options written on NDX and RUT. This is broadly consistent with prior theoretical
and empirical work (Coval and Shumway (2001), Broadie, Chernov, and Johannes (2007),
Johannes et al. (2024), among many others). Note table 3 omits moneyness/time to maturity
combinations with fewer than a year’s worth (250 observations) of returns data. This occurs
mostly for extreme levels of moneyness such as 0.9 or 1.1 at very short times to maturity
such as 2 BDTE. Such options are extremely deep out-of-the-money options and are usually
removed by one of the data filters on the OptionMetrics sample. Across maturities, put
options deepest out-of-the-money are the most starkly negative. Although the average SPX
return in the sample is 3.6 bps, the average deleveraged return on a put option with 0.9
moneyness and 5 BDTE (one week) is around -30 bps. As I show in section 6, this is due to
combination of a negative index beta and their large embedded exposure to variance which
command highly negative risk premia. At-the-money options have magnitudes similar to
the average SPX daily return, a by-product of their deleveraging procedure. Lastly, call
options that are deeper out-of-the-money have negative expected returns while call options
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Deleveraged put returns (bps) Deleveraged call returns (bps)

Moneyness 0.90 0.92 0.95 0.98 0.99 1.00 1.00 1.01 1.02 1.05 1.08 1.10

Business days to expiration
2 -23.31 -7.72 -6.38 -5.65 6.89 9.90 5.23
5 -30.26 -22.54 -14.17 -9.14 -7.78 -5.62 2.14 1.87 2.00 -1.60
10 -14.10 -11.00 -8.16 -4.92 -3.82 -2.79 1.11 1.29 1.41 -0.26 2.46
15 -5.36 -4.56 -2.94 -1.20 -0.68 -0.23 1.60 1.89 2.35 1.70 1.29 6.69
21 -11.71 -11.24 -10.07 -8.25 -7.60 -6.91 2.00 1.45 0.78 -0.97 -0.84 -1.06

Table 3. Average daily returns (in basis points) for deleveraged put (with moneyness ≤
1) and call (moneyness ≥ 1) options written on SPX. Deleveraged option exposures have
the target moneyness and maturity as described in this section. Only moneyness-maturity
returns with more than 250 observations in the sample included in table. SPX avg. return:
3.59 bps.

at-the-money have positive expected return. This is consistent with Bakshi, Madan, and
Panayotov (2010) finding for longer maturity index options: on average, index call options
have positive returns at-the-money but this return is decreasing in strike price, eventually
becoming negative once the strikes are sufficiently deep out-of-the-money.

Finally, I examine the betas of our delevered returns with respect to the underlying
index. A theoretical point noted by Constantinides et al. (2013) is that if the Black and
Scholes (1973) model is exact, deleveraged returns (measured over short horizons) as above
should produce a time series of deleveraged call (put) returns which have beta 1 (-1) with
respect to the underlying asset. Interestingly, this allows for a indirect "unit beta"-based
test of the Black and Scholes (1973) model. Figure 3 plots the betas from running time-series
regressions on the delevered SPX option returns: each dot represents the index beta from
the time-series regression with one regression for each option type, maturity, and moneyness
combination from the panel. The betas are closest in absolute value to 1 for options that
are at or in-the-money and become smaller as we move further out-of-the-money. The betas
computed from the options for the other two indices exhibit similar patterns. Note for the
empirical analysis it is of little concern that the betas are not exactly one as I always control
for index exposure; rather, the point of the procedure is to produce a panel of option returns
with magnitudes that are more equity-like and amenable to a factor model approach.
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Figure 3. Betas estimated from time series regressions of SPX excess daily returns on the
daily delevered option returns. Each point plots an estimated beta. The x-axis represents
the moneyness of the contract with color jointly representing the different maturity and type
combinations.

4 IPCA: Model estimation and inference

In this section, I outline, estimate, and analyze IPCA (instrumental principal components
analysis) factor models on my option panel data. IPCA is a latent factor model that im-
plements a principal components analysis (PCA)-based method for extracting latent factors
and factor loadings from asset characteristics developed by Kelly et al. (2019). PCA-based
approaches have enjoyed large popularity in recent work (Giglio et al. 2022), although using
PCA to extract risk factors specifically was used as early as Chamberlain and Rothschild
(1982). IPCA is one of several contemporary innovations on this earlier approach.14

4.1 IPCA: Model setup

The IPCA model has several key features which are useful in estimating the factor structure of
option returns. First, IPCA, and PCA-based methods more broadly, provide a parsimonious
way to reduce the dimension of the potentially large range of characteristics that relate to
option returns. Second, the model incorporates time-varying betas which are estimated as
a function of these characteristics. Time-varying betas prove to be particularly plausible
and relevant in this context. Fundamental characteristics relevant for option returns, such

14Other approaches which come to mind include risk premia PCA of Lettau and Pelger (2020) or the
tensor PCA of Babii, Ghysels, and Pan (2024).
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as an option’s moneyness or time to maturity can move much over an option’s life, making
static betas intuitively implausible. In addition, Büchner and Kelly (2022) note substantial
advantages in and out-of-sample for factor models of option returns which allow for betas
to be time-varying. Lastly, IPCA can robustly handle imbalanced panels like the ones I
examine here.15

I estimate separate IPCA models for each of the three equity indices. The IPCA model
assumes excess returns on Nt assets over time period t ∈ {1, . . . , T} are generated by the
K-factor model:

Ri,t+1 −Rf
t+1 = αi,t + β′

i,tFt+1 + βmkt
i,t Rmkt

ind,t+1 + Ei,t+1

=
(
Z ′

i,tΓα

)
+
(
Z ′

i,tΓβ

)
Ft+1 +

(
Z ′

i,tΓδ

)
Rmkt

ind,t+1 + Ei,t+1

(17)

I always include one pre-specified factor, Rmkt
ind,t+1, the one-day return of the underlying equity

index ind. The vector Ft+1 consists of the K−1 latent factors to be estimated by IPCA. αi,t

β′
i,t, and βmkt

i,t are asset specific time-varying intercepts and factor loadings. Zi,t ∈ RL+1 is a
vector of L observable characteristics and a constant. These characteristics Zi,t are linearly
mapped to αi,t, βi,t and βmkt

i,t by the matrices Γα, Γβ, and Γδ respectively. Intuitively, each
beta is "linear-in-characteristics"; that is, it is a linear function of the L characteristics plus
an intercept. For example, the equity index beta is given by:

βmkt
i,t =

L+1∑
j=1

Γδ[j]× Zi,t[j]

where x[j] denotes the j-th entry of a vector x.
Turning to estimation, IPCA estimates a pair of objects, the latent factors Ft+1 and Γ

matrices. If equation (17) is estimated with the restriction that Γα = 0L+1, one can estimate
a factor model without an intercept. Since I always enforce the inclusion of the underlying
return as a pre-specified factor, a one-factor IPCA model contains no latent factors. The
one-factor IPCA model is similar in spirit to linear models like conditional CAPM. The
conditional beta on the underlying, βmkt

i,t is given by

βmkt
i,t = Z ′

i,tΓβ

which in turn describes a conditional one-factor model in the index return:

Ri,t+1 = (Z ′
i,tΓβ)R

mkt
ind,t+1 + εi,t+1

15Over time several factors, primarily the range of listed expirations increasing, spacing between strike
prices narrowing, and range of listed strike prices increasing have contributed to the imbalance in the panel.
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As we are working with options, the set of relevant observable characteristics to include
in the vector Zi,t is fairly apparent. Unlike common equity or corporate bonds, options
and similar derivatives are unique in the sense that they possess unambiguously relevant
characteristics for their returns. For instance, where an option lies on the volatility surface
(pinned down by moneyness and time to maturity) does much to characterize the risk profile
of that particular contract (Karakaya 2014). Following the literature, I consider the following
baseline set Bi,t of observable characteristics:

Bi,t =



BSIVi,t

EmbLevi,t

Deltai,t
Gammai,t

Vegai,t
ttmi,t

Std. Moneynessi,t


BSIVi,t refers to the Black-Scholes implied volatility of a particular option i at time t. Time
to maturity (ttmi,t) and standardized moneyness (Std. Moneynessi,t) conveys the option’s
location on the volatility surface. Deltai,t Gammai,t and Vegai,t are the risk sensitivities
(so-called "greeks") computed from the Merton (1973) model. It is plausible that calls
and puts with certain characteristics might load onto our risk factors differently. Following
Büchner and Kelly (2022), I accommodate this possibility by including in Zi,t those same 6
characteristics in Bi,t interacted with a dummy isPuti which is 1 if option i is a put option
and 0 otherwise. Our full set of characteristics Zi,t is a vector consisting of a constant and
14 characteristics:

Zi,t =

 1

Bi,t

Bi,t × isPuti

 (18)

4.2 IPCA: Model estimation and results

Kelly et al. (2019) derive first order conditions from minimizing the sum of squared model
errors:

min
Γ,Ft+1

T−1∑
t=1

(
Re

t+1 − ZtΓFt+1

)′ (Re
t+1 − ZtΓFt+1

)
(19)
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where Γ = [Γβ : Γδ : Γα] and Ft+1 = [Ft+1, R
mkt
ind,t+1, 1]. Γ̂ and F̂t+1 are the estimated

counterparts. Re
t+1 is the vector of excess returns at time t + 1. The values of Ft+1 and Γ

that minimize the objective in (19) satisfy the first-order conditions:

F̂t+1 =
(
Γ′
βZ

′
tZtΓβ

)−1
Γ′
βZ

′
t

(
Re

t+1 − ZtΓδ − ZtΓα

)
∀t

vec
(
Γ̂′
)
=

(
T∑
t=1

[
Zt ⊗ F′

t+1

]′ [
Zt ⊗ F′

t+1

])−1( T∑
t=1

[
Zt ⊗ F′

t+1

]′ Re
t+1

)
.

(20)

The latent factors Ft+1 and Γ matrices are estimated via alternating least squares.16 One
point of note is that the first order conditions (20) above identify a solution to (19) only
up to multiplication by a rotation matrix. For instance, if Γβ is part of the matrix Γ which
minimizes the objective in (20), so will PΓβ for any rotation matrix P . To pin down a unique
solution, I follow Kelly et al. (2019) and impose the normalization that ΓβΓ

′
β is the identity

matrix. This identification assumption is not a restriction on the model, but simply a means
to pin down its unique parameters. As is common in the factor model literature, I assess my
estimated models on total R2s and the magnitudes of alphas relative to the magnitudes of
excess returns. I compute the total R-squared of the IPCA model as in Büchner and Kelly
(2022) and Goyal and Saretto (2022):

Total R2 = 1−

∑
i,t

(
Ri,t+1 − Z ′

i,tΓ̂βF̂t+1

)2∑
i,t R

2
i,t+1

(21)

An important aspect in the study of factor models are the alphas, the component of
expected returns not explained by the risk loadings. Indeed, many formal statistical tests of
factor models focus on testing whether the alphas are jointly zero (Gibbons, Ross, & Shanken
1989; Pesaran & Yamagata 2024), with alphas significantly different from zero indicating
either mis-pricing (in the case the factor model is correctly specified) or the returns are not
fully spanned by the factors. Formally, I conduct inference on the null hypothesis:

H0 : αi,t = 0 ∀i, t

Or equivalently in the context of IPCA:

H0 : Γα = 0L+1

16Specific implementation details can be found in the publicly available code furnished by Matthias
Buechner and Leland Bybee: Github repository.
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where L+ 1 is the number of characteristics in Zi,t and 0L+1 is the zero vector in RL+1. As
I am conducting inference on a conditional factor model, the classic Gibbons et al. (1989)
test does not apply. Instead, following Kelly et al. (2019), I apply the wild bootstrap of Liu
(1988) and Wu (1986) with 5000 replications. To describe briefly, I first compute Γα and
compute the Wald statistic Γ′

αΓα. Then for each bootstrap iteration, I compute the same
Wald statistic after estimating the model using the bootstrapped sample generated under the
null. The p-value for rejecting H0 is then the fraction of bootstrapped Wald statistics greater
than the Wald statistic of the unrestricted estimated model. Details of the bootstrapping
procedure are left to appendix A.

Hypothesis testing for other null hypotheses proceeds similarly via wild bootstrap. For
instance, to test if all betas for the j-th latent factor are jointly zero, one can test the
following null hypothesis:

H0 : β
j
i,t = 0 ∀i, t

where βj
i,t is the loading j-th latent factor. This is equivalent to testing the null hypothesis

below:
H0 : Γ

j
β = 0L+1

where Γj
β is on the j-th column of Γ. The relevant test statistic is again a familiar Wald

statistic Γj
β

′
Γj
β with p-values computed via bootstrap.

I estimate the IPCA model in (17) both with and without an intercept separately for
each equity index (SPX, NDX and RUT) using 0 to 3 latent factors. The model without
an intercept is the model in (17) where Γα is restricted to be a vector of zeroes. Goodness
of fit measures, R2 and mean absolute pricing error (MAPE), are reported in table 4. R2

is computed as in (21) and the MAPE of a model is the average taken over the absolute
value of the model’s pricing errors as in (22). Nind in equation (22) refers to the number
of observations pertaining to the equity index from the option panel used to estimate the
model.

MAPE =
1

Nind

∑
i,t

∣∣∣Ri,t+1 − Z ′
i,tΓ̂α − Γ̂βF̂t+1 − Z ′

i,tΓ̂δR
mkt
t+1

∣∣∣ (22)

Table 4 reports the R2 and MAPE for IPCA models with 1 - 4 factors in panel A and
B. Note as the equity index return is always included as a factor, models with only a single
factor do not feature any latent factors. The columns in table 4 headed by a number indicate
the total number of factors for each IPCA model. Beginning with the one-factor models,
two salient facts stand out. The first is that a fairly large proportion of the variation is
explained just by the equity index return; for the S&P 500 options, around 83% of the
variation is explained by the one-factor model with similar results indicated by one-factor

25



No. Factors: (1) (2) (3) (4) (1) (2) (3) (4) E|Ri,t+1| Nind

R2 10000× MAPE

Panel A - IPCA without intercept (Γα = 0L+1)

Equity Index
SPX 0.829 0.956 0.975 0.980 26.66 14.35 11.54 9.90 83.81 961,948
NDX 0.854 0.955 0.974 0.982 33.04 17.81 13.34 10.40 116.13 822,069
RUT 0.839 0.943 0.964 0.975 32.01 18.34 13.82 11.61 104.76 599,252

R2 10000× MAPE

Panel B - IPCA with intercept (Γα ̸= 0L+1)

Equity Index
SPX 0.830 0.956 0.975 0.979 26.34 14.38 11.54 10.18 83.81 961,948
NDX 0.854 0.956 0.974 0.983 32.80 17.81 13.33 10.39 116.13 822,069
RUT 0.840 0.923 0.965 0.976 31.28 22.31 13.90 11.59 104.76 599,252

P-value for H0 10000× E|αi,t| when Γα ̸= 0L+1

Panel C - Hypothesis testing (H0 : Γα = 0L+1)

Equity Index
SPX 0.016 0.000 0.012 0.006 2.25 2.94 3.27 2.75 84.38 961,948
NDX 0.008 0.004 0.020 0.014 2.54 5.38 2.80 4.19 116.13 822,069
RUT 0.006 0.004 0.012 0.024 4.16 5.35 4.04 2.25 104.76 599,252

Table 4. IPCA estimation results for options written on the three major US equity indices:
SPX (S&P 500), NDX (Nasdaq-100) and RUT (Russell 2000). R-squareds (computed as in
(21)) and MAPE (expressed in basis points) for IPCA models without an intercept (Panel
A) and with an intercept (Panel B). Columns headed with a number represent results for a
IPCA model with that number of total factors. E|Ri,t+1| is the mean absolute value of returns
for the option panel corresponding to the equity index. Nind is the number of observations
pertaining to the equity index in the option panel used to estimate the model. Panel C
reports the p-values for the test the alphas are jointly zero for each IPCA model and the
average absolute value over the alphas from the unrestricted model (Γα ̸= 0) in basis points.
P-values are computed using the wild bootstrap procedure of Liu (1988) as in Goyal and
Saretto (2022) and Büchner and Kelly (2022) using 5000 bootstrap samples. The p-value is
the fraction of bootstrapped samples b under the null for which Γ̂b′

αΓ̂
b
α exceeds Γ̂′

αΓ̂α where
Γ̂b
α and Γ̂α are the estimated values of Γ̂b

α and Γα using the bootstrapped sample and option
panel respectively. See the appendix A for details on the implementation.

models estimated on other equity index options. The second fact to note is that MAPE for
the one-factor IPCA models is relatively high compared to the typical magnitudes of the
deleveraged option returns. The average magnitude of the option return corresponding to
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each equity index is shown in the column headed by E|Ri,t+1|. For instance, the average
magnitude for SPX options is around 84 bps. The MAPEs for the one-factor SPX IPCA
models, estimated with and without an intercept, are both around 27 bps, approximately
one-third of the typical magnitude of the returns in the sample. One-factor models estimated
on other indices show similarly large errors relative to the size of the returns in the data.

Models utilizing latent factors (columns (2) - (4) in table 4), demonstrate significant
improvements in pricing performance and R-squareds. Looking at the 2-factor models, we see
that just including one latent factor combined with the market index pushes the R2s to above
90% for all market indices and about halves the pricing error relative to the corresponding
one-factor models. As more latent factors are included, pricing performance in particular
improves. The 4-factor models (3 latent factors and market index factor), all have pricing
errors of around 10 bps for each equity index. These pricing errors are about 8 to 13
percent of the average magnitude of their corresponding option returns. Overall, the models
demonstrate good in-sample performance with minimal differences between models estimated
with and without an intercept. These results suggest that an IPCA model featuring latent
factors and the equity index return produce models that explain the variation in returns well
and do so with fairly low pricing error, on the order of one-tenth of the average magnitude of
realized returns. I take the four-factor IPCA models in column (4), hereafter the 3L+MKT
models (3 latent factors and the market index return), as the benchmark IPCA models for
each equity index.

4.3 IPCA: model alphas

In this subsection, I examine the alphas of my benchmark IPCA model for SPX, the SPX
3L+MKT model. I first employ a dynamic factor model version of the Gibbons-Ross-Shanken
test. Formally, I test the null hypothesis

H0 : αi,t = 0 ∀i, t (23)

using the econometric test described in section 4.2. Panel C of table 4 displays the P-values
for the null hypothesis in (23) for IPCA models between 1 and 4 total factors. Panel C also
presents the average magnitudes of the alphas in each of the unrestricted models (Γα ̸= 0).
At a 1% percent level of significance, we must reject the null hypothesis in (23) for all
the factor models considered and thus cannot exclude the possibility that some subset of
the alphas are non-zero. However, upon deeper examination of the benchmark 3L+MKT
models, I find that these alphas are not economically significant, or at the very least, are in
some sense small. After transaction costs are taken into account, the arbitrage opportunities
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suggested by the alphas disappear.
Before proceeding further, it is instructive to review how the alphas from a factor model

can be traded. Given a factor model, one can capture the alpha via a long-short approach.
In our context, if αi,t > 0, one would adopt the following long-short strategy:

Ri,t+1 −Rf
t+1︸ ︷︷ ︸

Long

= αi,t + β′
i,tFt+1 + βmkt

i,t Rmkt
t+1︸ ︷︷ ︸

Short

(24)

If αi,t < 0, the long and short positions in equation (24) are reversed. For the benchmark
3L+MKT models, the average absolute value of the alphas range between 2 - 5 bps for our
three equity indices. Although this is on the order of the average daily excess equity index
return, after transaction costs are paid, the average return of an alpha capturing strategy like
(24) is negative. The reason for this is that option markets feature sizable total transaction
costs. The literature estimates this transaction cost to be around 50% - 100% of the bid-
ask spread (Bali, Beckmeyer, Moerke, & Weigert 2023). Since implementing the long-short
strategy in (24) requires we trade an option and the latent factors twice (round trip), a
trader aiming to exploit this alpha incurs very significant transaction costs. For the sake of
a back-of-the-envelope calculation, I adopt the following generous assumptions:

• Underlying index is costless to trade (trading the market index factor incurs zero
transaction costs).

• I assume 75% of bid-ask is paid each way.

• Lastly, I assume latent factors cost 1 bps to trade round trip.17

I compute the average alpha captured by the long-short strategy in (24) net of the
transaction costs computed using these assumptions, using OptionMetrics’s end-of-day bid-
ask quotes to estimate the transaction costs to trading the delevered option. The average
alpha net of transaction costs for each of the 60 buckets across all equity indices are negative.
Figure 4 shows the average net alpha captured by the long-short strategy on delevered SPX
option returns for each of the 20 buckets. For all SPX buckets, transaction costs on average
subsume the alphas of the SPX 3L+MKT model. Although transaction costs especially
hamper the alpha capture strategy in (24) across all options, they are especially impactful
for contracts which are either deep-in-the-money or deep-out-of-the-money as bid-ask spreads

17For comparison, trading the S&P 500 via SPY ETF costs around 25 cents per 10,000 dollars of the
ETF, or 0.25 bp per trade. As we will see in a later section, the factors mainly reflect exposure to higher
order moments of the underlying index. Trading such exposures has similarly high transaction costs as those
faced in the equity index options market, making this assumption particularly generous.
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Figure 4. Average absolute alphas of 3L+MKT net of transaction costs in basis points for
the 20 SPX equity index option buckets.

are widest for these buckets. Even for options at-the-money, where contracts are typically
the most liquid and bid-ask spreads are tightest, the transaction costs still prove too high
for a market participant to exploit in any economically practical sense. These patterns are
present in the other two equity indices I examine. The general conclusion I draw from this
analysis of the 3L+MKT model alphas is that, while some alphas are likely non-zero, they
are in an economic sense small, certainly too small to realistically trade using conventional
long-short arbitrage.

Overall, the benchmark 3L+MKT IPCA models do well at explaining returns in the
sample. Computing the pricing errors out-of-sample suggest my results not due to over-
fitting. Table 5 compares the pricing errors in and out-of-sample for the SPX IPCA models.
The out-of-sample errors are all within a single basis point of their in-sample counterparts.
Furthermore, each 3L+MKT model has small alphas in an economic sense, that is, the alphas
are small enough in magnitude that attempting to realize them is thwarted by the transaction
costs required to isolate them. The large fraction of variation explained by the 3L+MKT
models, their lack of economically realizable alphas, and overall pricing performance suggest
a relatively low-dimensional factor structure of option returns which is captured by the index
return and three latent factors. Although not directly comparable, this finding is consistent
those by Karakaya (2014), Christoffersen, Fournier, and Jacobs (2018), and Büchner and
Kelly (2022). These studies examine factor models estimated on delta-hedged option returns
and find similar evidence of a low-dimensional factor structure.

Despite the relative effectiveness of IPCA models and latent factor models more broadly,
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Number of Total Factors : 1 2 3 4

Mean abs. pricing error (Γα ̸= 0, in-sample) 26.34 14.38 11.54 10.18
Mean abs. pricing error (Γα ̸= 0, out-of-sample) 27.11 13.46 10.42 9.62
Total R2 (Γα ̸= 0, in-sample) 0.830 0.956 0.975 0.979
Total R2 (Γα ̸= 0, out-of-sample) 0.824 0.956 0.972 0.977

Table 5. In-sample and out-of-sample mean absolute pricing error (in basis points) and R-
squareds for the SPX IPCA models with an intercept. Out-of-sample errors and R-squareds
are computed using a rolling window approach. Appendix A provides implementation details.

they share a common trait detrimental to attempts at economic interpretation; the factors
that are extracted from estimating the model are, in some sense, purely statistical ones.
The extracted factors emerge out of correlated fluctuations in the cross-section of delevered
option returns and may not correspond to conventional factors considered by the finance
literature previously. More succinctly, the estimated latent factors are agnostic to their eco-
nomic sources - a potential setback when attempting to identify the risks that are priced.
To recover some economic interpretability from the estimated IPCA models, I pursue two
complementary approaches in the following section. One approach involves analyzing the
relationship between the recovered latent factors and factors uncovered by the literature rel-
evant to option returns. The other approach examines the potentially informative variation
in the unconditional latent factor loadings across option returns in different buckets.

5 Interpretation of latent factors

In this section, I provide some economic interpretation of the extracted latent factors from
the 3L+MKT models. I first consider two complementary approaches to interpreting the
3 latent factors from the SPX 3L+MKT model, then I propose my own factor model con-
sisting entirely of observable and economically interpretable factors. I primarily focus on
the 3L+MKT model estimated from SPX options for the analysis in this section as it is the
index with the most associated observations in my sample. As a robustness check, I provide
some similar results for the NDX and RUT indices in appendix B.

5.1 Latent factor regressions

Our baseline 3L+MKT model for SPX options features three latent factors. One approach
to uncovering the risks baked into the recovered latent factors is to regress them on known
option market risk factors from prior work studying individual equity and equity index
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Factor Related Moment Construction Reference
- Level (S/US) Variance (30/9-day horizon) One-day return of an ATM straddle Coval and Shumway (2001)

constructed from options with 30/9 DTE.
+ Skew (S/US) Skew (30/9-day horizon) One-day return to vega-neutral portfolio Bali and Murray (2013)

long OTM calls and short OTM puts with
30/9 DTE. Includes small position in
underlying to render portfolio delta-neutral.

- Left tail jump index (LT) Kurtosis of jump distribution Ratio of deep OTM 9-day SPX put Bollerslev and Todorov (2011)
price to forward price of the underlying.

+ Right tail jump index (RT) Kurtosis of jump distribution Ratio of deep OTM 9-day SPX call "
price to forward price of underlying

- ∆VIX SPX volatility (30-day horizon) Portfolio of OTM 30-day SPX options CBOE (2019)
- ∆VVIX VIX volatility (30-day horizon) Portfolio of OTM 30-day VIX options "

Table 6. A summary of the risk factors formed from SPX options in Xt+1 used to estimate
regressions in (25) for SPX 3L+MKT factors. + (-) indicates the risk factor earns positive
(negative) risk premium in sample.

options. For nth latent factor F n
t+1 from the SPX 3L+MKT model, I estimate:

F n
t+1 = a+ b′Xt+1 + εt+1 (25)

where Xt+1 is a vector containing known risk factors from the literature. In particular, the
risk factors I include in Xt+1 were employed in prior studies which either directly modeled
option returns using factor models (Bali & Murray 2013; Coval & Shumway 2001) or are
implied by formal option pricing models such as the Heston (1993) model. Roughly the risk
factors can be labeled as factors corresponding to the underlying’s variance, skewness, tail
risk, or volatility-of-volatility.

Table 6 summarizes the risk factors included in Xt+1. All risk factors are constructed
from SPX options with the exception of the change in the V V IX, which is constructed from
1-month maturity VIX options. I consider two types of variance exposed factors: a straddle-
based factor constructed using the methodology in Coval and Shumway (2001) and the daily
change in the VIX. I construct two time series of the straddle factor: the daily return of an
at-the-money zero-delta straddle constructed from options with 30 days to maturity (LevelS)
and 9 days to maturity (LevelUS). These factors are meant to capture exposure to the level
of forward-looking variance at horizons relevant to S and US maturity options respectively.

Specifically, let CATM, S
t and PATM, S

t denote the time t price of an ATM call and put option
with 30 days to maturity.18 Their prices the next trading day are CATM, S

t+1 and PATM, S
t+1 . Then

the LevelS factor at time t + 1 is constructed as the one-day return to a portfolio holding
18The ATM call and put options selected have the same strike price. The strike price is chosen such that

it is the closest traded strike price to the corresponding forward price of the underlying at time t.
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ωATM, S
t units of CATM, S

t and one unit of PATM, S
t :

LevelSt+1 =
ωATM, S
t (CATM, S

t+1 − CATM, S
t+1 ) + (PATM, S

t+1 − PATM, S
t+1 )

ωATM, S
t CATM, S

t + PATM, S
t

(26)

As in Coval and Shumway (2001), ωATM, S
t is chosen such that the Black-Scholes delta of a

straddle portfolio is zero at time t. Doing this makes the straddle neutral with respect to
the small moves in underlying. The LevelUS factor is constructed using options with 9 days
to maturity at time t. CATM, US

t and CATM, US
t are the time t price of an ATM call and put

option with 9 days to maturity. Analogously, define LevelUS
t+1:

LevelUS
t+1 =

ωATM, US
t CATM, US

t+1 + PATM, US
t+1

ωATM, US
t CATM, US

t + PATM, US
t

(27)

where ωATM, US
t is again chosen to make the Black-Scholes delta of the straddle zero at time

t. As expected, I observe negative average returns for the level factors constructed from
options with both 9 and 30 days to maturity. This is consistent with general findings that
straddles heavily load heavily on variance which is known to possess highly negative risk
premium.

Another popular volatility factor for option returns is changes in the VIX or its square
as in the factor models of Jones (2006) and Fournier et al. (2024). As my focus is on daily
returns, I use the daily change in the VIX:

∆VIXt+1 = VIXt+1 − VIXt (28)

The next set of factors I consider are related to the skewness of the underlying’s risk
neutral distribution. Specifically, I construct the one-day return in the skewness asset from
Bali and Murray (2013). The skewness asset is a portfolio consisting of a long OTM call
position, short OTM put position and a small position in the underlying. The positions in
the options are chosen to make the portfolio vega-neutral at construction in order to remove
exposure to changes in implied volatility. A small position in the underlying is taken to
render the portfolio delta-neutral. Doing so, we get an asset with returns determined by
changes in the skewness of the risk-neutral distribution of the underlying or, in terms of
implied volatilities, the slope of the volatility smile. Like before, I compute the returns to
the skewness assets constructed using options with 9 and 30 days to maturity to get risk
factors exposed to skewness at horizons relevant to US and S maturity options. Let COTM, S

t

and POTM, S
t be the time t price of an OTM call and put option with 30 days to maturity.19

19I choose the strike of the OTM call (put) to be the traded strike with Black-Scholes delta closest to 0.1
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I use COTM, US
t and POTM, US

t analogously to denote the price of an OTM call and put option
with 9 days to maturity. Formally, I compute SkewS

t+1 as follows:

SkewS
t+1 =

ωOTM, S
t

[
COTM, S

t+1 − COTM, S
t

]
−
[
POTM, S
t+1 − POTM, S

t

]
+ xS

t [St+1 − St]∣∣∣ωOTM, S
t COTM, S

t − POTM, S
t + xS

tSt

∣∣∣ (29)

For the skewness asset, I compute the return by dividing by the absolute value of the com-
bined cost of constructing the skewness asset rather than simply the combined cost. This
follows Bali and Murray (2013) who point out that the price of constructing the skewness
asset need not be positive. In my own sample, I do observe some skewness assets with
negative prices albeit very infrequently. I denote the Black-Scholes vega of the call and put
option above by VC

t and VP
t . To render the skewness asset at time t vega-neutral, ωOTM, S

t is
chosen to satisfy:

VC
t ω

OTM, S
t − VP

t = 0 (30)

To render the skewness asset at time t delta-neutral, I choose xS
t such that the net delta of

the time t portfolio is zero. The SkewUS
t+1 skewness factor is constructed analogously using

options with 9 days to maturity. The skewness assets from which our skewness factors are
computed are long skewness assets. As discussed in Bali and Murray (2013), the constructed
skewness asset rises (falls) in value if the skewness of the risk-neutral distribution increases
(decreases). On average, the returns to both skew factors are positive. This is consistent
with general empirical findings such as Harvey and Siddique (2000) and Langlois (2020)
which find that systematic skewness commands an economically significant and positive risk
premium. At the index level, this translates to investors preferring positive skewness or
having an aversion to states of the world where the index is more negatively skewed. I
interpolate level and skew factors using nearby options whenever there are option maturities
which bracket either the target 9 or 30 day maturity used to construct the factors.

The level and skew factors constructed so far map onto the forward-looking second and
third moment of the daily SPX return respectively. In the context of short maturity options,
US maturity options might be more sensitive to moments at the 9-day horizon while S
maturity options more to moments which look over the 30 day horizon. The last set of
factors do not correspond to the moments of SPX returns per-se, but could nonetheless be
relevant for option returns and therefore could be correlated to the latent factors in the SPX
3L+MKT model. I include a set of jump tail measures LTt+1 (left tail) and RTt+1 (right tail)
introduced by Bollerslev and Todorov (2011) in Xt+1. LTt+1 (RTt+1) embeds the probability

(-0.1).
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and intensity of a large negative (positive) jump in S&P 500 Index. Formally, I compute
them from the price of a 10% OTM SPX put (call) using options with less than a month to
maturity, selecting the maturity τ that is closest to 8 days:

LTt+1 =
ert+1PDOTM

t+1

(τ/365)× FPt+1

RTt+1 =
ert+1CDOTM

t+1

(τ/365)× FPt+1

(31)

where PDOTM
t+1 and CDOTM

t+1 are the prices of the 10% OTM put and call, rt+1 is the interest on
a risk-free asset over one day, and FPt+1 is the forward price of the S&P 500. The intuition
behind LTt+1 and RTt+1 is that options with short maturity which are very deep out-of-the-
money would only have non-zero payoff if a large jump were realized (Carr & Wu 2003).
Lastly, I also include the one-day change in the VVIX index in Xt+1. VVIX measures the
volatility of the VIX from VIX options with 1 month to maturity. The VVIX is a proxy for
the volatility-of-volatility, a priced risk factor that emerges from many option pricing models
which embed stochastic volatility.

Table 7 presents the estimated coefficients of the regression in (25). I regress the three
latent factors F 1

t+1, F
2
t+1, F

3
t+1 and the SPX daily return from the SPX 3L+MKT model on

the vector of known risk factors Xt+1. Examining the estimates from the regression on the
first latent factor, I find a significant negative coefficient on the left tail jump factor, indicat-
ing that our first latent factor embeds compensation for bearing left tail jump risk. The first
latent factor also incorporates compensation for bearing other risks such as very near-term
volatility LevelUS

t+1 and very near-term skewness of the index SkewUS
t+1. The positive coeffi-

cient on SkewS
t+1 and negative coefficient SkewUS

t+1 could indicate the first latent factor also
incorporates compensation for bearing risks associated with the term structure of skewness.
Overall, the first latent factor seems to embed compensation for exposure to left tail jumps,
volatility and skewness around the ultra-short horizon.

Turning to the second latent factor, there are positive coefficients on the US factors
(LevelUS

t+1 and SkewUS
t+1), but negative coefficients on the S factors (LevelSt+1 and SkewS

t+1).
This factor appears to be encoding risks associated with the term structure of the level of
volatility and skewness. Alternatively, an intuitive interpretation is to view it as a maturity
factor like those identified by Karakaya (2014) and Büchner and Kelly (2022). US maturity
options are more sensitive to the very near term component of the term structure and S
maturities more sensitive to the 30-day horizon of the volatility and skewness. Indeed, as
shown in a later analysis, on average US maturity options have larger loadings on F 2

t+1

compared to their S maturity counterparts. Lastly, I turn to the most easily interpretable
factor, F 3

t+1, which likely embed compensation for bearing variance risk as evinced by the
negative coefficients on both level factors and ∆VIXt+1.
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Dependent variable (SPX 3L+MKT Factors): (F 1
t+1) (F 2

t+1) (F 3
t+1) (MKT)

Risk factor:
LTt+1 -2.483∗∗∗ -0.479∗∗ 0.032 0.091∗∗∗

(0.715) (0.149) (0.080) (0.014)
RTt+1 2.289∗ 0.477∗∗ -0.150 -0.064∗∗∗

(0.959) (0.164) (0.108) (0.014)
LevelSt+1 0.334 -0.111∗∗∗ -0.124∗∗∗ 0.014∗∗∗

(0.192) (0.030) (0.023) (0.003)
LevelUS

t+1 -0.168∗∗ 0.038∗∗∗ -0.034∗∗∗ -0.001
(0.060) (0.010) (0.009) (0.001)

SkewS
t+1 × 100 -0.254∗∗∗ -0.053∗∗∗ -0.007 0.012∗∗∗

(0.070) (0.015) (0.007) (0.001)
SkewUS

t+1 × 100 0.281∗∗∗ 0.038∗∗ -0.039∗∗∗ 0.015∗∗∗
(0.070) (0.014) (0.008) (0.002)

∆VIXt+1 -0.031 -0.005∗ -0.008∗∗∗ -0.001∗∗∗
(0.018) (0.003) (0.001) (0.000)

∆VVIXt+1 0.006 0.001 0.001∗∗∗ -0.000
(0.003) (0.001) (0.000) (0.000)

Constant -0.026∗∗ -0.007∗∗∗ -0.003∗∗ 0.003∗∗∗
(0.009) (0.002) (0.001) (0.000)

Factor Mean (basis points) 17.67 16.28 11.99 4.13
Factor Sharpe Ratio 0.018 0.044 0.050 0.034
Number of Observations 2691 2691 2691 2691
R2 0.297 0.225 0.752 0.958

Table 7. OLS estimates of the coefficients in equation (25) for the daily realizations of the 3
latent factors and the MKT factor (daily SPX return) from the SPX 3L+MKT. The Sharpe
ratio reported is the un-annualized daily Sharpe ratio. Standard errors are computing using
the heteroskedasticity robust methodology of White (1980). One, two and three stars denote
significance at the 5%, 1% amd 0.1% level respectively.

To summarize, the regression results reported in table 7 shed light on the types of risks
priced into the latent factors, and by extension, the cross-section of SPX option returns. The
first latent factor primarily captures compensation for left tail jump risk and very near-term
volatility and skewness; this is consistent with some of the crash risk factors considered by
Constantinides et al. (2013) and Bates (2008). The second latent factor could be viewed as
a maturity factor; generally, it possesses positive exposure to factors constructed from US
maturity options and negative exposure to those constructed from S maturity options. The
third latent factor is most straightforwardly interpretable as a variance risk factor, capturing
compensation for exposure to the overall level of the volatility surface across maturities.
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5.2 Unconditional factor betas

In this subsection, I examine the unconditional factor loadings of the SPX 3L+MKT model.
As pointed out by Goyal and Saretto (2022) and Büchner and Kelly (2022), the variation
in latent factor loadings can shed light on what risks these factors pick up. For instance, if
a latent factor loads very highly on US maturity DOTM and OTM puts relative to other
option maturities, one might posit that this latent factor embeds risks related to skewness or
negative jumps in the underlying. To this end, I compute the average factor loadings as the
unconditional betas over the buckets introduced in section 3.2 for the SPX options returns.

Recall the buckets split each index’s option returns along moneyness a1 (DOTM, OTM,
ATM, ITM, DITM), maturity a2 (US or S) and type a3 (call/put) for a total of 20 buckets.
Each SPX bucket is the set B(a1, a2, a3, SPX). I estimate the unconditional beta on the
n-th latent factor, F n

t+1, for options in B(a1, a2, a3, SPX) by calculating the sample average
over their conditional betas βn

i,t:

E
[
βn
i,t|(i, t) ∈ B(a1, a2, a3, SPX)

]
≈ 1

|B(a1, a2, a3, SPX)|
∑

(i,t)∈B(a1,a2,a3,SPX)

βn
i,t (32)

Figure 5 plots these unconditional loadings for each bucket with the darker shaded bars
corresponding to US maturities (blue for calls, red for puts) and lighter shades to S maturities.
The first latent factor (top panel) shows highly negative loadings for the DOTM put options
for both S and US maturities. In particular, the most negative loading is on the DOTM US
put bucket where jump risks and skewness are most saliently priced (Andersen, Fusari, &
Todorov 2017; Bollerslev & Todorov 2011). This is consistent with the evidence from the
regressions in the previous subsection and bolsters the interpretation that the first latent
factor broadly encodes compensation for bearing skewness and variance risk at the 9-day
horizon, both of which are driven largely by jumps. The lower magnitude of the unconditional
beta for DOTM puts at S maturities can be explained by the diminishing effect of jumps on
DOTM put option prices as the time to maturity becomes longer as shown by Carr and Wu
(2003).

The second latent factor (middle panel) displays clear patterns by maturity. For two
option types with the same moneyness category, the US maturities are always larger (less
negative in the case of the put options), than their S maturity counterparts. Again, this is
consistent with the prior subsection’s interpretation of the second latent factor as a maturity-
linked factor. The notion of a maturity factor appears in quite a few studies of option returns
such as Karakaya (2014) and Büchner and Kelly (2022). Such a maturity factor is often
constructed from the returns to a long-short portfolio on longer maturity options (long) and
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Figure 5. Unconditional betas of the SPX 3L+MKT model for each of the the 20 SPX
option buckets for the latent factors: F 1

t+1 (top), F 2
t+1 (middle), F 3

t+1 (bottom). The y-axis
is the unconditional beta computed as in (32) and x-axis shows the corresponding bucket.
US maturity calls (puts) are plotted as dark blue (dark red) bars and S maturity calls (puts)
are plotted as light blue (light red) bars. 37



shorter maturity options (short). Although a maturity-linked factor appears in quite a few
factor models of index options returns, there is disagreement on its economic basis.

The third latent factor (bottom panel) presents a very striking pattern across moneyness.
The most negative loadings are on the DOTM buckets and steadily become less negative as
we move from DOTM buckets to DITM buckets where the unconditional betas are close to
zero. If the third latent factor primarily embeds compensation for bearing variance risk, we
should expect two things from the unconditional betas. First, we should observe negative
loadings across the board, as all options are mechanically long variance. Second, we should
see that DOTM options have the most negative loadings and DITM to have the least negative
loadings. Both are displayed by the unconditional betas for F 3

t+1 in the bottom panel of figure
5.

At first, the reason why this moneyness pattern provides evidence of a variance risk factor
is not immediately clear, especially since in many option pricing models the option’s vega is
highest at-the-money. However, this is not the case for options which are deleveraged. By
deleveraging the option by its embedded leverage, the smallest vega exposures in the option
panel occur for options deepest in-the-money and is increasing in how far out-the-money the
option’s strike price is. Table 7 shows that the third latent factor is negatively related to the
level factors and the daily change in the VIX. Overall, the evidence from the unconditional
betas support the interpretation that the third latent factor primarily provides compensation
for exposure to SPX variance.

To summarize, the patterns in the unconditional betas for the SPX 3L+MKT model
corroborate the interpretations put forth in section 5.1. The first latent factor encodes
variance and skewness risk over the 9-day horizon, a horizon where jumps affect higher-order
moments more saliently. The second latent factor appears to be a maturity linked factor
which negatively loads onto put returns but positively loads onto call returns. Lastly, the
unconditional betas and regression evidence suggest the third latent factor is likely exposure
to the overall level of variance across maturities.

5.3 5MOM: A moment-based interpretable factor model

Latent factor models such as IPCA have found widespread adoption in the literature, in no
small part, due to their pricing performance and ability to explain the variation in returns
across a wide variety of asset classes (Giglio et al. 2022). However, a common drawback of
these models is that they do not immediately shed light on any underlying economic risks.
To interpret these latent factors and understand the risk exposures they embed, analyses
of their factor loadings or covariances to known risk factors like those conducted earlier
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are necessary. Even if the latent factors can be interpreted, there are myriad situations
facing researchers and market participants alike which calls for a factor model using easily
interpretable and tradable factors. Here, I build off the interpretations of the latent factor
models offered thus far and propose my own factor model. I evaluate the pricing performance
of this model relative to other models proposed in the literature and industry practice.

I propose a 5-factor model of SPX option returns consisting entirely of easily tradable and
interpretable factors.20 The 5-factor model uses both level factors (LevelUS and LevelS), both
skewness factors (SkewUS and SkewS), and underlying index return Rmkt

SPX,t+1. FSPX
t+1 stacks

these factors into a five element vector. As this model employs factors that are sensitive to 5
moments - expected market return, risk-neutral volatility at the 9-day and 30-day horizon,
and risk-neutral skewness at the 9-day and 30-day horizon - I hereafter refer to this model
as 5MOM (5 moments). Equation (33) specifies the structure of the model. The factor
model adopts the linear-in-characteristics dynamic betas of the IPCA model to implement
time-varying betas. I use the same vector of characteristics Zi,t used to estimate the IPCA
models defined in (18).

Ri,t+1 −Rf
t+1 = β′

i,tF
SPX
t+1 + Ei,t+1

=
(
Z ′

i,tΓβ

)
FSPX

t+1 + Ei,t+1

(33)

As in earlier analyses, I focus my analysis on SPX options here. The choice of factors
is motivated by the interpretations of the latent factors offered in this section. The two
volatility factors, LevelUS and LevelS, correspond to the risks priced in the third latent
factor. As shown in table 7, a large fraction of the variation in the third latent factor is
explained by the returns on the two level factors. The level factors have negative coefficients
indicating the third latent factor awards compensation for bearing index variance risk. The
skewness factors, SkewUS and SkewS, are a component of the risks priced into the first and
second latent factors. The first latent factor negatively co-moves with both the left tail jump
factor and SkewUS. In addition, the large negative loadings on DOTM put options (figure
5) suggest there is compensation for bearing very near-term skewness which could be largely
driven by negative jumps. The second latent factor is a maturity-linked factor, co-moving
negatively with LevelS and SkewS and positively with LevelUS and SkewUS.

I estimate the 5MOM model on the SPX option panel using the same IPCA methodology
used to estimate the latent factor models. The primary difference in estimation here is that I
do not estimate any latent factors, only the dynamic betas. The 5MOM model has an R2 of

20By easily tradable, I refer to the fact that the factors can be constructed using only at most 2 options
and some trading in the underlying. Compare to this to the VIX or CBOE SKEW Index both of which
require a portfolio of dozens of options to replicate.
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Figure 6. Unconditional betas of the 20 SPX buckets for the 5MOM model. Left plot presents
unconditional betas for LevelUS (solid lines) and LevelS (dashed lines). Right plot presents
unconditional betas for SkewUS (solid lines) and SkewS (dashed lines). X-axis shows bucket
moneyness while color encodes bucket type and maturity (see legend). Standard errors
computed using wild bootstrap (see appendix A for implementation details). Appendix B
presents plots of the unconditional betas for the NDX 5MOM and RUT 5MOM models.

0.952 and an MAPE of 13.4 bps. The MAPE of the SPX 5MOM model is on par with that of
the 2 or 3 factor IPCA models in table 4 and trails the benchmark 3L+MKT model by only 3
bps. Estimating a 3-factor model (SPX 3MOM) consisting of the SPX return and just the 1-
month horizon moment factors, LevelS and SkewS offers an instructive comparison. The SPX
3MOM model uses the same linear-in-characteristics conditional betas structure as (33) and
has a MAPE of 14.18 bps. The overall improvement in pricing performance from including
the additional factors (LevelUS and SkewUS) is small on average, but the improvement in
pricing US maturity options is noticeable. The MAPEs for S maturity options for 5MOM
and 3MOM are 11.57 bps and 11.69 bps respectively. US maturities see more significant
improvement, highlighting the relevance of these 9 day horizon moments: the MAPE for
3MOM model is 22.78 bps and is 19.04 bps for the 5MOM model, a 16% improvement in
pricing performance.

To get a sense of the factor loadings, I compute the unconditional betas of my observable
factors FSPX

t+1 . Like in equation (32), I estimate the unconditional betas as cross-sectional
averages of the conditional betas in the 5MOM model for each of the 20 SPX option buckets.
Figure 6 plots the unconditional betas from the 5MOM model with two standard deviation
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error bands around the point estimate for each SPX bucket. I compute bootstrapped stan-
dard errors via wild bootstrap (see appendix A). The plot on the left is the average beta
for the level factors corresponding to the factor constructed using options with 9 days (solid
lines) and 30 days (dashed lines) to maturity. On the right, I plot the average betas on the
two skew factors for the 20 buckets. For betas on the level (variance) factors, we notice that
nearly all the betas are positive. This is sensible since our panel consists entirely of returns
on net long option positions and all vanilla options are inherently long variance; however,
this positive exposure is decreasing as we move from DOTM to DITM buckets. For the
skew factors, the loadings are all negative for put buckets, with the exception of the DITM
put buckets. The loadings are generally positive for call buckets, although there is greater
heterogeneity in sign. Like for the level factors, we notice a clear trend along moneyness. As
buckets move deeper into the money, the magnitudes of the skew exposures get smaller. In
particular, the DOTM call buckets have the largest exposure to index skewness, underscor-
ing the sensitivity to the right tail of the risk-neutral distribution these call options possess.
In appendix B, I present the same plot but for 5MOM models estimated on the NDX and
RUT index options. The conclusions I draw from the SPX unconditional betas are robust
to estimating the 5MOM model using options and factors corresponding to other two equity
indices.

I compare the performance of my 5MOM model vis-à-vis other factor models from the
literature on the basis of R-squareds and MAPEs. As shown in equation (5), many option
pricing models used in industry imply a dynamic factor structure, providing us with an
additional basis of comparison beyond factor models from the literature. Models implied
from standard industry practice, which I refer to as practitioner models are derived from the
Taylor expansion along the underlying price and option’s implied volatility:

∆Oi,t+1 ≈
∂Oi,t+1

∂St︸ ︷︷ ︸
Delta

∆St+1 +
∂2Oi,t+1

∂S2
t︸ ︷︷ ︸

Gamma

(∆St+1)
2 +

∂Oi,t+1

∂IVi,t︸ ︷︷ ︸
Vega

∆IVi,t+1 (34)

where ∆Oi,t+1 is the change in the price of option i. This can be rearranged to obtain a
factor structure for option returns:

∆Oi,t+1

Oi,t

≈
[
∂Oi,t

∂St

St

Oi,t

]
︸ ︷︷ ︸

Delta

∆St+1

St

+

[
∂2Oi,t

∂S2
t

S2
t

Oi,t

]
︸ ︷︷ ︸

Gamma

(
∆St+1

St

)2

+

[
∂Oi,t

∂IVi,t

IVi,t

Oi,t

]
︸ ︷︷ ︸

Vega

∆IVt+1

IVi,t

(35)

To evaluate factor models from the literature, I take the proposed factors and estimate
a factor model using the same linear-in-characteristics structure as the 5MOM and IPCA
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models. Endowing this structure on the betas of these models makes the comparison fair, as
many of the factor models mentioned here were originally estimated using static betas rather
than time-varying ones. For the proposed factor models I construct the factors {F n

t+1}Kn=1

and estimate the model:

Ri,t+1 −Rf
t+1 =

K∑
n=1

(
Γ′
βZi,t

)
F n
t+1 + vi,t+1 =

K∑
n=1

βn
i,tF

n
t+1 + vi,t+1 (36)

where Zi,t is the same set of characteristics used to estimate the IPCA models defined in
(18).

The factor model literature on index options is broad and has considered a wide range
of factors with factors relating to forward-looking variance emerging as the most common.
A long linage of work, from Coval and Shumway (2001) onwards, consider a variance factor
of some kind when estimating factor models of option returns. Ang, Hodrick, Xing, and
Zhang (2006) and Büchner and Kelly (2022) make use of the Coval and Shumway (2001)
zero-beta straddle as a long variance factor. Other work such as Jones (2006), and more
recently by Fournier et al. (2024), use changes in the VIX to construct a variance factor. I
consider factor models which incorporate variance in both of these ways here. Other factor
models I estimate include those from the literature incorporate the CBOE’s SKEW Index
and the betting-against-beta (BAB) factor of Frazzini and Pedersen (2022). I also consider
factor models employing the volatility-of-volatility as a risk factor, proxied here by the VVIX
index.

Table 8 presents R2 and MAPEs of various factor models adapted from the literature
and industry practice. Panel A shows the results for factor models which incorporate known
factors from the academic literature. I include the four-factor model (FF4) consisting of
the three Fama and French (1993) factors and the momentum factor of Carhart (1997). I
also consider factor models which combine the FF4 factors with the Coval and Shumway
(2001) straddle and Frazzini and Pedersen (2022) BAB factor. Other models I estimate
include the classic CAPM market factor with various combinations of one-day changes in
the forward-looking 1-month indices computed by CBOE (VIX, SKEW, VVIX). From the
MAPEs reported, we find that models which incorporate a variance factor have lower MAPEs
relative to factor models which do not. Out of the models considered from the literature
in panel A, the factor model combining the FF4 factors with the straddle and BAB factor
(the benchmark FF6 model considered by Büchner and Kelly (2022)) produces the lowest
hedging error both for the SPX sample as a whole as well as for the US and S maturity
subsamples.

Panel B presents the results for the practitioners’ models implied by (35). The delta
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Factor model R2 MAPE MAPE (S) MAPE (US)

Panel A: Prior literature
FF4 (Carhart 1997) 0.857 26.752 24.411 36.284
FF4 + Straddle 0.944 16.731 14.673 25.109
FF4 + Straddle + BAB 0.944 16.617 14.556 25.005
CAPM 0.850 25.741 23.462 35.018
CAPM + VIX 0.901 21.542 19.197 31.087
CAPM + VIX + SKEW 0.902 21.564 19.217 31.120
CAPM + VIX + VVIX 0.903 21.670 19.293 31.348
CAPM + VIX + SKEW + VVIX 0.903 21.653 19.276 31.329

Panel B: Practitioners’ model
Delta hedging 0.811 27.790 25.497 35.675
Delta and Gamma hedging 0.869 26.092 23.488 35.039
Delta, Gamma and Vega hedging 0.853 25.744 19.881 45.846

Panel C: IPCA (1-4 factors)
1 0.829 26.661 24.461 35.141
2 0.956 14.355 13.020 19.501
3 0.975 11.546 10.440 15.808
3L+MKT 0.979 9.901 8.493 15.332

Panel D: 3MOM/5MOM
3MOM (MKT+LevelS + SkewS) 0.956 13.855 11.662 22.784
5MOM 0.966 12.930 11.427 19.046

Table 8. R2 and mean absolute pricing error (MAPE) for the full SPX options panel. MAPE
(S) and MAPE (US) denote the MAPE for the S and US maturity subsample respectively.
All pricing error averages reported in basis points. The daily absolute return for the SPX
panel is 84 basis points.

hedging, delta and gamma hedging, and delta, gamma and vega hedging models in panel
B refer to the factor model in (35) using the first 1, 2 and 3 terms as factors respectively.
Overall, the models in panel B are generally outperformed by the other models considered
in panel A, C and D. For reference, Panel C reports results for the IPCA model using 0 - 3
latent factors combined with the SPX return as a pre-specified factor. The latent factors in
the IPCA model are in principle tradable, although as the first order conditions in (20) imply,
they are portfolios of consisting of a large number of options. Transaction costs make such a
portfolio infeasible to trade in practice owing to the high transaction costs from transacting
in the options market.

Finally, panel D reports the hedging performance of the SPX 3MOM model (daily index
return, LevelS, and SkewS) and the SPX 5MOM model introduced in the prior subsection.
Out of the non-latent factor models, they demonstrate the best performance across both
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the S maturity and US maturity subsamples. The 5MOM model only trails the benchmark
3L+MKT model by around 3 basis points for both subsamples while explaining a comparable
amount of the variation in the SPX option panel. Notably the performance for US maturity
option returns are improved by around 3 bps (≈ 16% reduction in pricing error) relative
to the 3MOM model while the performance in hedging the S maturity options is essentially
unchanged, suggesting that factors sensitive to moments over the 9-day horizon contain
relevant and important pricing information for US maturity options.

An important caveat to interpreting the 5MOM model is the fact that the factors do not
purely load onto a single higher-order moment at a particular horizon. For instance, the
LevelS factor (Coval and Shumway (2001) straddle factor) does not load purely on forward-
looking variance at the 30-day horizon. Instead, as I show in the following section, LevelS is
also exposed to changes in forward-looking skewness and some residual market exposure due
to the fact that the straddle position used to compute LevelS is not dynamically hedged intra-
day to maintain zero exposure to the underlying. Another source of residual exposure to the
underlying comes from the fact that the option pricing model used to compute the delta of the
position might be mis-specified. For instance, Bates (2005) notes that, at some maturities
the Black-Scholes deltas are biased. These details complicate attributing option returns
to innovations to forward-looking moments in a precise and direct way. In the following
section, I make headway on this issue using a reduced form model where I can measure the
contribution of these moments to the tradable factors in the 5MOM models. This enables a
decomposition of the returns in the option panel to innovations in the underlying index and
the model-free measures of forward-looking higher-order moments constructed in section 2
in a more direct way.

6 Decomposition of option returns

In this section, I decompose the expected option returns in the panel into exposures to the
underlying as well as its second and third moments over the 9-day and 30-day horizon. To do
this, I estimate risk prices using a factor model-like approach to quantify the contribution of
the daily innovations in these moments to the variance and skewness asset returns constructed
in the previous section. Using these estimated contributions, I can combine these results
with the estimated 5MOM models to quantify precisely the contribution of different moment
exposures for different buckets of option returns in my panel. The upshot of this approach
is that I can assess relative importance of these risk factors for determining expected option
returns, filling a gap in the literature that typically relates variance and skewness to option
prices rather than returns.
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6.1 Risk prices of moments

My analyses in the prior section suggest the importance of using assets that reflect risk
exposures to variance and skewness over different horizons. In particular, the 5MOM model
uses daily returns to the variance (level) and skewness (skew) assets constructed from 9-
day and 30-day maturity options as factors. In this subsection, we directly quantify how
changes in the moments of the risk-neutral distribution affect the returns to the variance
and skewness assets using a reduced-form model. Before proceeding, I define two additional
pieces of notation: Level(m)

ind,t+1 and Skew(m)
ind,t+1. Level(m)

ind,t+1 is the one-day holding return
to a zero-beta straddle computed as in equation (27) using options written on index ind

of maturity m. Likewise, Skew(m)
ind,t+1 is the one-day holding return to the skewness asset

computed as in equation (29) using options on index ind with maturity m. Using prior
definitions, I can relate them to our level and skew returns used to estimate the SPX 5MOM
model from equation (25):

LevelUS
t+1 = Level(9d)SPX,t+1 LevelSt+1 = Level(30d)SPX,t+1

and
SkewUS

t+1 = Skew(9d)
SPX,t+1 SkewS

t+1 = Skew(30d)
SPX,t+1.

I construct these variance and skewness asset returns using options with maturity m equal to
1-30 days (1d - 30d) and 2-12 months (2M-12M) for options on the SPX, NDX, and RUT.21

I retain only time series with at least 250 return observations. Applying this filter, leaves
me with 186 time series of variance and skewness asset returns.

The literature often uses assets of similar construction to proxy for factors exposed to
higher order moments; in particular, straddles are used as a stand-in for long variance assets
(B. Chen, Gan, & Vasquez 2023; Dew-Becker, Giglio, & Kelly 2021). Of course, a natural
question is in what way these assets exposed to such moments. To explore this, I use the
prices of the variance and skewness claims V

(m)
ind,t and W

(m)
ind,t, replicated from a portfolio of

options written on index ind using equations (9) and (10) respectively. As discussed in
section 2, the prices of these variance (skewness) claims are the annualized realized variance
(skewness) over the next m days for equity index ind. Their prices are the risk-neutral
expectations of realized variance and skewness and are informative of the real-time forward-
looking expectations of the options market. As these assets give pure exposure to a specific
moment and horizon, I can use their prices to obtain the fair price of variance and skewness

21For maturities m greater than or equal to 2 months (60 days), the level and skew returns are calculated
with options within 2 weeks of the exact target maturity. The target maturities greater than 30 days to
expiration are multiples of 30 from 60 (2 months) to 360 (12 months).
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Figure 7. Correlation matrix for changes in the prices of variance and skewness claims written
on the S&P 500 Index.

forwards; specifically, I use equations (11) and (12) to compute V
(30d−9d)
ind,t and V

(30d−9d)
ind,t , the

prices of assets with payoff equal to the annualized realized variance and skewness respectively
that occurs over the next 30 days and excluding the first 9 days for index ind. With these
prices in hand, I examine the moment-related exposures of our level and skew factors. Denote
the vector of daily changes in the prices of the variance and skewness claims written on index
ind ∈ {SPX, NDX, RUT} by ∆Mind,t+1:

∆Mind,t+1 =
[
∆V

(9d)
ind,t+1,∆V

(30d−9d)
ind,t+1 ,∆W

(9d)
ind,t+1,∆W

(30d−9d)
ind,t+1

]′
Figure 7 plots the correlation matrix for the components of ∆MSPX,t+1, the market re-

turn, and 30-day horizon risk-neutral variance and skewness for SPX. The correlations for
the SPX index return with innovations in the variance risk-neutral moments, ∆V

(9d)
SPX,t+1,

∆V
(30d)
SPX,t+1 and ∆V

(30d−9d)
SPX,t+1 , are all very strongly negative ranging from -0.72 to -0.67. This

is consistent with the well-documented "leverage effect", the tendency for negative asset re-
turns to increase that asset’s volatility. The correlation between ∆V

(9d)
SPX,t+1 and ∆V

(30d)
SPX,t+1
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is high at 0.96 indicating that innovations to the shorter horizons of the variance term struc-
ture are likely driven by common shocks. For the skewness innovations, the correlations to
the index return are still negative but weak with the strongest correlation being with 30-day
horizon skewness ∆W

(30d)
SPX,t+1 at -0.3. The correlation between ∆W

(9d)
SPX,t+1 and ∆W

(30d)
SPX,t+1

is 0.53. This suggests a term structure of skewness which is driven by overlapping, although
not identical sources, as appears to be the case for variance. Lastly, I find that innovations
between variance and skewness are positively correlated although mild. The correlation be-
tween ∆V

(9d)
SPX,t+1 and ∆W

(9d)
SPX,t+1 is very weak at 0.11 and between ∆V

(30d)
SPX,t+1 and ∆W

(30d)
SPX,t+1

is only slightly stronger at 0.2.
To understand how innovations to forward-looking moments relate to Level(m)

ind,t+1 and
Skew(m)

ind,t+1, I build a reduced form model relating these returns to innovations in their under-
lying index’s corresponding risk-neutral moments ∆Mind,t+1. Let I = {SPX,NDX,RUT}
and denote one-day return of index ind by Rmkt

ind,t+1. I use ∆Mind,t+1 to denote ∆Mind,t+1 sub-
tracted by its unconditional mean. I estimate the following model of returns for Level(m)

ind,t+1

and Skew(m)
ind,t+1 using the available range of maturities m and indices ind:

Level(m)
ind,t+1−Rf

t+1 = β
(m)
ind,level

′∆Mind,t+1+β
(m)
ind,Level,mktR

mkt
ind,t+1+η

(m)
ind,Level,t+1 ∀ind ∈ I (37)

Skew(m)
ind,t+1−Rf

t+1 = β
(m)
ind,Skew

′∆Mind,t+1+β
(m)
ind,Skew,mktR

mkt
ind,t+1+η

(m)
ind,Skew,t+1 ∀ind ∈ I (38)

E
(
j
(m)
ind,t+1

)
= β

(m)

ind,j,V (9d)λV (9d) + β
(m)

ind,j,V (30d−9d)λV (30d−9d) + β
(m)

ind,j,W (9d)λW (30d−9d)+

β
(m)

ind,j,W (30d−9d)λW (30d−9d) + β
(m)
ind,j,mktλmkt + v

(m)
ind,j ∀ind ∈ I,∀j ∈ {Level, Skew}

(39)

where β
(m)
ind,j is the vector

[
β
(m)

ind,j,V (9d) , β
(m)

ind,j,V (30d−9d) , β
(m)

ind,j,W (9d) , β
(m)

ind,j,W (30d−9d)

]′
j ∈ {Level, Skew}.

The structure of the model is similar to, although not quite, a standard linear factor model
with static betas. The key difference is that the factors are actually index dependent. In
equations (37) and (38), I regress the level and skew returns on index-specific risk factors;
the regressors are the moment innovations ∆Mind,t+1 and the daily index return Rmkt

ind,t+1

pertaining to the same underlying index ind as Level(m)
ind,t+1 and Skew(m)

ind,t+1. This alters
the interpretation of the lambda terms in the final equation. In a standard factor model,
each lambda in equation (39) is price of risk or risk premium (if the factor is a return)
associated with exposure to a specific asset return or factor. In my model, the lambdas
do retain some "price of risk" interpretation; however, it is a price of risk in a more local
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sense. The lambdas in this context encode compensation for bearing risks associated with
exposure to the moments of a corresponding equity index. The signs of the coefficients of
∆Mind,t+1 reveal the sign of the risk premium associated with variance and skewness risk.
The coefficient λindex has the familiar equity risk premium interpretation. As the underlying
equity indices are all fairly well-diversified equity indices, the λindex I recover here can be
seen an estimate of risk premium associated with the broad equity market.

To close the model, I impose the economically motivated restrictions on the coefficients
of ∆V

(30d−9d)
ind,t+1

β
(m)

ind,level,V (30d−9d) = 0, β
(m)

ind,skew,V (30d−9d) = 0 ∀m ≤ 9d (40)

and on the coefficients of ∆W
(30d−9d)
ind,t+1

β
(m)

ind,level,W (30d−9d) = 0, β
(m)

ind,skew,W (30d−9d) = 0 ∀m ≤ 9d. (41)

The economic reasoning for these restrictions is straightforward; for assets constructed from
options that expire in 9 days or fewer, the risk-neutral dynamics of the underlying after the
options expire should not effect their prices. The full reduced form model is specified by
equations (37) - (41).

I estimate this model in two stages; I first estimate equations (37) and (38) using ordinary
least squares to obtain the betas in both sets of equations. Implementing the economic
restrictions imposed by (40) and (41) can be done simply by omitting the restricted variables
from the regression. Then I estimate the lambdas by regressing the expected return on the
betas estimated from the first stage. Equation (39) describes how exposure to each risk
factor in ∆Mind and the underlying index contributes to the expected return. I show the
summary statistics for the betas obtained by estimating equation (37) and (38) in table
9. Panel A presents summary statistics for the betas estimated for regressions on one-day
straddle returns Level(m)

ind,t+1. Overall, the level time series are heavily exposed to changes in
forward-looking variance ∆V

(9d)
ind,t+1 and ∆V

(30d−9d)
ind,t+1 with larger changes being associated with

high straddle returns. The average betas on ∆V
(9d)
ind,t+1 and ∆V

(30d−9d)
ind,t+1 for the straddles are

1.19 and 1.05 respectively. Panel B shows the summary statistics for the betas estimated
from the returns on the skewness asset. Unlike the straddle returns, the variance exposure
is close to zero on average for the skewness asset one-day returns Skew(m)

ind,t+1. This is due
to the fact the skewness asset is vega-neutral at construction. For the skewness assets, the
betas on ∆W

(9d)
ind,t+1 and ∆W

(30d−9d)
ind,t+1 nearly all positive.

I show the estimated model of expected returns in equation (42) multiplied by 100 on

48



∆V
(9d)
ind,t+1 ∆W

(9d)
ind,t+1 ∆V

(30d−9d)
ind,t+1 ∆W

(30d−9d)
ind,t+1 Rmkt

ind,t+1

Panel A: Estimated betas from regressions on Levelind,t+1

Mean 1.193 0.022 1.052 0.005 0.570
Standard Deviation 1.533 0.030 0.802 0.008 1.169
25th Percentile 0.340 0.005 0.000 0.000 0.163
50th Percentile 0.873 0.021 0.961 0.003 0.478
75th Percentile 1.346 0.028 1.782 0.006 0.827

Panel B : Estimated betas from regressions on Skewind,t+1

Mean -0.039 0.003 -0.140 0.001 1.848
Standard Deviation 0.079 0.002 0.113 0.002 0.067
25th Percentile -0.100 0.002 -0.245 -0.001 1.806
50th Percentile -0.068 0.003 -0.132 0.000 1.830
75th Percentile 0.031 0.005 0.000 0.000 1.884

Table 9. Summary statistics for the estimated betas from the regressions for Level(m)
ind,t+1 and

Skew(m)
ind,t+1 in equations (37) and (38) respectively.

both sides to express the expected return in percentages. Ê
(
j
(m)
ind,t+1

)
denotes the fitted

expected return of the estimated model for j ∈ {Level, Skew}. The t-statistics for the test if
the coefficient is zero are given in square brackets for each coefficient. All test statistics and
inference apply the wild bootstrap procedure proposed by Liu (1988) and Mammen (1993)
and take into account that the betas from the first stage regressions are estimated. The
R-squared of the estimated expected return equation (42) is 0.47.

Ê
(
j
(m)
ind,t+1 × 100

)
= −0.29︸ ︷︷ ︸

[−6.59]

β̂
(m)

ind,j,V (9d) + 6.39︸︷︷︸
[2.80]

β̂
(m)

ind,j,W (9d) − 0.07︸︷︷︸
[−4.15]

β̂
(m)

ind,j,V (30d−9d)

+ 3.15︸︷︷︸
[1.27]

β̂
(m)

ind,j,W (30d−9d) + 0.07︸︷︷︸
[6.07]

β̂
(m)
ind,j,mkt

(42)

Examining the risk prices above, we see that variance risk over the following 9 days and
9 to 30 days ahead are strongly priced. Both the coefficients on β̂

(m)
ind,j,V 9 and β̂

(m)
ind,j,V 30−V 9

are statistically significant at the 0.1% level. The price of risk for variance exposures have
the correct negative sign reflecting the presence of a negative variance risk premium. The
estimated prices of risk associated with skewness exposure also have the correct positive sign
although only the coefficient on β̂

(m)
ind,j,W9 is statistically significant. Overall, the signs of my

estimated prices of risk are in line with a representative investor with any utility function
displaying decreasing marginal utility of wealth and non-increasing absolute risk aversion
as discussed in Kraus and Litzenberger (1976). An investor with such a utility function
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should display a preference for positive skewness and an aversion to variance at the index
level which is consistent with the estimated prices of risk in (42). Intuitively, a preference
for positive skewness has a behavioral basis as well. Experimental studies conducted by
Ebert and Wiesen (2011) and Ebert (2015) show a preference for positively skewed lotteries
over negatively skewed ones even when controlling for other moments of the lotteries’ payoff
distributions. Lastly, the coefficient on β̂

(m)
i,j,mkt of 0.07 implies a monthly average market

index return of 1.47%. Although ostensibly high, the sample is mostly populated by data
from the 2014-2023 period when equity indices (particularly the Nasdaq-100) experienced
markedly higher returns relative to history.

There is a plethora of ways the literature measures risk premia associated with higher-
order moments. A popular approach in the literature synthesizes the variance and skewness
payoffs from options. Jiang and Tian (2005), Carr and Lee (2009), Bollerslev, Gibson, and
Zhou (2011), Neuberger (2012), Kozhan et al. (2013), Choi, Mueller, and Vedolin (2017),
Heston and Todorov (2023) among many others take this approach across a wide variety of
asset classes. A related approach looks at the returns of traded derivatives purely exposed
to higher-order moments; examples from the literature are Dew-Becker et al. (2017) and
Konstantinidi and Skiadopoulos (2016) who consider the hold-to-maturity returns of S&P
500 variance swaps. My model offers a novel and complementary angle in examining these
higher-order related risk premia. I use coefficients of equation (42) and the estimated betas
to obtain the variance and skewness risk premium embedded in a typical straddle or skewness
asset. By a typical straddle or skewness asset, I refer to a straddle (skewness asset) with
the betas equal to the average betas reported in panel A (panel B) of table 9. The average
straddle has a beta with respect to ∆V

(9d)
ind,t+1 equal to 1.193. Since λV (9d) = −0.0029, exposure

to ∆V
(9d)
ind,t+1 for a typical straddle loses on average around 0.35% per day or 7.3% per month.

By the same computation, I calculate how much a typical straddle loses to innovations in
V (30d−9d). A typical straddle with beta equal to 1.052 with respect to ∆V

(30d−9d)
ind,t+1 loses 1.6%

per month. Generally, the typical straddle has betas close to 1 with respect to both ∆V
(9d)
ind,t+1

and ∆V
(30d−9d)
ind,t+1 and on average sees a negative return due to these exposures to innovations

in variance. These exposures to variance constitute the bulk of the average negative returns
of straddles and, although not directly comparable, the returns are roughly similar to the
monthly holding returns of the variance swaps studied by Konstantinidi and Skiadopoulos
(2016). Turning to a typical skewness asset, I find the exposure to innovations in skewness,
∆W

(9d)
ind,t+1 and ∆W

(30d−9d)
ind,t+1 , contribute 1.9 and 0.2 basis points to the daily expected return.

On a monthly (annual) basis, this is 0.40% (4.83%) and 0.07% (0.79%) respectively. In
particular, innovations in 9-day skewness is the economically and statistically significant
component of the skewness asset return. Innovations to skewness between 9 and 30 days
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∆V
(9d)
SPX,t+1 ∆W

(9d)
SPX,t+1 ∆V

(30d−9d)
SPX,t+1 ∆W

(30d−9d)
SPX,t+1 RSPX,t+1 Return Fitted Return

LevelUS
t+1 -36.6 25.8 0 0 -8.8 -24.8 -19.6

SkewUS
t+1 4.3 1.1 0 0 13.2 12.8 18.6

LevelSt+1 -12 12.2 -15.1 0.2 -0.8 -35.8 -15.5
SkewS

t+1 2.9 0.8 1.4 -0.2 12.8 11.3 17.8

Table 10. Contributions (in basis points) to the expected return of the option-based factors
in the 5MOM model for SPX computed from the estimated reduced form model. Model
implied expected return (fitted return) and average return (return) in-sample are also in
basis points.

ahead contribute little and cannot be statistically distinguished from zero.
Variance and skewness assets owe a substantial portion of their expected returns to

innovations in variance and skewness respectively. I quantify the variance exposure in a
typical straddle and skewness asset using the betas and lambdas recovered from estimating
the reduced form model in equations (37) to (41). Table 10 shows the contribution of each
of the components in ∆MSPX,t+1 to the option-based factors of the SPX 5MOM model in
basis points. I find the variance risk premium embedded in straddles to be large; ∆V

(9d)
i,t+1

contributes -7.8% on a monthly basis to LevelUS
t+1. The returns to the 30-day straddle LevelSt+1

also owes its highly negative return to variance exposure stemming from both ∆V
(9d)
i,t+1 and

∆V
(30d−9d)
i,t+1 . Interestingly, the model estimates high skewness exposure for both LevelUS

t+1 and
LevelSt+1 perhaps suggesting that straddle returns embed exposure to higher-order moments
beyond variance. Turning to skewness asset returns, I find that SkewUS

t+1 and SkewS
t+1, while

both having positive exposure to innovations in skewness are even more greatly affected by
the return of the underlying index. The skewness exposure on SkewUS

t+1 contributes around
1.1 basis points each day or 2.8% per year. This estimate is close to the risk premium
associated with skewness estimated by Harvey and Siddique (2000), Langlois (2020), among
others. Overall, the risk premia associated with innovations to higher-order moments implied
by my reduced form model are quantitatively similar to those estimated by the literature for
variance and skewness.

6.2 Decomposing option returns

The estimated model in the prior subsection allows us to decompose the factors of the 5MOM
models into exposures to the underlying index, its variance, and its skewness. I use Find

t+1 to
denote the 4 option-based factors in the 5MOM model for index ind:

Find
t+1 =

[
Level(9d)ind,t+1,Level(30d)ind,t+1, Skew(9d)

ind,t+1, Skew(30d)
ind,t+1

]′
ind ∈ I
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For any of these option-based factors, I can estimate the contribution to their expected
return stemming from the moment innovations in ∆Mind,t+1 and the return to index ind

using equation (42). For instance, the contribution of innovations in V
(9d)
SPX,t+1 to Level(30d)SPX,t+1

is the quantity:
β̂
(30d)

SPX,level,V (9d)λ̂V (9d)

This quantity is the component of the unconditional expected return of Level(9d)SPX,t+1 at-
tributed to changes in the 9-day risk-neutral expected variance V

(9d)
SPX,t+1. Define Gind

ℓ by

Gind
ℓ =

[
β̂
(9d)
ind,Level,ℓλ̂ℓ, β̂

(30d)
ind,Level,ℓλ̂ℓ, β̂

(9d)
ind,Skew,ℓλ̂ℓ, β̂

(30d)
ind,Skew,ℓλ̂ℓ

]′
ℓ ∈ L

where L = {V (9d),W (9d), V (30d−9d),W (30d−9d),mkt}. Gind
ℓ consists of the contributions to the

unconditional expected returns of the factors in Find
t+1 stemming from exposure to ℓ ∈ L.

Using these quantities, I can decompose the daily unconditional expected return of the
5MOM factors for any index ind into innovations to risk-neutral moments and the daily
index return. It is a decomposition in the sense we can take the sum across ℓ ∈ L to recover
the expected returns estimated in equation (39):

Ê
(
Find

t+1

)
=
∑
ℓ∈L

Gind
ℓ (43)

I take this decomposition of the F ind
t+1 factors and use this to decompose the returns of

the option panel. I start with the estimated 5MOM model for index ind ∈ I and take
expectations to obtain ŷi,t+1, the unconditional expected return of option i at time t+ 1.

ŷi,t+1 = β̂′
i,tE
(
Find

t+1

)
+ β̂mkt

i,t E
(
Rmkt

ind,t+1

)
(44)

The subscript i is a stand-in for the 4-tuple of characteristics (moneyness category, maturity
group, option type, and underlying index) described in section 3 that uniquely identifies each
option return in the panel at time t+1. I substitute the sample averages for the unconditional
expectations to evaluate equation (44). Rearranging terms yields the following expression
for ŷi,t+1:

ŷi,t+1 = β̂′
i,tG

ind
V (9d) + β̂′

i,tG
ind
W (9d) + β̂′

i,tG
ind
V (30d) + β̂′

i,tG
ind
W (30d) + β̂′

i,tG
ind
mkt + β̂mkt

i,t E(Rmkt
ind,t+1) (45)

To obtain the contribution of a moment ℓ ∈ L, I retain only the terms above relating to
ℓ. For instance, the contribution of ∆V

(9d)
ind,t+1 to the expected return is given by β̂′

i,tG
ind
V (9d) .

Since the behavior and risk loadings of option contracts are highly heterogeneous across
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moneyness, maturity, and option type, it is useful to consider the contribution of different
risk sources ℓ across options of different characteristics. I calculate the contributions of ℓ ∈ L
to expected returns for each of the 60 buckets in my option panel. Specifically, for ℓ ∈ L
and ind ∈ I, define Qℓ(a1, a2, a3, ind),

Qℓ(a1, a2, a3, ind) =
Ê
[
β̂′
i,tG

ind
ℓ + 1ℓ=mktβ̂

mkt
i,t λmkt|(i, t) ∈ B(a1, a2, a3, ind)

]
∣∣∣Ê [ŷi,t+1|(i, t) ∈ B(a1, a2, a3, ind)]

∣∣∣ (46)

where Ê [·|(i, t) ∈ B(a1, a2, a3, ind)] is the sample average taken over option returns in bucket
B(a1, a2, a3, ind). 1ℓ=mkt is an indictor function equal to 1 if ℓ = mkt and 0 otherwise.
Equation (46) computes Q(a1, a2, a3, ind): the component of the return attributable to ℓ.
Computing this as the expected contribution normalized by the absolute value of the expected
return gives a sense of the relative importance of each component.

Table 11 reports 100 × Qℓ(a1, a2, a3, ind) in the columns headed by ℓ ∈ L for the 20
SPX buckets. As an example, QV (30d−9d)(US,OTM,Call, SPX) in table 11 is −11.9%. This
indicates exposure to the forward-looking variance of SPX between the next 30 days and
excluding the next 9 days has a sizable negative effect on the expected return, around 12%
of the magnitude of the bucket’s expected return. The figures reported in the square brackets
are bootstrapped t-statistics for the test if the estimated quantity is statistically different
from zero. The bootstrapping procedure takes into account the conditional betas of the
IPCA models and coefficients in equations (37), (38), and (39) are estimated. I use 5,000
bootstrap iterations to compute all standard errors and t-statistics. The last three columns
of table 11 presents the fitted expected return (R̂eturn), average residuals of the 5MOM
model (Residual), and the in-sample average return (Return) in basis points computed over
each bucket. The rounded parentheses in the column headed by R̂eturn show the standard
error of the bootstrapped samples. Appendix B contains tables 12 and 13 which compute
the same quantities as table 11 but for equity index options written on the Nasdaq 100
(NDX) and Russell 2000 (RUT) respectively. For buckets of all indices (tables 11 - 13), I
find significant heterogeneity in how innovations to different moments affect expected returns
across maturity, moneyness and option type.

Taken together, the results for the SPX, NDX and RUT indices suggest a few key find-
ings on the link between option returns and innovations in forward-looking moments. First,
the contributions from changes to risk-neutral variances, ∆V

(9d)
ind,t+1 and ∆V

(30d−9d)
ind,t+1 , to the

expected return are large and statistically significant for many buckets with substantial vari-
ation across buckets, even for those of the same index and type. Option pricing theory
suggests that contributions from variance should be negative across all buckets as all options
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Risk source (ℓ): ∆V
(9d)
SPX,t+1 ∆W

(9d)
SPX,t+1 ∆V

(30d−9d)
SPX,t+1 ∆W

(30d−9d)
SPX,t+1 Rmkt

SPX,t+1 R̂eturn Residual Return
Maturity Type Moneyness

S C DOTM 7.11 19.76 −14.73 0.19 87.68∗∗∗ 5.56 -2.24 3.32
[0.54] [1.59] [-1.64] [0.06] [4.43] (0.09)

OTM −2.85 14.99∗ −11.94∗∗ 0.16 99.64∗∗∗ 6.52 1.72 8.24
[-0.5] [2.5] [-2.75] [0.1] [16.24] (0.05)

ATM −5.04 8.74∗∗ −6.64∗∗ 0.01 102.94∗∗∗ 7.74 0.09 7.83
[-1.55] [2.68] [-2.79] [0.01] [39.84] (0.04)

ITM −6.7∗ 6.07∗∗ −3.9∗ −0.14 104.67∗∗∗ 5.48 -0.14 5.34
[-2.19] [2.7] [-2.27] [-0.17] [66.23] (0.03)

DITM −5.82∗ −0.26 0.38 −0.17 105.87∗∗∗ 3.86 -0.04 3.82
[-2.56] [-0.82] [0.56] [-0.59] [52.22] (0.03)

P DOTM −27.99∗ −1.76 −10.66 0.74 −60.33∗ -16.54 7.52 -9.01
[-2.24] [-0.98] [-1.58] [0.35] [-2.03] (0.1)

OTM −21.66∗∗ 2.93 −11.84∗ 0.67 −70.1∗∗∗ -10.47 4.04 -6.43
[-2.9] [1.52] [-2.22] [0.39] [-4.81] (0.06)

ATM −9.54∗∗ 5.11∗ −9.29∗∗ 0.46 −86.74∗∗∗ -8.59 0.53 -8.06
[-2.67] [2.43] [-3.03] [0.46] [-22.74] (0.07)

ITM 2.46 6.52∗ −7.06∗∗ 0.27 −102.18∗∗∗ -5.54 0.04 -5.5
[0.72] [2.55] [-3.02] [0.34] [-28.84] (0.06)

DITM 7.7∗∗ 1.56 −3.51∗∗ 0.15 −105.9∗∗∗ -4.36 -1.4 -5.76
[2.69] [1.91] [-3.01] [0.39] [-29.5] (0.04)

US C DOTM 13.75 17.13 −7.22 0.26 76.08∗∗ 8.92 -6.88 2.04
[1.05] [1.52] [-1.59] [0.17] [3.26] (0.14)

OTM 0.25 13.62∗ −5.71∗∗ 0.08 91.76∗∗∗ 8.82 0.75 9.57
[0.05] [2.44] [-2.57] [0.09] [12.1] (0.1)

ATM −1.8 7.3∗ 1.35 −0.31 93.47∗∗∗ 10.47 -1.67 8.79
[-0.56] [2.27] [1.05] [-0.54] [16.93] (0.09)

ITM −5.16∗ 5.11∗ 0.88 −0.17 99.33∗∗∗ 8.47 -1.18 7.29
[-2.31] [2.52] [1.4] [-0.62] [36.38] (0.06)

DITM −8.18∗ 2.49 5.1∗∗ −0.08 100.67∗∗∗ 3.58 -0.8 2.78
[-2.04] [1.53] [2.64] [-0.11] [33.74] (0.04)

P DOTM −35.06∗ −2.71 −3.43 0.16 −58.96∗ -19.77 5.5 -14.27
[-2.45] [-1.13] [-1.67] [0.24] [-2.05] (0.35)

OTM −26.56∗∗∗ 3.15 −2.68∗ 0.01 −73.92∗∗∗ -11.77 0.83 -10.94
[-3.99] [1.91] [-2.3] [0.03] [-7.17] (0.16)

ATM −13.35∗∗ 8.06∗∗ 5.66∗∗ −0.67 −99.69∗∗∗ -7.32 -2.43 -9.75
[-2.69] [3.22] [2.95] [-0.95] [-26.76] (0.09)

ITM −1.9 7.29∗∗ 4.14∗∗ −0.36 −109.17∗∗∗ -6.96 -0.4 -7.35
[-0.59] [2.58] [2.7] [-0.75] [-17.42] (0.11)

DITM −4.62 2.21∗ 6.26∗∗∗ −0.35 −103.5∗∗∗ -6.13 -2.48 -8.61
[-1.62] [2.1] [3.58] [-0.63] [-43.8] (0.05)

Table 11. Return decomposition for delevered SPX option returns across
buckets characterized by Θ = (a1, a2, a3, SPX) expressed as a percent-
age. Left-most three columns identify the bucket and columns headed by
ℓ ∈ {∆V

(9d)
SPX,t+1,∆W

(9d)
SPX,t+1,∆V

(30d−9d)
SPX,t+1 ,∆W

(30d−9d)
SPX,t+1 , R

mkt
SPX,t+1} report 100 × Qℓ(Θ).

T-statistics for the null hypothesis that Qℓ(Θ) is zero are presented in square brackets.
Right-most three columns present estimates of the expected return (R̂eturn), MAPE
(Residual), and average return in the bucket (Return) in basis points. Rounded parentheses
show the standard errors for the column headed by (R̂eturn). All standard errors and
t-statistics are calculated using the wild bootstrap approach proposed by Liu (1988) and
Mammen (1993) using 5,000 iterations. Statistical significance at the 5%, 1%, and 0.1%
denoted by 1, 2 and 3 stars respectively.
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are mechanically long variance which has negative risk premium (Bollerslev, Tauchen, &
Zhou 2009; Carr & Wu 2009). This is generally consistent with the columns for ∆V

(9d)
ind,t+1

and ∆V
(30d−9d)
ind,t+1 in tables 11, 12, and 13; most of the estimated relative contributions have

the correct negative sign and are statistically significant. The observed heterogeneity in
relative contributions is stark and appears primarily linked to the moneyness of the bucket
and the option type. Options which are DOTM and OTM generally incur a more negative
contribution to expected returns. For SPX and NDX call and put options in particular, the
contributions from ∆V

(9d)
ind,t+1 and ∆V

(30d−9d)
ind,t+1 generally become less negative as one moves

along moneyness categories from the DOTM bucket to the DITM bucket. With the exclu-
sion of the RUT buckets, the difference in contribution between a DOTM bucket and its
corresponding DITM bucket are statistically significant at the 5% level.22 The combined
contribution from innovations in variance is the sum of the contributions in the ∆V

(9d)
ind,t+1

and ∆V
(30d−9d)
ind,t+1 columns. Doing so, I find that DOTM put options are highly exposed to

variance; exposure to variance constitutes anywhere from 18% to upwards of 43% of the neg-
ative average returns on these put buckets. Just the contributions from ∆V

(9d)
ind,t+1, a portion

of the variance term structure highly exposed to jumps, ranges from around 9% of expected
negative return to as much as 40%. Interestingly, this stands in contrast to DOTM call
buckets which, with the exception the RUT buckets, which see significantly less negative
contributions from ∆V

(9d)
ind,t+1 than their corresponding DOTM put buckets.

Second, like variance, exposure to skewness also possesses similarly sizable variation by
moneyness across option returns; however, unlike variance, the sign of this exposure appears
to differ by option type. Contribution from skewness exposure, specifically exposure to
∆W

(9d)
ind,t+1, across indices is increasing in moneyness for call options while decreasing in

moneyness for put options. For DOTM and OTM buckets, the change in skewness over the
9-day horizon contributes positively to expected call returns and negatively to expected put
returns, with the magnitudes of the contributions from ∆W

(9d)
ind,t+1 for calls in particular, being

quantitatively large and significant. For instance, exposure to ∆W
(9d)
ind,t+1 contributes around

20% of the expected return to DOTM S maturity call options written on SPX while the
corresponding DOTM put bucket sees a contribution of -2%. Contributions from ∆W

(30d−9d)
ind,t+1

are generally statistically insignificant with the exception of a handful of RUT buckets in
table 13. Like before, I obtain the total skewness exposure by taking the sum of the ∆W

(9d)
ind,t+1

and ∆W
(30d−9d)
ind,t+1 . Doing this, I find the role of skewness is highly salient, particularly for NDX

options. For DOTM and OTM call options on NDX, the contribution of skewness is second
in magnitude only to the contribution of the underlying index.

22I bootstrap the p-values for a standard difference in means Welch t-test where I compare the average
contribution from the DOTM bucket to that of the corresponding DITM bucket.
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Lastly, the relative importance of each risk factor is highly dependent on moneyness
and option type across indices; however, the contribution of the 9-day moments, ∆V

(9d)
ind,t+1

and ∆W
(9d)
ind,t+1, is fairly similar for buckets that only differ in maturity. Comparing the

contributions of the 9-day moments for buckets which only differ in option type, I find
substantial asymmetry in the magnitudes of ∆V

(9d)
ind,t+1 and ∆W

(9d)
ind,t+1 columns. Typically,

exposure to ∆V
(9d)
ind,t+1 is more negative for a put bucket than an otherwise similar call bucket.

This asymmetry could be explained by the fact that ∆V
(9d)
ind,t+1 is highly sensitive to jumps in

the index which disproportionately affect DOTM put options as most jumps in the indices are
negative ones (Bollerslev, Todorov, & Xu 2015) and would be consistent with the evidence
presented in section 5. Exposure to ∆W

(9d)
ind,t+1 is generally larger in magnitude for call buckets

as compared to otherwise similar put buckets. This exposure is largest for DOTM calls for
which the contribution of ∆W

(9d)
ind,t+1 exceeds the magnitude of the contribution from either

∆V
(9d)
ind,t+1 or ∆V

(30d−9d)
ind,t+1 , running counter to the trend of a variance risk exposure being the

second largest contributor to returns after the underlying index.

7 Conclusion

In this article, I study the determinants of equity index option returns written on the S&P
500, Nasdaq 100, and Russell 2000 maturing in 30 days or less and relate this to funda-
mental information from the implied risk-neutral distribution: its forward-looking moments.
Options with 30 days or less are a heavily traded section of the maturity profile which, in
recent years, has come to constitute the bulk of all traded contracts in the options markets
of all three equity indices. At time of writing, a large majority of trading volume is concen-
trated in options expiring in just 10 days or fewer. Despite this overwhelming popularity,
the literature, up until recently, has focused on the more conventional band of maturities
which lie between 1 month out to around 2 years. I contribute to the nascent yet burgeoning
literature that aims to understand this rapidly expanding market by conducting a through
analysis of the daily deleveraged returns to these contracts.

I first estimate a series of latent IPCA factor models with time-varying betas and find
that a factor model consisting of a low-dimensional set of four factors (3 latent factors
and the underlying index return) can accurately describe the cross-section of the excess
deleveraged returns to these short maturity option returns. Although I fail to reject the
null hypothesis that the alphas of these latent factor models are zero, I find that the alphas
are small in an economic sense as, on average, the arbitrage opportunities suggested by
the alphas disappears once transaction costs are taken into account. Using complementary
approaches, I interpret the latent factors that emerge from the four factor IPCA model. My
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findings suggest that these latent factors award compensation for bearing risks associated
with exposure to higher-order moments of the underlying.

Motivated by the interpretation of these latent factors, I propose and estimate my own
factor models for these returns, one for each equity index, which are both easily interpretable
and tradable. The five factors in these models are the daily return of the underlying index
and two pairs of factors exposed to the risk-neutral forward-looking variance and skewness
of that index at two distinct horizons. The first pair consists of a variance and skewness
factor: the daily returns to the Coval and Shumway (2001) zero-delta straddle and the Bali
and Murray (2013) skewness asset respectively constructed using options with 30 days to
maturity. The second pair consists of the returns to the same variance and skewness assets
which only differ in the sense they are constructed using options with 9 days to maturity.
The first pair of factors are exposed to fluctuations in variance and skewness at the typical
1-month horizon examined by the literature, while the second pair provides factors with
exposure to innovations in variance and skewness that look over the shorter 9-day horizon. I
show that incorporating exposures to these shorter horizon moments helps more accurately
model the returns to options with fewer than 10 days to maturity. I find a 5 factor model
of consisting of the daily return to these variance and skewness factors with the daily return
of underlying index explains the variation in the cross-section of option returns well and
delivers lower pricing errors relative to existing factor models proposed by the literature and
implied by industry practice.

Lastly, I propose and estimate a reduced form model which enables a decomposition of
expected option returns. This decomposition explicitly quantifies the portion of the expected
return from to fluctuations to the underlying index ind and two pairs of its forward-looking
risk-neutral moments. These moments consist of variance and skewness over the next 9
days, V (9d)

ind,t+1 and W
(9d)
ind,t+1, and variance and skewness over the next 30 days excluding the

first 9 days, V (30d−9d)
ind,t+1 and W

(30d−9d)
ind,t+1 for each equity index ind. The resulting decomposition

reveals interesting differences across options with different moneyness, maturities, and type.
Exposure to both V

(9d)
ind,t+1 and V

(30d−9d)
ind,t+1 generally contributes negatively to expected option

returns as options are systematically long index variance, a factor carrying a negative price of
risk. The contributions to expected returns from these innovations to variance is highest for
DOTM options and is decreasing as one examines options that are closer to or deeper in-the-
money. After the return of the underlying, variance exposure is usually the second largest
driver of expected returns. For skewness exposure, I find noticeable asymmetry between
option types. The contribution from skewness exposure, specifically exposure to W

(9d)
ind,t+1,

is statistically significant and large for DOTM and OTM call options, but are generally
negative and statistically insignificant for DOTM and OTM put options.
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Overall, these findings present several avenues for further research as well as potential
applications for market participants. A natural extension is to consider a decomposition of
expected returns for options written on other asset classes such as bonds or commodities.
The price of risk with regards to variance or skewness in other markets might be substantially
different, in which case the composition of expected returns in terms of higher-order moments
will differ. Market participants can apply this work in a risk management context. By
explicitly quantifying the variance and skewness risk exposure present in option returns, one
can more precisely manage the risks in an options portfolio which can be greatly exposed to
changes in these higher-order moments.
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Appendix A Statistical inference and evaluation for IPCA

models

A.1 Hypothesis testing using wild bootstrap

Statistical inference for the IPCA model implements a bootstrapping procedure. For expo-
sition, I first illustrate the procedure as applied to testing the null hypothesis in (23). The
null hypothesis in (23) is that αi,t jointly are zero in the model. Note this is equivalent to
testing the following null hypothesis:

H0 : Γα = 0L+1 (47)

where 0L+1 is the zero vector. I first estimate the unrestricted model

yi,t+1 = Ri,t+1 −Rf
t+1 =

(
Z ′

i,tΓα

)
+
(
Z ′

i,tΓβ

)
Ft+1 +

(
Z ′

i,tΓδ

)
Rmkt

ind,t+1 + Ei,t+1

and obtain the estimated values F̂t+1, Γ̂α, Γ̂β, and Γ̂δ. I compute the Wald statistic W from
these estimates:

W = Γ̂′
αΓ̂α

To implement wild bootstrapping as proposed by Liu (1988), I generate bootstrapped samples
imposing the null hypothesis (in this case the null sets Γα to the zero vector). Let qi,t+1 ∼
t(5) be independent draws from the student t distribution with 5 degrees of freedom for
each observation (i, t + 1). Then the observation corresponding to (i, t + 1) in the B-th
bootstrapped sample yBi,t+1 is given by:

yBi,t+1 =
(
Z ′

i,tΓ̂β

)
F̂t+1 +

(
Z ′

i,tΓ̂δ

)
Rmkt

ind,t+1 + qi,t+1Êi,t+1

Then I estimate the IPCA model using the bootstrapped yBi,t+1 under the null hypothesis.
Specifically, I estimate the model

yBi,t+1 =
(
Z ′

i,tΓ
B
β

)
FB
t+1 +

(
Z ′

i,tΓ
B
δ

)
Rmkt

ind,t+1 + EB
i,t+1

to obtain the fitted parameters F̂B
t+1, Γ̂B

α , Γ̂B
β , and Γ̂B

δ corresponding to the B-th bootstrapped
sample. For each bootstrapped sample, I compute the Wald-like statistic WB:

WB = Γ̂B′
α Γ̂B

α
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The p-value of the hypothesis test in (47) is equal to the fraction of bootstrapped samples
for which WB exceeds W . In practice, the number of bootstrapped samples in the literature
is chosen to be large. Following similar implementations for IPCA models, such as those by
Kelly et al. (2019) and Goyal and Saretto (2022), I use 5,000 bootstrapped samples when
drawing samples for statistical inference.

Testing similar hypotheses, such as the significance of a factor is analogous. For example,
to test the significance of the index return Rmkt

ind,t+1 as a priced factor, we first calculate a
similar Wald statistic:

W = Γ̂′
δΓ̂δ

Then, for each bootstrapped sample, we assume the null and estimate the model:

yBi,t+1 =
(
Z ′

i,tΓα

)
+
(
Z ′

i,tΓβ

)
Ft+1 + EB

i,t+1

where the bootstrapped sample yBi,t+1 is generated as

yBi,t+1 =
(
Z ′

i,tΓ
B
α

)
+
(
Z ′

i,tΓ̂
B
β

)
F̂B
t+1 + qÊi,t+1

where q is a draw from the student t-distributed random variable as before. Then the p-value
for our statistical test is again the fraction of bootstrapped samples where WB

δ is larger than
W .

WB
δ = Γ̂B′

δ Γ̂B
δ

A.2 Out-of-sample evaluation and estimation

To produce out-of-sample (OOS) predictions of returns, I implement an expanding window
approach. Suppose the data in the sample runs from time 0 to T . Then I select a month
M0 in the data which cuts the data into two halves, that is, there is approximately an equal
number of observations in the sample prior to and after M0. To compute the out-of-sample
average error of the IPCA model, we can proceed iteratively. First, we estimate the model
in equation (48) on a subsample of the full option panel consisting of all observations in the
option panel yi,t+1 for all times t before month M0:

yi,t+1 =
(
Z ′

i,tΓ
M0
α

)
+
(
Z ′

i,tΓ
M0
β

)
Ft+1 +

(
Z ′

i,tΓ
M0
δ

)
Rmkt

t+1 + Ei,t+1 (48)

Now using the estimated parameters, F̂M0
t+1, Γ̂M0

α , Γ̂M0
β , and Γ̂M0

δ , we can compute the
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out-of-sample errors using EOOS
i,t+1 for times t in month M0 by:

EOOS
i,t+1 =

(
Z ′

i,tΓ̂
M0
α

)
+
(
Z ′

i,tΓ̂
M0
β

)
Ft+1 +

(
Z ′

i,tΓ̂
M0
δ

)
Rmkt

t+1 (49)

To compute the OOS errors for the observations in month M0 + 1, one can estimate the
IPCA model using all observations prior to month M0 + 1. The OOS errors are then given
by:

EOOS
i,t+1 =

(
Z ′

i,tΓ̂
M0+1
α

)
+
(
Z ′

i,tΓ̂
M0+1
β

)
Ft+1 +

(
Z ′

i,tΓ̂
M0+1
δ

)
Rmkt

t+1 (50)

where F̂M0+1
t+1 , Γ̂M0+1

α , Γ̂M0+1
β , and Γ̂M0+1

δ are the estimated latent factors and parameters
using only observations prior to month M0 + 1.

We continue this process until we cover all observations in the second half of the sample.
At the end, we will should have a panel of out-of-sample errors EOOS

i,t+1 for all t ≥ M0. Using
the out-of-sample errors, we can compute various summary statistics out-of-sample such as
the out-of-sample R-squareds and pricing errors shown in table 5. Out-of-sample pricing
errors are computed as sample averages of the out-of-sample errors EOOS

i,t+1 . Out-of-sample
R-squareds are computed as:

1−

∑
i,t

(
EOOS

i,t+1

)2
E [yi,t+1 − E(yi,t+1)]

2
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Appendix B Figures and tables for other equity indices

Figure 8. 5MOM moment portfolio unconditional betas for NDX (top) and RUT (bottom).
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Risk source (ℓ): ∆V
(9d)
NDX,t+1 ∆W

(9d)
NDX,t+1 ∆V

(30d−9d)
NDX,t+1 ∆W

(30d−9d)
NDX,t+1 Rmkt

NDX,t+1 R̂eturn Residual Return
Maturity Type Moneyness

S C DOTM −7.93 35.32∗∗ −6.07∗ 0.8 77.88∗∗∗ 7.74 -1.37 6.36
[-1.42] [2.67] [-2.5] [0.71] [4.7] (0.12)

OTM −21.07∗∗∗ 23.36∗∗∗ −8.16∗∗∗ 1.38 104.49∗∗∗ 7.7 4.13 11.83
[-4.99] [3.56] [-4.09] [1.36] [25.09] (0.07)

ATM −19.39∗∗∗ 12.37∗∗∗ −6.4∗∗∗ 1.12 112.29∗∗∗ 7.92 2.21 10.13
[-5.87] [3.34] [-4.05] [1.38] [62.74] (0.06)

ITM −18.52∗∗∗ 3.22∗ −5.2∗∗∗ 0.94 119.56∗∗∗ 6.26 1.32 7.58
[-6.22] [1.97] [-3.82] [1.33] [32.4] (0.05)

DITM −21.46∗∗∗ −14.4∗∗∗ −5.62∗∗∗ 1.15 140.33∗∗∗ 3.25 1.69 4.94
[-5.46] [-3.85] [-3.73] [1.49] [13.15] (0.06)

P DOTM −34.08∗∗ −7.32 −6.92 1.38 −53.07∗ -12.86 3.12 -9.74
[-3.18] [-1.41] [-1.76] [0.67] [-2.3] (0.08)

OTM −27.68∗∗∗ 0.57 −5.9∗ 1.12 −68.11∗∗∗ -11.12 3.2 -7.93
[-3.67] [0.2] [-2.02] [0.73] [-5.75] (0.04)

ATM −17.98∗∗∗ 3.51 −4.28∗ 0.79 −82.05∗∗∗ -10.42 2.89 -7.52
[-3.86] [1.34] [-2.2] [0.78] [-15.72] (0.04)

ITM −8.54∗∗∗ 5.19∗ −2.88∗ 0.52 −94.29∗∗∗ -8.69 2.21 -6.48
[-3.39] [1.98] [-2.43] [0.84] [-77.18] (0.04)

DITM 4.68 6.98∗ −2.24∗∗ 0.42 −109.84∗∗∗ -5.02 -0.49 -5.51
[1.68] [2.16] [-2.58] [0.93] [-28.17] (0.05)

US C DOTM −8.46 38.2∗∗ −5.48∗∗ 1.06 74.68∗∗∗ 9.32 -3.12 6.2
[-1.15] [3.08] [-3.19] [1.2] [5.38] (0.29)

OTM −18.78∗∗∗ 21.98∗∗∗ −5.76∗∗∗ 1.17 101.4∗∗∗ 9.83 5.87 15.69
[-4.06] [3.79] [-4.01] [1.54] [24.26] (0.17)

ATM −15.91∗∗∗ 10.97∗∗ −3.64∗∗∗ 0.78 107.81∗∗∗ 10.87 2.88 13.75
[-4.55] [3.25] [-3.4] [1.38] [40.42] (0.15)

ITM −15.04∗∗∗ 3.91∗ −2.73∗∗ 0.63 113.23∗∗∗ 9.38 1.4 10.78
[-4.86] [2.28] [-2.86] [1.28] [32.47] (0.11)

DITM −23.47∗∗∗ −7.78∗ −3.41 1.02 133.63∗∗∗ 3.97 0.72 4.69
[-3.81] [-2.42] [-1.7] [1.06] [12.71] (0.07)

P DOTM −39.53∗∗∗ −12.0∗ −3.15∗ 0.6 −45.92∗ -13.33 -3.32 -16.65
[-4.62] [-2.02] [-2.44] [0.89] [-2.55] (0.19)

OTM −28.31∗∗∗ −1.37 −2.1∗ 0.39 −68.6∗∗∗ -12.37 0.96 -11.4
[-5.09] [-0.52] [-2.51] [0.89] [-8.42] (0.12)

ATM −17.71∗∗∗ 1.74 −0.33 0.05 −83.74∗∗∗ -12.29 2.15 -10.14
[-4.88] [0.73] [-1.44] [0.56] [-24.66] (0.12)

ITM −9.86∗∗∗ 2.83 0.39 −0.05 −93.31∗∗∗ -11.41 2.11 -9.3
[-4.7] [1.34] [1.78] [-0.54] [-48.3] (0.09)

DITM −4.34∗∗ 1.91 1.23∗ −0.14 −98.66∗∗∗ -7.53 -1.45 -8.98
[-2.63] [1.07] [2.28] [-0.57] [-71.42] (0.05)

Table 12. Return decomposition for delevered NDX option returns across buckets character-
ized by Θ = (a1, a2, a3, NDX) expressed as a percentage. Left-most three columns identify
the bucket and columns headed by ℓ ∈ {∆V

(9d)
i,t+1,∆W

(9d)
i,t+1,∆V

(30d−9d)
i,t+1 ,∆W

(30d−9d)
i,t+1 , Rmkt

NDX,t+1}
report 100 × Qℓ(Θ). T-statistics for the null hypothesis that Qℓ(Θ) is zero are presented
in square brackets. Right-most three columns present estimates of the expected return
(R̂eturn), MAPE (Residual), and average return in the bucket (Return) in basis points.
Rounded parentheses show the standard errors for the column headed by (R̂eturn). All
standard errors and t-statistics are calculated using the wild bootstrap approach proposed
by Liu (1988) and Mammen (1993) using 5,000 iterations. Statistical significance at the 5%,
1%, and 0.1% denoted by 1, 2 and 3 stars respectively.
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Risk source (ℓ): ∆V
(9d)
RUT,t+1 ∆W

(9d)
RUT,t+1 ∆V

(30d−9d)
RUT,t+1 ∆W

(30d−9d)
RUT,t+1 Rmkt

RUT,t+1 R̂eturn Residual Return
Maturity Type Moneyness

S C DOTM −26.54 36.53 −6.83 8.62 88.22∗∗ 8.69 -7.22 1.48
[-1.55] [1.47] [-1.18] [0.61] [2.93] (0.12)

OTM −33.46∗ 27.79∗ −10.77∗ 7.76 108.68∗∗∗ 7.15 0.59 7.74
[-2.33] [1.99] [-1.99] [0.8] [8.14] (0.06)

ATM −25.77∗∗ 15.01∗ −6.9∗ 6.74 110.92∗∗∗ 7.42 -0.05 7.36
[-2.83] [2.24] [-2.12] [0.97] [18.2] (0.05)

ITM −20.01∗∗ 7.34∗ −2.67 6.84 108.51∗∗∗ 6.06 -0.76 5.29
[-3.06] [2.1] [-1.36] [1.04] [28.76] (0.05)

DITM −12.97∗ −2.89 6.2∗ 10.07 99.58∗∗∗ 3.52 -0.88 2.64
[-1.99] [-0.89] [2.54] [0.99] [21.12] (0.06)

P DOTM −8.77 −13.06 −10.86∗ −3.86 −63.46∗∗ -15.48 4.72 -10.76
[-1.01] [-1.54] [-2.09] [-0.56] [-3.28] (0.11)

OTM −21.36∗∗ −3.69 −9.45∗∗ 1.31 −66.83∗∗∗ -9.81 0.46 -9.35
[-2.97] [-1.27] [-3.05] [0.48] [-9.67] (0.07)

ATM −20.87∗∗∗ 3.98∗ −6.68∗∗∗ 3.34 −79.78∗∗∗ -8.03 -2.38 -10.41
[-4.26] [2.02] [-3.6] [1.25] [-41.96] (0.08)

ITM −18.42∗∗∗ 10.89∗∗ −3.68∗ 5.24 −94.04∗∗∗ -5.31 -0.15 -5.47
[-3.55] [2.67] [-2.13] [1.17] [-23.13] (0.07)

DITM −4.32 18.84∗∗ −1.49 7.77 −120.79∗∗∗ -2.32 -1.93 -4.25
[-0.81] [3.04] [-0.81] [1.34] [-11.79] (0.09)

US C DOTM −22.95 42.23 −6.3 0.29 86.74∗∗ 11.15 -13.92 -2.77
[-1.3] [1.33] [-1.48] [0.08] [2.65] (0.36)

OTM −26.95∗ 30.75 −7.76∗ 0.69 103.27∗∗∗ 9.26 -3.05 6.21
[-2.2] [1.85] [-2.18] [0.23] [6.87] (0.16)

ATM −23.07∗∗ 20.0∗ −4.95∗ 0.88 107.14∗∗∗ 8.56 -2.18 6.38
[-2.91] [2.2] [-2.55] [0.49] [13.35] (0.11)

ITM −18.71∗∗ 11.21 −0.44 2.04 105.9∗∗∗ 7.43 -2.88 4.54
[-3.02] [1.96] [-0.63] [0.88] [19.45] (0.07)

DITM −22.82 7.74 13.21 5.67 96.2∗∗∗ 3.09 -2.45 0.64
[-1.33] [0.85] [1.8] [0.5] [8.36] (0.06)

P DOTM −18.19∗ −16.11 −2.59 0.29 −63.4∗∗∗ -17.05 -1.02 -18.06
[-2.33] [-1.75] [-1.82] [0.2] [-3.93] (0.29)

OTM −37.35∗∗∗ −5.19 2.37∗ 7.21 −67.04∗∗∗ -9.34 -6.22 -15.55
[-5.74] [-1.52] [2.51] [1.7] [-14.03] (0.17)

ATM −51.02∗∗∗ 5.58 10.4∗∗∗ 13.0∗ −77.98∗∗∗ -5.73 -6.24 -11.97
[-7.88] [1.81] [6.72] [2.35] [-21.54] (0.15)

ITM −43.45∗∗∗ 12.36∗∗ 13.73∗∗∗ 12.51∗ −95.15∗∗∗ -4.45 -3.44 -7.9
[-6.48] [3.28] [6.36] [2.02] [-19.54] (0.13)

DITM −56.33∗∗∗ 19.08∗∗∗ 28.46∗∗∗ 17.35∗ −108.56∗∗∗ -1.47 -2.78 -4.25
[-6.09] [3.77] [7.36] [2.19] [-14.14] (0.09)

Table 13. Return decomposition for delevered RUT option returns across buckets character-
ized by Θ = (a1, a2, a3, RUT ) expressed as a percentage. Left-most three columns identify
the bucket and columns headed by ℓ ∈ {∆V

(9d)
i,t+1,∆W

(9d)
i,t+1,∆V

(30d−9d)
i,t+1 ,∆W

(30d−9d)
i,t+1 , Rmkt

RUT,t+1}
report 100 × Qℓ(Θ). T-statistics for the null hypothesis that Qℓ(Θ) is zero are presented
in square brackets. Right-most three columns present estimates of the expected return
(R̂eturn), MAPE (Residual), and average return in the bucket (Return) in basis points.
Rounded parentheses show the standard errors for the column headed by (R̂eturn). All
standard errors and t-statistics are calculated using the wild bootstrap approach proposed
by Liu (1988) and Mammen (1993) using 5,000 iterations. Statistical significance at the 5%,
1%, and 0.1% denoted by 1, 2 and 3 stars respectively.
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